1
|
Kots AY, Bian K. Regulation and Pharmacology of the Cyclic GMP and Nitric Oxide Pathway in Embryonic and Adult Stem Cells. Cells 2024; 13:2008. [PMID: 39682756 DOI: 10.3390/cells13232008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review summarizes recent advances in understanding the role of the nitric oxide (NO) and cyclic GMP (cGMP) pathway in stem cells. The levels of expression of various components of the pathway are changed during the differentiation of pluripotent embryonic stem cells. In undifferentiated stem cells, NO regulates self-renewal and survival predominantly through cGMP-independent mechanisms. Natriuretic peptides influence the growth of undifferentiated stem cells by activating particulate isoforms of guanylyl cyclases in a cGMP-mediated manner. The differentiation, recruitment, survival, migration, and homing of partially differentiated precursor cells of various types are sensitive to regulation by endogenous levels of NO and natriuretic peptides produced by stem cells, within surrounding tissues, and by the application of various pharmacological agents known to influence the cGMP pathway. Numerous drugs and formulations target various components of the cGMP pathway to influence the therapeutic efficacy of stem cell-based therapies. Thus, pharmacological manipulation of the cGMP pathway in stem cells can be potentially used to develop novel strategies in regenerative medicine.
Collapse
Affiliation(s)
- Alexander Y Kots
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| | - Ka Bian
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| |
Collapse
|
2
|
Haider KH. Priming mesenchymal stem cells to develop "super stem cells". World J Stem Cells 2024; 16:623-640. [PMID: 38948094 PMCID: PMC11212549 DOI: 10.4252/wjsc.v16.i6.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment, genetic manipulation, and chemical and pharmacological treatment, each strategy having advantages and limitations. Most of these pre-treatment protocols are non-combinative. This editorial is a continuum of Li et al's published article and Wan et al's editorial focusing on the significance of pre-treatment strategies to enhance their stemness, immunoregulatory, and immunosuppressive properties. They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia. Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells (MSCs), pre-treatment based on the mechanistic understanding is expected to develop "Super MSCs", which will create a transformative shift in MSC-based therapies in clinical settings, potentially revolutionizing the field. Once optimized, the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop "super stem cells" with augmented stemness, functionality, and reparability for diverse clinical applications with better outcomes.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Department of Basic Sciences, Sulaiman AlRajhi University, AlQaseem 52736, Saudi Arabia.
| |
Collapse
|
3
|
Liu X, Zhang L, Xu Z, Xiong X, Yu Y, Wu H, Qiao H, Zhong J, Zhao Z, Dai J, Suo G. A functionalized collagen-I scaffold delivers microRNA 21-loaded exosomes for spinal cord injury repair. Acta Biomater 2022; 154:385-400. [PMID: 36270583 DOI: 10.1016/j.actbio.2022.10.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA)-based therapies have shown great potential in the repair of spinal cord injury (SCI). MicroRNA 21 (miR21) has been proven to have an essential protective effect on SCI. However, there are some challenges for miRNAs application due to their easy degradation and ineffective cell penetration. As natural vesicles, exosomes were considered ideal carriers for miRNAs delivery for their advantages of low immunogenicity, inherent stability and tissue/cell penetration. However, poor targeting and the low capacity of specific miRNAs impede their practical applications. This study aims to develop a type of genetically engineered miR21-loaded exosomes that can be entrapped in collagen-I (Col-I) scaffold to repair SCI. The collagen-binding domain (CBD)-fused lysosome-associated membrane glycoprotein 2b (Lamp2b) protein (CBD-LP) and miR21 were overexpressed in host HEK293T (293T) cells that were used to produce engineered miR21-loaded exosomes. The CBD peptide fused in Lamp2b on the exosome surface can stably tether exosomes to Col-I scaffold, facilitate the retention of miR21-loaded exosomes in lesion sites, promote the sustained release of miR21 to cells. Finally, a functionalized Col-I scaffold biomaterial enriched with miR21-loaded exosomes was developed and it could benefit the repair of SCI. STATEMENT OF SIGNIFICANCE: MiRNA-based therapeutics have promising potential in spinal cord injury (SCI) repair. However, easy degradation and ineffective cell penetration impede miRNAs application. Exosomes are natural vehicles for miRNAs delivery but face the challenge of diffusion in vivo. Here, the collagen-binding domain (CBD)-fused Lamp2b and miR21 were overexpressed in HEK293T cells to produce miR21-loaded and CBD-modified exosomes (CBD-LP-miR21-EXOs). The CBD modified on the exosome surface can stably tether exosomes to collagen-I scaffold to form functionalized CBD-LP-miR21-EXO-Col scaffold that can facilitate the retention of miR21-loaded exosomes, promote the sustained release of miR21 to cells and finally benefit SCI repair. Furthermore, this type of functionalized collagen-I materials can be widely applied for other tissue injury repairs by enriching the CBD-LP-EXOs loaded with appropriate miRNAs.
