1
|
Sanchez-Larsen A, Principe A, Ley M, Vaquerizo B, Langohr K, Rocamora R. Insular Role in Blood Pressure and Systemic Vascular Resistance Regulation. Neuromodulation 2024; 27:1218-1226. [PMID: 36682902 DOI: 10.1016/j.neurom.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVES The insula is a brain area involved in the modulation of autonomic responses. Previous studies have focused mainly on its heart rate regulatory function, but its role in vascular control is not well defined. Ictal/postictal blood pressure (BP) fluctuations may have a role in the pathogenesis of sudden unexpected death in epilepsy. This study aims to characterize the insular influence on vascular regulation through direct high-frequency electrical stimulation (E-stim) of different insular regions during stereo-electroencephalographic studies. MATERIALS AND METHODS An observational, prospective study was conducted, involving people with epilepsy who underwent E-stim of depth electrodes implanted in the insular cortex. Patients with anatomical or electrophysiological insular abnormalities, E-stim producing after discharges, or any elicited symptoms were excluded. Variations of BP and systemic vascular resistance (SVR) during the insular stimuli were analyzed, comparing them with those observed during E-stim of control contacts implanted in cortical noneloquent regions and sham stimulations. RESULTS Fourteen patients were included, five implanted in the right insula and nine in the left. We analyzed 14 stimulations in the right insula, 18 in the left insula, 18 in control electrodes, and 13 sham stimulations. Most right insular responses were hypertensive, whereas most left ones were hypotensive. E-stim of the right insula produced a significant BP and SVR increase, whereas the left insula induced a significant BP decrease without SVR changes. The most remarkable changes were elicited in both posterior insulas, although the magnitude of BP changes was generally low. Control and sham stimulations did not induce BP or SVR changes. CONCLUSION Our findings on insular stimulation suggest an interhemispheric difference in its vascular regulatory function, with a vasopressor effect of the right insula and a vasodilator effect of the left one.
Collapse
Affiliation(s)
- Alvaro Sanchez-Larsen
- Epilepsy Monitoring Unit, Department of Neurology, Member of ERN EpiCARE, Hospital del Mar, Barcelona, Spain; Department of Neurology, Complejo Hospitalario Universitario de Albacete, Albacete, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Alessandro Principe
- Epilepsy Monitoring Unit, Department of Neurology, Member of ERN EpiCARE, Hospital del Mar, Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Miguel Ley
- Epilepsy Monitoring Unit, Department of Neurology, Member of ERN EpiCARE, Hospital del Mar, Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Epilepsy Monitoring Unit, Neurological Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | - Beatriz Vaquerizo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Department of Cardiology, Hospital del Mar, Barcelona, Spain
| | - Klaus Langohr
- Integrative Pharmacology and Systems Neuroscience Group, Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Statistics and Operations Research, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Rodrigo Rocamora
- Epilepsy Monitoring Unit, Department of Neurology, Member of ERN EpiCARE, Hospital del Mar, Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute, Barcelona, Spain
| |
Collapse
|
2
|
Fontes MAP, Dos Santos Machado LR, Viana ACR, Cruz MH, Nogueira ÍS, Oliveira MGL, Neves CB, Godoy ACV, Henderson LA, Macefield VG. The insular cortex, autonomic asymmetry and cardiovascular control: looking at the right side of stroke. Clin Auton Res 2024:10.1007/s10286-024-01066-9. [PMID: 39316247 DOI: 10.1007/s10286-024-01066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Evidence from animal and human studies demonstrates that cortical regions play a key role in autonomic modulation with a differential role for some brain regions located in the left and right brain hemispheres. Known as autonomic asymmetry, this phenomenon has been demonstrated by clinical observations, by experimental models, and currently by combined neuroimaging and direct recordings of sympathetic nerve activity. Previous studies report peculiar autonomic-mediated cardiovascular alterations following unilateral damage to the left or right insula, a multifunctional key cortical region involved in emotional processing linked to autonomic cardiovascular control and featuring asymmetric characteristics. METHODS Based on clinical studies reporting specific damage to the insular cortex, this review aims to provide an overview of the prognostic significance of unilateral (left or right hemisphere) post-insular stroke cardiac alterations. In addition, we review experimental data aiming to unravel the central mechanisms involved in post-insular stroke cardiovascular complications. RESULTS AND CONCLUSION Current clinical and experimental data suggest that stroke of the right insula can present a worse cardiovascular prognosis.
