1
|
Lara LS, Gonzalez AA, Hennrikus MT, Prieto MC. Hormone-Dependent Regulation of Renin and Effects on Prorenin Receptor Signaling in the Collecting Duct. Curr Hypertens Rev 2022; 18:91-100. [PMID: 35170417 PMCID: PMC10132771 DOI: 10.2174/1573402118666220216105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/22/2021] [Accepted: 12/13/2021] [Indexed: 01/27/2023]
Abstract
The production of renin by the principal cells of the collecting duct has widened our understanding of the regulation of intrarenal angiotensin II (Ang II) generation and blood pressure. In the collecting duct, Ang II increases the synthesis and secretion of renin by mechanisms involving the activation of Ang II type 1 receptor (AT1R) via stimulation of the PKCα, Ca2+, and cAMP/PKA/CREB pathways. Additionally, paracrine mediators, including vasopressin (AVP), prostaglandins, bradykinin (BK), and atrial natriuretic peptide (ANP), regulate renin in principal cells. During Ang II-dependent hypertension, despite plasma renin activity suppression, renin and prorenin receptor (RPR) are upregulated in the collecting duct and promote de novo formation of intratubular Ang II. Furthermore, activation of PRR by its natural agonists, prorenin and renin, may contribute to the stimulation of profibrotic factors independent of Ang II. Thus, the interactions of RAS components with paracrine hormones within the collecting duct enable tubular compartmentalization of the RAS to orchestrate complex mechanisms that increase intrarenal Ang II, Na+ reabsorption, and blood pressure.
Collapse
Affiliation(s)
- Lucienne S Lara
- Instituto de Ciencias Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Matthew T Hennrikus
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
2
|
Oliveira LCG, Cruz NAN, Ricelli B, Tedesco-Silva H, Medina-Pestana JO, Casarini DE. Interactions amongst inflammation, renin-angiotensin-aldosterone and kallikrein-kinin systems: suggestive approaches for COVID-19 therapy. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200181. [PMID: 34925477 PMCID: PMC8651214 DOI: 10.1590/1678-9199-jvatitd-2020-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapid-spread infectious disease caused by the SARS-CoV-2 virus, which can culminate in the renin-angiotensin-aldosterone (RAAS) and kallikrein-kinin (KKS) systems imbalance, and in serious consequences for infected patients. This scoping review of published research exploring the RAAS and KKS was undertaken in order to trace the history of the discovery of both systems and their multiple interactions, discuss some aspects of the viral-cell interaction, including inflammation and the system imbalance triggered by SARS-CoV-2 infection, and their consequent disorders. Furthermore, we correlate the effects of continued use of the RAAS blockers in chronic diseases therapies with the virulence and physiopathology of COVID-19. We also approach the RAAS and KKS-related proposed potential therapies for treatment of COVID-19. In this way, we reinforce the importance of exploring both systems and the application of their components or their blockers in the treatment of coronavirus disease.
Collapse
Affiliation(s)
| | | | - Bruna Ricelli
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - José Osmar Medina-Pestana
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| |
Collapse
|
3
|
Alves SAS, Florentino LS, Teixeira DE, Silva-Aguiar RP, Peruchetti DB, Oliveira AC, Scharfstein J, Marzolo MP, Pinheiro AAS, Caruso-Neves C. Surface megalin expression is a target to the inhibitory effect of bradykinin on the renal albumin endocytosis. Peptides 2021; 146:170646. [PMID: 34500007 DOI: 10.1016/j.peptides.2021.170646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Megalin-mediated albumin endocytosis plays a critical role in albumin reabsorption in proximal tubule (PT) epithelial cells (PTECs). Some studies have pointed out the modulatory effect of bradykinin (BK) on urinary protein excretion, but its role in PT protein endocytosis has not yet been determined. Here, we studied the possible correlation between BK and albumin endocytosis in PT. Using LLC-PK1 cells, a model of PTECs, we showed that BK specifically inhibited megalin-mediated albumin endocytosis. This inhibitory effect of BK was mediated by B2 receptor (B2R) because it was abolished by HOE140, an antagonist of B2R, but it was not affected by Lys-des-Arg9-BK, an antagonist of B1. BK induced the stall of megalin in EEA1+ endosomes, but not in LAMP1+ lysosomes, leading to a decrease in surface megalin expression. In addition, we showed that BK, through B2R, activated calphostin C-sensitive protein kinase C, which mediated its effect on the surface megalin expression and albumin endocytosis. These results reveal an important modulatory mechanism of PT albumin endocytosis by BK, which opens new possibilities to understanding the effect of BK on urinary albumin excretion.