Collapse
Affiliation(s)
- Xingzhi Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lulu Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhongjuan Xu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xuan Xiong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yanzhen Yu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hanfei Wu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hong Qiao
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX 78712, USA
| | - Junjie Zhong
- Fudan University Huashan Hospital, Dept. of Neurosurgery, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Shanghai Key Lab. of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, Shanghai 200040, China
| | - Zhe Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianwu Dai
- State Key Laboratory of Molecular, Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guangli Suo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
4
|
Elmadbouh I. Generation of muscle progenitors from human-induced pluripotent stem cells. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Small molecules have a role in the differentiation of human-induced pluripotent stem cells (hiPSCs) into different cell linages. The aim of this study was to evaluate the differentiation of hiPSCs into cardiac or skeletal myogenic progenitors with a single small molecule.
Methods
hiPSCs were treated with three different small molecules such as Isoxazole-9, Danazol and Givinostat in serum-free medium for 7 days. Cell viability, qRT-PCR, western blots, and immunostaining were assessed after treatment of hiPSCs with small molecules.
Results
Higher hiPSC viability was observed in hiPSCs treated with Isoxazole-9 (25 µM), Danazol (25 µM) and Givinostat (150 nM) versus control (P < 0.05). Givinostat had dual effect by generating both skeletal and cardiac progenitor cells versus Isoxazole-9 and Danazol after 7 days. Givinostat treatment induced upregulation of skeletal myogenic genes and their protein expression levels on day 4 and further increased on day 8 (P < 0.05) versus control. Furthermore,positive stained cells for Pax3, Myf5, MyoD1, dystrophin, desmin, myogenin, and β-catenin at 1 month. Givinostat increased upregulation of cardiac gene expression levels versus control after day 4 (P < 0.05), with positive stained cells for Nkx2.5, GATA4, TnT, TnI, connexin 43 and α-sarcomeric actinin at 1 month.
Conclusions
Pretreatment of hiPSCs with Givinostat represents a viable strategy for producing both cardiac/skeletal myogenic progenitors in vitro for cell therapies against myocardial infarction and Duchenne muscular dystrophy.
Collapse
|
5
|
Shu B, Wan J, Li X, Liu R, Xu C, An Y, Chen J. Preconditioning with Trehalose Protects the Bone Marrow-Derived Mesenchymal Stem Cells Under Oxidative Stress and Enhances the Stem Cell-Based Therapy for Cerebral Ischemic Stroke. Cell Reprogram 2022; 24:118-131. [PMID: 35647904 DOI: 10.1089/cell.2022.0037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cell (BMSC) transplantation has emerged as a potential treatment for ischemic stroke. Preconditioning with pharmacological agents before cell transplantation has been shown to increase the efficiency of cell therapy. In this study, trehalose (Tre), an autophagy inducer, was used as a pharmacological agent to treat BMSCs, and the neuroprotective effect of BMSCs preconditioned with Tre on cerebral ischemia was assessed. BMSCs were treated in vitro with different concentrations of Tre. Immunofluorescence staining of LC3B was performed to detect autophagy, and Western blotting for LC3, Beclin1, p-AMPK, and p-mTOR was performed. Flow cytometry and Western blotting analysis were performed to measure cell apoptosis in the presence of hydrogen peroxide (H2O2). Enzyme-linked immunosorbent assay was used to test the secretion levels of neurotrophic factors. An in vivo ischemia/reperfusion model was generated by middle cerebral artery occlusion in male Sprague Dawley rats, and Tre-preconditioned BMSCs were administered intralesionally 24 hours after ischemic injury. Histopathological examination and neurological function studies were conducted. In vitro, Tre promotes autophagy of BMSCs through the activation of the AMPK signal pathway. Tre protected BMSCs from H2O2-induced cell viability reduction and apoptosis. Moreover, Tre pretreatment increased the secretion of brain-derived neurotrophic factor, vascular endothelial growth factor, and hepatocyte growth factor. In vivo, preconditioning with Tre could further enhance the survival of BMSCs, reduce infarct size, alleviate cell apoptosis, abate vessel decrease, and ultimately improve functional recovery. Our study indicates that Tre can enhance the survival of BMSCs under oxidative stress and enhance BMSC-based treatment of ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Bing Shu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingjing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Raynald Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chengshi Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yihua An