Collapse
Affiliation(s)
- Marco Antônio Peliky Fontes
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil.
| | - Liliane Ramos Dos Santos Machado
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ana Clara Rocha Viana
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Matheus Henrique Cruz
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ícaro Santos Nogueira
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Marcela Gondim Lima Oliveira
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Christiane Braga Neves
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ana Caroline Ventris Godoy
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | | | - Vaughan G Macefield
- Department of Neuroscience, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Xia M, Wang T, Wang Y, Hu T, Chen D, Wang B. A neural perspective on the treatment of hypertension: the neurological network excitation and inhibition (E/I) imbalance in hypertension. Front Cardiovasc Med 2024; 11:1436059. [PMID: 39323755 PMCID: PMC11422145 DOI: 10.3389/fcvm.2024.1436059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Despite the increasing number of anti-hypertensive drugs have been developed and used in the clinical setting, persistent deficiencies persist, including issues such as lifelong dosage, combination therapy. Notwithstanding receiving the treatment under enduring these deficiencies, approximately 4 in 5 patients still fail to achieve reliable blood pressure (BP) control. The application of neuromodulation in the context of hypertension presents a pioneering strategy for addressing this condition, con-currently implying a potential central nervous mechanism underlying hypertension onset. We hypothesize that neurological networks, an essential component of maintaining appropriate neurological function, are involved in hypertension. Drawing on both peer-reviewed research and our laboratory investigations, we endeavor to investigate the underlying neural mechanisms involved in hypertension by identifying a close relationship between its onset of hypertension and an excitation and inhibition (E/I) imbalance. In addition to the involvement of excitatory glutamatergic and GABAergic inhibitory system, the pathogenesis of hypertension is also associated with Voltage-gated sodium channels (VGSCs, Nav)-mediated E/I balance. The overloading of glutamate or enhancement of glutamate receptors may be attributed to the E/I imbalance, ultimately triggering hypertension. GABA loss and GABA receptor dysfunction have also proven to be involved. Furthermore, we have identified that abnormalities in sodium channel expression and function alter neural excitability, thereby disturbing E/I balance and potentially serving as a mechanism underlying hypertension. These insights are expected to furnish potential strategies for the advancement of innovative anti-hypertensive therapies and a meaningful reference for the exploration of central nervous system (CNS) targets of anti-hypertensives.
Collapse
Affiliation(s)
- Min Xia
- Department of Anesthesiology, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Tianyu Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Yizhu Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Tingting Hu
- Department of Anesthesiology, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Defang Chen
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Fontes MAP, Marins FR, Patel TA, de Paula CA, Dos Santos Machado LR, de Sousa Lima ÉB, Ventris-Godoy AC, Viana ACR, Linhares ICS, Xavier CH, Filosa JA, Patel KP. Neurogenic Background for Emotional Stress-Associated Hypertension. Curr Hypertens Rep 2023; 25:107-116. [PMID: 37058193 PMCID: PMC10103037 DOI: 10.1007/s11906-023-01235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE OF REVIEW The response to natural stressors involves both cardiac stimulation and vascular changes, primarily triggered by increases in sympathetic activity. These effects lead to immediate flow redistribution that provides metabolic support to priority target organs combined with other key physiological responses and cognitive strategies, against stressor challenges. This extremely well-orchestrated response that was developed over millions of years of evolution is presently being challenged, over a short period of time. In this short review, we discuss the neurogenic background for the origin of emotional stress-induced hypertension, focusing on sympathetic pathways from related findings in humans and animals. RECENT FINDINGS The urban environment offers a variety of psychological stressors. Real or anticipatory, emotional stressors may increase baseline sympathetic activity. From routine day-to-day traffic stress to job-related anxiety, chronic or abnormal increases in sympathetic activity caused by emotional stressors can lead to cardiovascular events, including cardiac arrhythmias, increases in blood pressure and even sudden death. Among the various alterations proposed, chronic stress could modify neuroglial circuits or compromise antioxidant systems that may alter the responsiveness of neurons to stressful stimuli. These phenomena lead to increases in sympathetic activity, hypertension and consequent cardiovascular diseases. The link between anxiety, emotional stress, and hypertension may result from an altered neuronal firing rate in central pathways controlling sympathetic activity. The participation of neuroglial and oxidative mechanisms in altered neuronal function is primarily involved in enhanced sympathetic outflow. The significance of the insular cortex-dorsomedial hypothalamic pathway in the evolution of enhanced overall sympathetic outflow is discussed.