Collapse
Affiliation(s)
- Sarah A S Alves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas S Florentino
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - María-Paz Marzolo
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana Acacia S Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Prieto MC, Gonzalez AA, Visniauskas B, Navar LG. The evolving complexity of the collecting duct renin-angiotensin system in hypertension. Nat Rev Nephrol 2021; 17:481-492. [PMID: 33824491 PMCID: PMC8443079 DOI: 10.1038/s41581-021-00414-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The intrarenal renin-angiotensin system is critical for the regulation of tubule sodium reabsorption, renal haemodynamics and blood pressure. The excretion of renin in urine can result from its increased filtration, the inhibition of renin reabsorption by megalin in the proximal tubule, or its secretion by the principal cells of the collecting duct. Modest increases in circulating or intrarenal angiotensin II (ANGII) stimulate the synthesis and secretion of angiotensinogen in the proximal tubule, which provides sufficient substrate for collecting duct-derived renin to form angiotensin I (ANGI). In models of ANGII-dependent hypertension, ANGII suppresses plasma renin, suggesting that urinary renin is not likely to be the result of increased filtered load. In the collecting duct, ANGII stimulates the synthesis and secretion of prorenin and renin through the activation of ANGII type 1 receptor (AT1R) expressed primarily by principal cells. The stimulation of collecting duct-derived renin is enhanced by paracrine factors including vasopressin, prostaglandin E2 and bradykinin. Furthermore, binding of prorenin and renin to the prorenin receptor in the collecting duct evokes a number of responses, including the non-proteolytic enzymatic activation of prorenin to produce ANGI from proximal tubule-derived angiotensinogen, which is then converted into ANGII by luminal angiotensin-converting enzyme; stimulation of the epithelial sodium channel (ENaC) in principal cells; and activation of intracellular pathways linked to the upregulation of cyclooxygenase 2 and profibrotic genes. These findings suggest that dysregulation of the renin-angiotensin system in the collecting duct contributes to the development of hypertension by enhancing sodium reabsorption and the progression of kidney injury.
Collapse
Affiliation(s)
- Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA.,
| | - Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - L. Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
5
|
Curnow AC, Gonsalez SR, Gogulamudi VR, Visniauskas B, Simon EE, Gonzalez AA, Majid DSA, Lara LS, Prieto MC. Low Nitric Oxide Bioavailability Increases Renin Production in the Collecting Duct. Front Physiol 2020; 11:559341. [PMID: 33281610 PMCID: PMC7705222 DOI: 10.3389/fphys.2020.559341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
In the kidney, the stimulation of renin production by the collecting duct (CD-renin) contributes to the development of hypertension. The CD is a major nephron segment for the synthesis of nitric oxide (NO), and low NO bioavailability in the renal medulla is associated with hypertension. However, it is unknown whether NO regulates renin production in the CD. To test the hypothesis that low intrarenal NO levels stimulate the production of CD-renin, we first examined renin expression in the distal nephron segments of CD-eNOS deficient mice. In these mice, specific CD-renin immunoreactivity was increased compared to wild-type littermates; however, juxtaglomerular (JG) renin was not altered. To further assess the intracellular mechanisms involved, we then treated M-1 cells with either 1 mM L-NAME (L-arginine analog), an inhibitor of NO synthase activity, or 1 mM NONOate, a NO donor. Both treatments increased intracellular renin protein levels in M-1 cells. However, only the inhibition of NOS with L-NAME stimulated renin synthesis and secretion as reflected by the increase in Ren1C transcript and renin protein levels in the extracellular media, respectively. In addition, NONOate induced a fast mobilization of cGMP and intracellular renin accumulation. These response was partially prevented by guanylyl cyclase inhibition with ODQ (1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1]. Accumulation of intracellular renin was blocked by protein kinase G (PKG) and protein kinase C (PKC) inhibitors. Our data indicate that low NO bioavailability increases CD-renin synthesis and secretion, which may contribute to the activation of intrarenal renin angiotensin system.