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jingcao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Li M, Jiang Y, Hou Q, Zhao Y, Zhong L, Fu X. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell Res Ther 2022; 13:146. [PMID: 35379361 PMCID: PMC8981790 DOI: 10.1186/s13287-022-02822-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has been considered as a promising approach targeting a variety of intractable diseases due to remarkable multiple effect of MSCs, such as multilineage differentiation, immunomodulatory property, and pro-regenerative capacity. However, poor engraftment, low survival rate of transplanted MSC, and impaired donor-MSC potency under host age/disease result in unsatisfactory therapeutic outcomes. Enhancement strategies, including genetic manipulation, pre-activation, and modification of culture method, have been investigated to generate highly functional MSC, and approaches for MSC pre-activation are highlighted. In this review, we summarized the current approaches of MSC pre-activation and further classified, analysed the scientific principles and main characteristics of these manipulations, and described the pros and cons of individual pre-activation strategies. We also discuss the specialized tactics to solve the challenges in this promising field so that it improves MSC therapeutic functions to serve patients better.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| | - Yufeng Jiang
- Wound Repairing Department, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| |
Collapse
|
7
|
Modifying strategies for SDF-1/CXCR4 interaction during mesenchymal stem cell transplantation. Gen Thorac Cardiovasc Surg 2021; 70:1-10. [PMID: 34510332 PMCID: PMC8732940 DOI: 10.1007/s11748-021-01696-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation is regarded as a promising candidate for the treatment of ischaemic heart disease. The major hurdles for successful clinical translation of MSC therapy are poor survival, retention, and engraftment in the infarcted heart. Stromal cell-derived factor-1/chemokine receptor 4 (SDF-1/CXCR4) constitutes one of the most efficient chemokine/chemokine receptor pairs regarding cell homing. In this review, we mainly focused on previous studies on how to regulate the SDF-1/CXCR4 interaction through various priming strategies to maximize the efficacy of mesenchymal stem cell transplantation on ischaemic hearts or to facilitate the required effects. The strengthened measures for enhancing the therapeutic efficacy of the SDF-1/CXCR4 interaction for mesenchymal stem cell transplantation included the combination of chemokines and cytokines, hormones and drugs, biomaterials, gene engineering, and hypoxia. The priming strategies on recipients for stem cell transplantation included ischaemic conditioning and device techniques.
Collapse
|
8
|
Qiu J, Xiao H, Zhou S, Du W, Mu X, Shi G, Tan X. Bone marrow mesenchymal stem cells inhibit cardiac hypertrophy by enhancing FoxO1 transcription. Cell Biol Int 2021; 45:188-197. [PMID: 33049085 DOI: 10.1002/cbin.11482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/16/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have therapeutic potential for certain heart diseases. Previous studies have shown that stem cells inhibit cardiac hypertrophy; however, it is necessary to explore the mechanisms underlying this effect. This study aimed to investigate the possible mechanism underlying the inhibitory effect of BMSCs on cardiomyocyte hypertrophy. We induced cardiomyocyte hypertrophy in cultured rat cells through isoproterenol (ISO) treatment with or without BMSC coculture. A microarray was performed to analyze messenger RNA expression in response to ISO treatment and BMSC coculture. Pathway enrichment analysis showed that the expression of differential genes was closely related to the 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway and that the expression of forkhead box O 1 (FoxO1) was significantly increased in the presence of BMSCs. Furthermore, we determined the expression levels of p-AMPK/AMPK and p-FoxO1/FoxO1 by western blot analysis. The expression of p-AMPK/AMPK was upregulated, whereas that of p-FoxO1/FoxO1 was downregulated upon coculturing with BMSCs. The AMPK-specific antagonist Compound C inhibited the downregulation of p-FoxO1/FoxO1 induced by the BMSC coculture. Furthermore, treatment with the specific FoxO1 antagonist AS1842856 reduced the inhibitory effects of BMSCs on cardiomyocyte hypertrophy in vivo and in vitro. Our present study demonstrates the inhibition of cardiomyocyte hypertrophy by BMSCs, which occurs partly through the AMPK-FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Jiantao Qiu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huaiteng Xiao