Collapse
Affiliation(s)
- Marco Antônio Peliky Fontes
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Federal de Minas Gerais, Belo Horizonte, MG, 31270 901, Brazil.
| | - Fernanda Ribeiro Marins
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Federal de Minas Gerais, Belo Horizonte, MG, 31270 901, Brazil
| | - Tapan A Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cristiane Amorim de Paula
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Federal de Minas Gerais, Belo Horizonte, MG, 31270 901, Brazil
| | - Liliane Ramos Dos Santos Machado
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Federal de Minas Gerais, Belo Horizonte, MG, 31270 901, Brazil
| | - Érick Bryan de Sousa Lima
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Federal de Minas Gerais, Belo Horizonte, MG, 31270 901, Brazil
| | - Ana Caroline Ventris-Godoy
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Federal de Minas Gerais, Belo Horizonte, MG, 31270 901, Brazil
| | - Ana Clara Rocha Viana
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Federal de Minas Gerais, Belo Horizonte, MG, 31270 901, Brazil
| | - Isadora Cristina Souza Linhares
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Federal de Minas Gerais, Belo Horizonte, MG, 31270 901, Brazil
| | | | | | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
5
|
Nagai M, Kato M, Dote K. Psychological distress-pathophysiology of newly developed hypertension after the Great East Japan Earthquake. Hypertens Res 2022; 45:1664-1666. [PMID: 35931875 DOI: 10.1038/s41440-022-00989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan.
| | - Masaya Kato
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Keigo Dote
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| |
Collapse
|
6
|
Forstenpointner J, Maallo AMS, Elman I, Holmes S, Freeman R, Baron R, Borsook D. The Solitary Nucleus Connectivity to Key Autonomic Regions in Humans MRI and Literature based Considerations. Eur J Neurosci 2022; 56:3938-3966. [PMID: 35545280 DOI: 10.1111/ejn.15691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
The nucleus tractus solitarius (NTS), is a key brainstem structure relaying interoceptive peripheral information to the interrelated brain centers for eliciting rapid autonomic responses and for shaping longer-term neuroendocrine and motor patterns. Structural and functional NTS' connectivity has been extensively investigated in laboratory animals. But there is limited information about NTS' connectome in humans. Using MRI, we examined diffusion and resting state data from 20 healthy participants in the Human Connectome Project. The regions within the brainstem (n=8), subcortical (n=6), cerebellar (n=2) and cortical (n=5) parts of the brain were selected via a systematic review of the literature and their white matter NTS connections were evaluated via probabilistic tractography along with functional and directional (i.e., Granger-causality) analyses. The underlying study confirms previous results from animal models and provides novel aspects on NTS integration in humans. Two key findings can be summarized: (i) the NTS predominantly processes afferent input and (ii) a lateralization towards a predominantly left-sided NTS processing. Our results lay the foundations for future investigations into the NTS' tripartite role comprised of interoreceptors' input integration, the resultant neurochemical outflow and cognitive/affective processing. The implications of these data add to the understanding of NTS' role in specific aspects of autonomic functions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Margarette S Maallo
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Scott Holmes
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Department of Radiology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Nagai M, Förster CY. Day-to-day blood pressure variability in COVID-19: A biomarker of disrupted central autonomic network. J Clin Hypertens (Greenwich) 2022; 24:234-236. [PMID: 35129297 PMCID: PMC8924999 DOI: 10.1111/jch.14438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/20/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Michiaki Nagai
- Department of CardiologyHiroshima City Asa HospitalHiroshimaJapan
| | - Carola Yvette Förster
- Department of AnesthesiologyIntensive CareEmergency and Pain MedicineWürzburgGermany
| |
Collapse
|
8
|
Nagai M, Kato M, Keigo D. Anxiety and hypertension in the COVID-19 era: how is the central autonomic network linked? Hypertens Res 2022; 45:922-923. [PMID: 35181765 PMCID: PMC8855028 DOI: 10.1038/s41440-022-00864-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan.