Collapse
Affiliation(s)
- Andrew C. Curnow
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Sabrina R. Gonsalez
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Eric E. Simon
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Dewan S. A. Majid
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
- Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
| | - Lucienne S. Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
- Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
6
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Gonzalez AA, Lara LS, Prieto MC. Role of Collecting Duct Renin in the Pathogenesis of Hypertension. Curr Hypertens Rep 2018; 19:62. [PMID: 28695400 PMCID: PMC10114930 DOI: 10.1007/s11906-017-0763-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The presence of renin production by the principal cells of the collecting duct has opened new perspectives for the regulation of intrarenal angiotensin II (Ang II). Angiotensinogen (AGT) and angiotensin-converting enzyme (ACE) are present in the tubular fluid coming from the proximal tubule and collecting duct. All the components needed for Ang II formation are present along the nephron, and much is known about the mechanisms regulating renin in juxtaglomerular cells (JG); however, those in the collecting duct remain unclear. Ang II suppresses renin via protein kinase C (PKC) and calcium (Ca2+) in JG cells, but in the principal cells, Ang II increases renin synthesis and release through a pathophysiological mechanism that increases further intratubular Ang II de novo formation to enhance distal Na + reabsorption. Transgenic mice overexpressing renin in the collecting duct demonstrate the role of collecting duct renin in the development of hypertension. The story became even more interesting after the discovery of a specific receptor for renin and prorenin: the prorenin receptor ((P)RR), which enhances renin activity and fully activates prorenin. The interactions between (P)RR and prorenin/renin may further increase intratubular Ang II levels. In addition to Ang II, other mechanisms have been described in the regulation of renin in the collecting duct, including vasopressin (AVP), bradykinin (BK), and prostaglandins. Current active investigations are aimed at elucidating the mechanisms regulating renin in the distal nephron segments and understand its role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Lucienne S Lara
- Instituto de Ciencias Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Minolfa C Prieto
- Department of Physiology, Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Lara LS, Bourgeois CRT, El-Dahr SS, Prieto MC. Bradykinin/B 2 receptor activation regulates renin in M-1 cells via protein kinase C and nitric oxide. Physiol Rep 2017; 5:5/7/e13211. [PMID: 28373410 PMCID: PMC5392507 DOI: 10.14814/phy2.13211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
In the collecting duct (CD), the interactions of renin angiotensin system (RAS) and kallikrein-kinin system (KKS) modulate Na+ reabsorption, volume homeostasis, and blood pressure. In this study, we used a mouse kidney cortical CD cell line (M-1 cells) to test the hypothesis that in the CD, the activation of bradykinin B2 receptor (B2R) increases renin synthesis and release. Physiological concentrations of bradykinin (BK) treatment of M-1 cells increased renin mRNA and prorenin and renin protein contents in a dose-dependent manner and increased threefold renin content in the cell culture media. These effects were mediated by protein kinase C (PKC) independently of protein kinase A (PKA) because B2R antagonism with Icatibant and PKC inhibition with calphostin C, prevented these responses, but PKA inhibition with H89 did not modify the effects elicited by the B2R activation. BK-dependent stimulation of renin gene expression in CD cells also involved nitric oxide (NO) pathway because increased cGMP levels and inhibition of NO synthase with L-NAME prevented it. Complementary renin immunohistochemical studies performed in kidneys from mice with conventional B2R knockout and conditional B2R knockout in the CD, showed marked decreased renin immunoreactivity in CD, regardless of the renin presence in juxtaglomerular cells in the knockout mice. These results indicate that the activation of B2R increases renin synthesis and release by the CD cells through PKC stimulation and NO release, which support further the interactions between the RAS and KKS.
Collapse
Affiliation(s)
- Lucienne S Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana.,Tulane Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
| | - Camille R T Bourgeois
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Samir S El-Dahr
- Tulane Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana.,Department of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana .,Tulane Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
| |
Collapse
|