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shunchang Zhou
- Department of General Surgery, Weifang Medical University, Weifang, Shandong, China
| | - Weimin Du
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiang Mu
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guangjun Shi
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueying Tan
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Moases Ghaffary E, Abtahi Froushani SM. Immunomodulatory benefits of mesenchymal stem cells treated with Caffeine in adjuvant-induced arthritis. Life Sci 2020; 246:117420. [PMID: 32050085 DOI: 10.1016/j.lfs.2020.117420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/08/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE We intend to assess the effect of the conditioned medium of Caffeine pulsed MSCS in the amelioration of rheumatoid arthritis (RA)-afflicted rats. METHODS MSCs were incubated with 0, 0.1, 0.5 or 1 mM Caffeine for 2 weeks. RA was induced by the injection of complete Freund's adjuvant (CFA) into the base of the tail of Wistar rats. According to in vitro studies, RA rats were intraperitoneally treated with MSCs, Caffeine (0.5 mM) pulsed MSCs or vehicle on day 14 when all rats had shown signs of RA. RESULTS Our results suggest that the least effective dose concentration of Caffeine that can induce potent anti-inflammatory property in the MSC population is 0.5 mM. Without any significant impact on the vitality or MScs' marker, Caffeine at this concentration could induce lower levels of IFN-γ, IL-6, and IL-1β and a higher level of IDO, TGF-β, and IL-10 compared to other groups. Therefore, MSCs pulsed with Caffeine at 0.5 mM concentration was selected for in vitro studies. Caffeine pulsed MSCs could reduce the severity of the disease and improve weight-gaining more profoundly than treatment with MSCs alone. Furthermore, Caffeine pulsed MSCs caused a significant reduction in the serum levels C-reactive protein, Nitric oxide, Myeloperoxidase, TNF-α and conversely led a significant increase in the levels of IL-10 more prominent than the similar findings brought about by MSCs alone. CONCLUSION In general, caffeine-treated MSCs may be a promising strategy for cell-based therapy of RA.
Collapse
Affiliation(s)
- Elham Moases Ghaffary
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | |
Collapse
|
10
|
Lu Y, Xi J, Zhang Y, Li C, Chen W, Hu X, Zhang M, Zhang F, Wei H, Li Z, Wang Z. MicroRNA-214-5p protects against myocardial ischemia reperfusion injury through targeting the FAS ligand. Arch Med Sci 2020; 16:1119-1129. [PMID: 32864001 PMCID: PMC7444694 DOI: 10.5114/aoms.2019.85405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are considered as crucial modulators in myocardial ischemia and reperfusion (I/R) injury. The present study aimed to investigate the expression and biological functions of miR-214-5p via targeting Fas ligand (FASLG) in I/R injury. MATERIAL AND METHODS Lactate dehydrogenase, casein kinase, malondialdehyde assay, reactive oxygen species (ROS) detection and cell apoptosis analysis measured cell damage and cell apoptosis in H9c2 cells under hypoxia/reperfusion (H/R) treatment. Bioinformatics and dual luciferase reporter assays demonstrated the molecular mechanism of miR-214-5p in cardiac cells. 2,3,5-Triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining and adenovirus injection were performed in I/R treated mice. RESULTS The expression of miR-214-5p was decreased in H/R injured H9c2 cells compared with control cells (p < 0.001). Overexpression of miR-214-5p reduced cell damage and apoptosis in H9c2 cells under H/R treatment (p < 0.001). Further study revealed that FASLG was a target of miR-214-5p. Enhanced expression of FASLG attenuated the protective function of miR-214-5p in H9c2 cells subjected to H/R injury (P < 0.001). Moreover, the elevated expression of miR-214-5p by adenovirus injection protected cardiac cells from I/R injury in mice (n = 6/per group). CONCLUSIONS We found that miR-214-5p exerted a protective role in I/R injured cardiac cells by direct targeting FASLG in vitro and in vivo.