| | - Masaya Kato
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Dote Keigo
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| |
Collapse
|
9
|
Marins FR, Limborço-Filho M, Iddings JA, Xavier CH, Biancardi VC, Stern JE, Ramiro Diaz J, Oppenheimer SM, Filosa JA, Peliky Fontes MA. Tachycardia evoked from insular stroke in rats is dependent on glutamatergic neurotransmission in the dorsomedial hypothalamus. Eur J Neurol 2021; 28:3640-3649. [PMID: 34152065 DOI: 10.1111/ene.14987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Damage to the insula results in cardiovascular complications. In rats, activation of N-methyl-d-aspartate receptors (NMDARs) in the intermediate region of the posterior insular cortex (iIC) results in sympathoexcitation, tachycardia and arterial pressure increases. Similarly, focal experimental hemorrhage at the iIC results in a marked sympathetic-mediated increase in baseline heart rate. The dorsomedial hypothalamic region (DMH) is critical for the integration of sympathetic-mediated tachycardic responses. Here, whether responses evoked from the iIC are dependent on a synaptic relay in the DMH was evaluated. METHODS Wistar rats were prepared for injections into the iIC and DMH. Anatomical (tracing combined with immunofluorescence) and functional experiments (cardiovascular and sympathetic recordings) were performed. RESULTS The iIC sends dense projections to the DMH. Approximately 50% of iIC neurons projecting to the DMH express NMDARs, NR1 subunit. Blockade of glutamatergic receptors in the DMH abolishes the cardiovascular and autonomic responses evoked by the activation of NMDARs in the iIC (change in mean arterial pressure 7 ± 1 vs. 1 ± 1 mmHg after DMH blockade; change in heart rate 28 ± 3 vs. 0 ± 3 bpm after DMH blockade; change in renal sympathetic nerve activity 23% ± 1% vs. -1% ± 4% after DMH blockade). Experimental hemorrhage at the iIC resulted in a marked tachycardia (change 89 ± 14 bpm) that was attenuated by 65% ± 5% (p = 0.0009) after glutamatergic blockade at the DMH. CONCLUSIONS The iIC-induced tachycardia is largely dependent upon a glutamatergic relay in the DMH. Our study reveals the presence of an excitatory glutamatergic pathway from the iIC to the DMH that may be involved in the cardiovascular alterations observed after insular stroke.
Collapse
Affiliation(s)
- Fernanda Ribeiro Marins
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Limborço-Filho
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Carlos Henrique Xavier
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Vinicia C Biancardi
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, and Center for Neurosciences Research Initiative, Auburn University, Auburn, AL, USA
| | - Javier E Stern
- Department of Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Stephen M Oppenheimer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
10
|
Mazzola L, Rheims S. Ictal and Interictal Cardiac Manifestations in Epilepsy. A Review of Their Relation With an Altered Central Control of Autonomic Functions and With the Risk of SUDEP. Front Neurol 2021; 12:642645. [PMID: 33776894 PMCID: PMC7994524 DOI: 10.3389/fneur.2021.642645] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
There is a complex interrelation between epilepsy and cardiac pathology, with both acute and long-term effects of seizures on the regulation of the cardiac rhythm and on the heart functioning. A specific issue is the potential relation between these cardiac manifestations and the risk of Sudden and Unexpected Death in Epilepsy (SUDEP), with unclear respective role of centrally-control ictal changes, long-term epilepsy-related dysregulation of the neurovegetative control and direct effects on the heart function. In the present review, we detailed available data about ictal cardiac changes, along with interictal cardiac manifestations associated with long-term functional and structural alterations of the heart. Pathophysiological mechanisms of these cardiac changes are discussed, with a specific focus on central mechanisms and the investigation of a possible deregulation of the central control of autonomic functions in addition to the role of catecholamine and hypoxemia on heart.
Collapse
Affiliation(s)
- Laure Mazzola
- Neurology Department, University Hospital, Saint-Étienne, France.,Lyon Neuroscience Research Center, INSERM U 1028, CNRS UMR, Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center, INSERM U 1028, CNRS UMR, Lyon, France.,Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| |
Collapse
|
11
|
Ittner C, Burek M, Störk S, Nagai M, Förster CY. Increased Catecholamine Levels and Inflammatory Mediators Alter Barrier Properties of Brain Microvascular Endothelial Cells in vitro. Front Cardiovasc Med 2020; 7:73. [PMID: 32432126 PMCID: PMC7214675 DOI: 10.3389/fcvm.2020.00073] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
Recent studies have suggested a pathogenetic link between ischemic stroke and Takotsubo cardiomyopathy (TCM) with poor outcome, when occurring simultaneously. Increased catecholamine (CAT) levels as well as elevated inflammatory mediators (INF) are found in the blood of patients with ischemic stroke concomitant with Takotsubo syndrome (TTS). On molecular level, the impact of these stressors combined with hypoxemia could compromise the integrity of the blood brain barrier (BBB) resulting in poor outcomes. As a first step in the direction of investigating possible molecular mechanisms, an in vitro model of the described pathological constellation was designed. An immortalized murine microvascular endothelial cell line from the cerebral cortex (cEND) was used as an established in vitro model of the BBB. cEND cells were treated with supraphysiological concentrations of CAT (dopamine, norepinephrine, epinephrine) and INF (TNF-α and Interleukin-6). Simultaneously, cells were exposed to oxygen glucose deprivation (OGD) as an established in vitro model of ischemic stroke with/without subsequent reoxygenation. We investigated the impact on cell morphology and cell number by immunofluorescence staining. Furthermore, alterations of selected tight and adherens junction proteins forming paracellular barrier as well as integrins mediating cell-matrix adhesion were determined by RT-PCR and/or Western Blot technique. Especially by choosing this wide range of targets, we give a detailed overview of molecular changes leading to compromised barrier properties. Our data show that the proteins forming the BBB and the cell count are clearly influenced by CAT and INF applied under OGD conditions. Most of the investigated proteins are downregulated, so a negative impact on barrier integrity can be assumed. The structures affected by treatment with CAT and INF are potential targets for future therapies in ischemic stroke and TTS.
Collapse
Affiliation(s)
- Cora Ittner
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Stefan Störk
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Michiaki Nagai
- Department of Internal Medicine, General Medicine and Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Carola Y Förster
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Chouchou F, Mauguière F, Vallayer O, Catenoix H, Isnard J, Montavont A, Jung J, Pichot V, Rheims S, Mazzola L. How the insula speaks to the heart: Cardiac responses to insular stimulation in humans. Hum Brain Mapp 2019; 40:2611-2622. [PMID: 30815964 DOI: 10.1002/hbm.24548] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Despite numerous studies suggesting the role of insular cortex in the control of autonomic activity, the exact location of cardiac motor regions remains controversial. We provide here a functional mapping of autonomic cardiac responses to intracortical stimulations of the human insula. The cardiac effects of 100 insular electrical stimulations into 47 epileptic patients were divided into tachycardia, bradycardia, and no cardiac response according to the magnitude of RR interval (RRI) reactivity. Sympathetic (low frequency, LF, and low to high frequency powers ratio, LF/HF ratio) and parasympathetic (high frequency power, HF) reactivity were studied using RRI analysis. Bradycardia was induced by 26 stimulations (26%) and tachycardia by 21 stimulations (21%). Right and left insular stimulations induced as often a bradycardia as a tachycardia. Tachycardia was accompanied by an increase in LF/HF ratio, suggesting an increase in sympathetic tone; while bradycardia seemed accompanied by an increase of parasympathetic tone reflected by an increase in HF. There was some left/right asymmetry in insular subregions where increased or decreased heart rates were produced after stimulation. However, spatial distribution of tachycardia responses predominated in the posterior insula, whereas bradycardia sites were more anterior in the median part of the insula. These findings seemed to indicate a posterior predominance of sympathetic control in the insula, whichever the side; whereas the parasympathetic control seemed more anterior. Dysfunction of these regions should be considered when modifications of cardiac activity occur during epileptic seizures and in cardiovascular diseases.
Collapse
Affiliation(s)
- Florian Chouchou
- IRISSE Laboratory (EA4075), UFR SHE, University of La Réunion, Le Tampon, France
| | - François Mauguière
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Université de Lyon, Lyon, France.,NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - INSERM U 1028/CNRS UMR 5292, University of Lyon, Lyon, France
| | - Ophélie Vallayer
- Neurology Department, University Hospital, Saint-Etienne, France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Université de Lyon, Lyon, France.,TIGER Lab, Lyon Neuroscience Research Centre, CRNL - INSERM U 1028/CNRS UMR 5292, University of Lyon, Lyon, France
| | - Jean Isnard
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Université de Lyon, Lyon, France.,NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - INSERM U 1028/CNRS UMR 5292, University of Lyon, Lyon, France
| | - Alexandra Montavont
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Université de Lyon, Lyon, France.,TIGER Lab, Lyon Neuroscience Research Centre, CRNL - INSERM U 1028/CNRS UMR 5292, University of Lyon, Lyon, France
| | - Julien Jung
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Université de Lyon, Lyon, France.,TIGER Lab, Lyon Neuroscience Research Centre, CRNL - INSERM U 1028/CNRS UMR 5292, University of Lyon, Lyon, France
| | - Vincent Pichot
- EA SNA-EPIS 4607, Department of Clinical and Exercise Physiology, University of Lyon, Jean Monnet University, Saint-Etienne, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Université de Lyon, Lyon, France.,TIGER Lab, Lyon Neuroscience Research Centre, CRNL - INSERM U 1028/CNRS UMR 5292, University of Lyon, Lyon, France
| | - Laure Mazzola
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - INSERM U 1028/CNRS UMR 5292, University of Lyon, Lyon, France.,Neurology Department, University Hospital, Saint-Etienne, France
| |
Collapse
|
13
|