Collapse
Affiliation(s)
- Yuan Lu
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jue Xi
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yao Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chenzong Li
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wensu Chen
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoqin Hu
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Min Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fengyun Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Wei
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhi Li
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhirong Wang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Liu A, Zhang X, He H, Zhou L, Naito Y, Sugita S, Lee JW. Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opin Biol Ther 2019; 20:125-140. [PMID: 31701782 DOI: 10.1080/14712598.2020.1689954] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The acute respiratory distress syndrome (ARDS) is a devastating clinical condition common in patients with respiratory failure. Based largely on numerous preclinical studies and recent Phase I/II clinical trials, administration of stem cells, specifically mesenchymal stem or stromal cells (MSC), as a therapeutic for acute lung injury (ALI) holds great promise. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that stem cell-derived conditioned medium (CM) and/or extracellular vesicles (EV) might constitute compelling alternatives.Areas covered: The current review focuses on the preclinical studies testing MSC CM and/or EV as treatment for ALI and other inflammatory lung diseases.Expert opinion: Clinical application of MSC or their secreted CM may be limited by the cost of growing enough cells, the logistic of MSC storage, and the lack of standardization of what constitutes MSC CM. However, the clinical application of MSC EV remains promising, primarily due to the ability of EV to maintain the functional phenotype of the parent cell as a therapeutic. However, utilization of MSC EV will also require large-scale production, the cost of which may be prohibitive unless the potency of the EV can be increased.
Collapse
Affiliation(s)
- Airan Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiwen Zhang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongli He
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Li Zhou
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Yoshifumi Naito
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Shinji Sugita
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Jae-Woo Lee
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Saheera S, Potnuri AG, Nair RR. Protective effect of antioxidant Tempol on cardiac stem cells in chronic pressure overload hypertrophy. Life Sci 2019; 222:88-93. [DOI: 10.1016/j.lfs.2019.02.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
13
|
Ju X, Xue D, Wang T, Ge B, Zhang Y, Li Z. Catalpol Promotes the Survival and VEGF Secretion of Bone Marrow-Derived Stem Cells and Their Role in Myocardial Repair After Myocardial Infarction in Rats. Cardiovasc Toxicol 2019; 18:471-481. [PMID: 29752623 DOI: 10.1007/s12012-018-9460-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone mesenchymal stem cells (BMSCs) transplantation has been recognized as an effective method for the treatment of myocardial infarction (MI). However, its efficacy is always restricted by the low survival of transplanted BMSCs in the ischemic myocardium. The aim of this study was to investigate the effect of catalpol pre-treatment on the survival and vascular endothelial growth factor (VEGF) secretion of BMSCs under oxygen glucose deprivation (OGD) condition and their role in myocardial repair in a rat model of MI. According to our results, pre-treatment with catalpol enhanced VEGF secretion and survival of OGD-treated BMSCs. Moreover, the apoptosis of BMSCs induced by OGD was restrained by catalpol as evidenced by increased level of B-cell lymphoma-2 (Bcl-2) and decreased levels of BCL2-associated X (Bax) and cleaved caspase-3. In vivo study suggested that the survival of transplanted BMSCs was improved by catalpol pre-treatment. The myocardial fibrosis and apoptosis was further inhibited in catalpol pre-treated BMSCs group. Cardiac function detected by echocardiography was obviously improved by catalpol pre-treated BMSCs transplantation. Finally, angiogenesis and VEGF expression in the ischemic myocardium were significantly promoted in catalpol pre-treated BMSCs group. In conclusion, catalpol pre-treatment may facilitate the survival and VEGF secretion of BMSCs and improve their therapeutic effect on MI.
Collapse
Affiliation(s)
- Xing'ai Ju
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China.,Department of Emergency Medicine, The People's Hospital of Liaoning Province, Shenyang, 110016, Liaoning, People's Republic of China
| | - Degang Xue
- Comprehensive Circulation Ward, The General Hospital of Fushun Mining Affairs Bureau, Fushun, 113008, Liaoning, People's Republic of China
| | - Tongyi Wang
- Department of Emergency Medicine, The People's Hospital of Liaoning Province, Shenyang, 110016, Liaoning, People's Republic of China
| | - Baiping Ge
- Department of Emergency Medicine, The People's Hospital of Liaoning Province, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yu Zhang
- Department of Emergency Medicine, The People's Hospital of Liaoning Province, Shenyang, 110016, Liaoning, People's Republic of China
| | - Zhanquan Li
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
14
|
Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur J Pharmacol 2019; 852:68-76. [PMID: 30682335 DOI: 10.1016/j.ejphar.2019.01.022] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
Abstract
MiR-21-5p is an anti-apoptotic miRNA known to mediate the protective effect of mesenchymal stromal cell-secreted exosomes (MSC-Exo) against oxidative stress-induced cell death. In the present research we employed murine lung ischemia/reperfusion (I/R) model and in vitro hypoxia/reoxygenation (H/R) model using primary murine pulmonary endothelial cells to investigate whether MSC-Exo could alleviate lung IRI by transporting miR-21-5p. Our data suggested that intratracheal administration of MSC-Exo or miR-21-5p agomir significantly reduced lung edema and dysfunction, M1 polarization of alveolar macrophages as well as secretion of HMGB1, IL-8, IL-1β, IL-6, IL-17 and TNF-α. Pre-challenge of MSCs by H/R significant increased miR-21-5p expression level in exosomes they secreted and the anti-IRI effect of these MSC-Exo, while pre-treatment of MSCs with miR-21-5p antagomir showed opposite effect. We further demonstrated that MSC-Exo ameliorated IRI in vivo or H/R induced apoptosis in vitro by inhibiting both intrinsic and extrinsic apoptosis pathway via miR-21-5p targeting PTEN and PDCD4, while artificial overexpressing PTEN or PDCD4 significantly attenuated the anti-apoptotic effect of MSC-Exo in vitro. Treatment with miR-21-5p agomir mimicked the IRI-reducing and anti-apoptotic effect of MSC-Exo. Our data suggested that MSC-Exo alleviate IRI in lung in an exosomal miR-21-5p-dependent manner. Treatment with MSC-Exo or miR-21-5p agomir might ameliorate IRI in lung.
Collapse
|
15
|
Naringenin Attenuates Myocardial Ischemia-Reperfusion Injury via cGMP-PKGI α Signaling and In Vivo and In Vitro Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7670854. [PMID: 30728891 PMCID: PMC6341255 DOI: 10.1155/2019/7670854] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022]
Abstract
Endoplasmic reticulum (ER) stress and oxidative stress contribute greatly to myocardial ischemia-reperfusion (MI/R) injury. Naringenin, a flavonoid derived from the citrus genus, exerts cardioprotective effects. However, the effects of naringenin on ER stress as well as oxidative stress under MI/R condition and the detailed mechanisms remain poorly defined. This study investigated the protective effect of naringenin on MI/R-injured heart with a focus on cyclic guanosine monophosphate- (cGMP-) dependent protein kinase (PKG) signaling. Sprague-Dawley rats were treated with naringenin (50 mg/kg/d) and subjected to MI/R surgery with or without KT5823 (2 mg/kg, a selective inhibitor of PKG) cotreatment. Cellular experiment was conducted on H9c2 cardiomyoblasts subjected to simulated ischemia-reperfusion treatment. Before the treatment, the cells were incubated with naringenin (80 μmol/L). PKGIα siRNA was employed to inhibit PKG signaling. Our in vivo and in vitro data showed that naringenin effectively improved heart function while it attenuated myocardial apoptosis and infarction. Furthermore, pretreatment with naringenin suppressed MI/R-induced oxidative stress as well as ER stress as evidenced by decreased superoxide generation, myocardial MDA level, gp91phox expression, and phosphorylation of PERK, IRE1α, and EIF2α as well as reduced ATF6 and CHOP. Importantly, naringenin significantly activated myocardial cGMP-PKGIα signaling while inhibition of PKG signaling with KT5823 (in vivo) or siRNA (in vitro) not only abolished these actions but also blunted naringenin's inhibitory effects against oxidative stress and ER stress. In summary, our study demonstrates that naringenin treatment protects against MI/R injury by reducing oxidative stress and ER stress via cGMP-PKGIα signaling. Its cardioprotective effect deserves further clinical study.
Collapse
|
16
|
Huang K, Hu S, Cheng K. A New Era of Cardiac Cell Therapy: Opportunities and Challenges. Adv Healthc Mater 2019; 8:e1801011. [PMID: 30548836 PMCID: PMC6368830 DOI: 10.1002/adhm.201801011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI), caused by coronary heart disease (CHD), remains one of the most common causes of death in the United States. Over the last few decades, scientists have invested considerable resources on the study and development of cell therapies for myocardial regeneration after MI. However, due to a number of limitations, they are not yet readily available for clinical applications. Mounting evidence supports the theory that paracrine products are the main contributors to the regenerative effects attributed to these cell therapies. The next generation of cell-based MI therapies will identify and isolate cell products and derivatives, integrate them with biocompatible materials and technologies, and use them for the regeneration of damaged myocardial tissue. This review discusses the progress made thus far in pursuit of this new generation of cell therapies. Their fundamental regenerative mechanisms, their potential to combine with other therapeutic products, and their role in shaping new clinical approaches for heart tissue engineering, are addressed.