Setiadi A, Korim WS, Elsaafien K, Yao ST. The role of the blood-brain barrier in hypertension. Exp Physiol 2017; 103:337-342. [PMID: 28986948 DOI: 10.1113/ep086434] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review highlights the importance of the blood-brain barrier in the context of diseases involving autonomic dysfunction, such as hypertension and heart failure. What advances does it highlight? It highlights the potential role of pro-inflammatory cytokines, leucocytes and angiotensin II in disrupting the blood-brain barrier in cardiovascular diseases. Advances are highlighted in our understanding of neurovascular unit cells, astrocytes and microglia, with a specific emphasis on their pathogenic roles within the brain. The blood-brain barrier (BBB) is a crucial barrier that provides both metabolic and physical protection to an immune-privileged CNS. The BBB has been shown to be disrupted in hypertension. This review addresses the importance of the BBB in maintaining homeostasis in the context of diseases related to autonomic dysfunction, such as hypertension. We highlight the potentially important roles of the immune system and neurovascular unit in the maintenance of the BBB, whereby dysregulation may lead to autonomic dysfunction in diseases such as heart failure and hypertension. Circulating leucocytes and factors such as angiotensin II and pro-inflammatory cytokines are thought ultimately to downregulate endothelial tight junction proteins that are a crucial component of the BBB. The specific mechanisms underlying BBB disruption and their role in contributing to autonomic dysfunction are not yet fully understood but are a growing area of interest. A greater understanding of these systems and advances in our knowledge of the molecular mechanisms causing BBB disruption will allow for the development of future therapeutic interventions in the treatment of autonomic imbalance associated with diseases such as heart failure and hypertension.
Collapse
Affiliation(s)
- Anthony Setiadi
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Willian S Korim
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Khalid Elsaafien
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Marins FR, Iddings JA, Fontes MAP, Filosa JA. Evidence that remodeling of insular cortex neurovascular unit contributes to hypertension-related sympathoexcitation. Physiol Rep 2017; 5:e13156. [PMID: 28270592 PMCID: PMC5350170 DOI: 10.14814/phy2.13156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 11/24/2022] Open
Abstract
The intermediate region of the posterior insular cortex (intermediate IC) mediates sympathoexcitatory responses to the heart and kidneys. Previous studies support hypertension-evoked changes to the structure and function of neurons, blood vessels, astrocytes and microglia, disrupting the organization of the neurovascular unit (NVU). In this study, we evaluated the functional and anatomical integrity of the NVU at the intermediate IC in the spontaneously hypertensive rat (SHR) and its control the Wistar-Kyoto (WKY). Under urethane anesthesia, NMDA microinjection (0.2 mmol/L/100 nL) was performed at the intermediate IC with simultaneous recording of renal sympathetic nerve activity (RSNA), heart rate (HR) and mean arterial pressure (MAP). Alterations in NVU structure were investigated by immunofluorescence for NMDA receptors (NR1), blood vessels (70 kDa FITC-dextran), astrocytes (GFAP), and microglia (Iba1). Injections of NMDA into intermediate IC of SHR evoked higher amplitude responses of RSNA, MAP, and HR On the other hand, NMDA receptor blockade decreased baseline RSNA, MAP and HR in SHR, with no changes in WKY Immunofluorescence data from SHR intermediate IC showed increased NMDA receptor density, contributing to the SHR enhanced sympathetic responses, and increased in vascular density (increased number of branches and endpoints, reduced average branch length), suggesting angiogenesis. Additionally, IC from SHR presented increased GFAP immunoreactivity and contact between astrocyte processes and blood vessels. In SHR, IC microglia skeleton analysis supports their activation (reduced number of branches, junctions, endpoints and process length), suggesting an inflammatory process in this region. These findings indicate that neurogenic hypertension in SHR is accompanied by marked alterations to the NVU within the IC and enhanced NMDA-mediated sympathoexcitatory responses likely contributors of the maintenance of hypertension.
Collapse
Affiliation(s)
- Fernanda R Marins
- Departamento de Fisiologia e Biofísica, INCT, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marco A P Fontes
- Departamento de Fisiologia e Biofísica, INCT, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|