Collapse
Affiliation(s)
- Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
- Pharmacoengineeirng and Molecular Pharmaceutics Division, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
17
|
Functionally Improved Mesenchymal Stem Cells to Better Treat Myocardial Infarction. Stem Cells Int 2018; 2018:7045245. [PMID: 30622568 PMCID: PMC6286742 DOI: 10.1155/2018/7045245] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/10/2018] [Accepted: 09/30/2018] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide. Mesenchymal stem cell (MSC) transplantation is considered a promising approach and has made significant progress in preclinical studies and clinical trials for treating MI. However, hurdles including poor survival, retention, homing, and differentiation capacity largely limit the therapeutic effect of transplanted MSCs. Many strategies such as preconditioning, genetic modification, cotransplantation with bioactive factors, and tissue engineering were developed to improve the survival and function of MSCs. On the other hand, optimizing the hostile transplantation microenvironment of the host myocardium is also of importance. Here, we review the modifications of MSCs as well as the host myocardium to improve the efficacy of MSC-based therapy against MI.
Collapse
|
18
|
Tao Z, Tan S, Chen W, Chen X. Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury. J Cardiovasc Transl Res 2018; 11:403-411. [PMID: 30324254 DOI: 10.1007/s12265-018-9823-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in the prevention and therapeutic modalities of ischemic heart disease, morbidity and mortality post-infarction heart failure remain big challenges in modern society. Stem cell therapy is emerging as a promising therapeutic strategy. Stem cell homing, the ability of stem cells to find their destination, is receiving more attention. Identification of specific cues and understanding the signaling pathways that direct stem cells to targeted destination will improve stem cell homing efficiency. This review discusses the cellular and molecular mechanism of stem cell homing at length in the light of literature and analyzes the problem and considerations of this approach as a treatment strategy for the treatment of ischemic heart disease clinically.
Collapse
Affiliation(s)
- Zhonghao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Shihua Tan
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Bruun K, Schermer E, Sivendra A, Valaik E, Wise RB, Said R, Bracht JR. Therapeutic applications of adipose-derived stem cells in cardiovascular disease. AMERICAN JOURNAL OF STEM CELLS 2018; 7:94-103. [PMID: 30510844 PMCID: PMC6261868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
Cardiovascular disease (CVD) is the number one cause of death globally, and new therapeutic techniques outside of traditional pharmaceutical and surgical interventions are currently being developed. At the forefront is stem cell-centered therapy, with adipose derived stem cells (ADSCs), an adult stem population, providing significant clinical promise. When introduced into damaged heart tissue, ADSCs promote cardiac regeneration by a variety of mechanisms including differentiation into new cardiomyocytes and secretion of paracrine factors acting on endogenous cardiac cells. We discuss the application of ADSCs, their biochemical capabilities, availability, ease of extraction, clinical trial results, and areas of concern. The multipotent capacity of ADSCs along with their ability to secrete factors promoting cell survival and regeneration, along with their immunosuppressive capacity, make them an extremely promising approach in the field of CVD therapy.
Collapse
Affiliation(s)
- Kyle Bruun
- Georgetown School of Medicine, Georgetown UniversityWashington, DC 20007, USA
| | - Erika Schermer
- Georgetown School of Medicine, Georgetown UniversityWashington, DC 20007, USA
| | - Anjali Sivendra
- Georgetown School of Medicine, Georgetown UniversityWashington, DC 20007, USA
| | - Emily Valaik
- Georgetown School of Medicine, Georgetown UniversityWashington, DC 20007, USA
| | - Reed B Wise
- Georgetown School of Medicine, Georgetown UniversityWashington, DC 20007, USA
| | - Rana Said
- Department of Biology, American UniversityWashington, DC 20016, USA
| | - John R Bracht
- Department of Biology, American UniversityWashington, DC 20016, USA
| |
Collapse
|
20
|
Elmadbouh I, Ashraf M. Tadalafil, a long acting phosphodiesterase inhibitor, promotes bone marrow stem cell survival and their homing into ischemic myocardium for cardiac repair. Physiol Rep 2018; 5:5/21/e13480. [PMID: 29138357 PMCID: PMC5688776 DOI: 10.14814/phy2.13480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/23/2017] [Indexed: 12/31/2022] Open
Abstract
The aim was to evaluate the tadalafil‐mediated effects at molecular level on bone marrow‐derived mesenchymal stem cells (MSCs) survival and their homing into the infarcted hearts to promote cardiac repair and improve function. MSCs were pretreated in vitro with inhibitors of PKG, MAPK, FasL, nitric oxide synthase (NOS) (L‐NAME), CXCR4 (AMD3100), or miR‐21 inhibitors (+/−luciferase construction +/−Fas) prior to tadalafil treatment for 2 h. These MSCs were then subjected to H2O2 stress to assess their injury. Rats were subjected to acute myocardial infarction (AMI), and then followed by injection of saline or 1.5 x 106 MSCs‐treated ± tadalafil into infarcted and peri‐infarcted area. In another group, AMI was performed in 1‐month post‐myelo‐ablated rats and were injected intraperitoneally (IP) with tadalafil ± AMD3100 or L‐NAME for 5 days. Also, in another group, AMI mice were treated with IP ± tadalafil before intravenous injection with 111In‐oxine‐MSCs followed by CT/SPECT imaging to locate mobilized MSCs. Cardiac function was assessed by echocardiography. MSCs and heart extracts were analyzed by molecular bioassays. Tadalafil‐treated MSCs had higher expression of cGMP, NOS, SDF‐1α, p‐VASP, p‐Erk1/2, p‐STAT3, p‐Akt, PKG1 and Bcl‐xl; expression of these molecules was reduced with PKG1, MAPK, NOS or FasL inhibitors. Tadalafil inhibited apoptosis through increased miR‐21 expression and improved cell survival by inhibiting Fas (restored by PKG1, MAPK or miR‐21 inhibitors). In vivo, heart function, grafted cell survival, MSCs mobilization and homing were improved in tadalafil‐treated AMI animals versus controls. Conclusions: Tadalafil prolonged MSCs survival via up‐regulation of miR‐21 dependent suppression of Fas, and increased MSCs mobilization and their homing into infarcted myocardium resulting in improved cardiac repair and function.
Collapse
Affiliation(s)
- Ibrahim Elmadbouh
- Department of Emergency Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, Ohio.,Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Muhammad Ashraf
- Department of Emergency Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, Ohio
| |
Collapse
|
21
|
Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Cellular carriers for drug delivery are attractive alternatives to synthetic nanoparticles owing to their innate homing/targeting abilities. Here, we review molecular interactions involved in the homing of Mesenchymal stem cells (MSCs) and other cell types to understand the process of designing and engineering highly efficient, actively targeting cellular vehicles. In addition, we comprehensively discuss various genetic and non-genetic strategies and propose futuristic approaches of engineering MSC homing using micro/nanotechnology and high throughput small molecule screening. Most of the targeting abilities of a cell come from its plasma membrane, thus, efforts to harness cell membranes as drug delivery vehicles are gaining importance and are highlighted here. We also recognize and report the lack of detailed characterization of cell membranes in terms of safety, structural integrity, targeting functionality, and drug transport. Finally, we provide insights on future development of bioengineered cellular and cell membrane-derived vesicles for successful clinical translation.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, B.H. Road, Tumakuru, 572103, Karnataka, India.
| |
Collapse
|
22
|
Wu R, Hu X, Wang J. Concise Review: Optimized Strategies for Stem Cell-Based Therapy in Myocardial Repair: Clinical Translatability and Potential Limitation. Stem Cells 2018; 36:482-500. [PMID: 29330880 DOI: 10.1002/stem.2778] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 12/15/2022]
Abstract
Ischemic heart diseases (IHDs) remain major public health problems with high rates of morbidity and mortality worldwide. Despite significant advances, current therapeutic approaches are unable to rescue the extensive and irreversible loss of cardiomyocytes caused by severe ischemia. Over the past 16 years, stem cell-based therapy has been recognized as an innovative strategy for cardiac repair/regeneration and functional recovery after IHDs. Although substantial preclinical animal studies using a variety of stem/progenitor cells have shown promising results, there is a tremendous degree of skepticism in the clinical community as many stem cell trials do not confer any beneficial effects. How to accelerate stem cell-based therapy toward successful clinical application attracts considerate attention. However, many important issues need to be fully addressed. In this Review, we have described and compared the effects of different types of stem cells with their dose, delivery routes, and timing that have been routinely tested in recent preclinical and clinical findings. We have also discussed the potential mechanisms of action of stem cells, and explored the role and underlying regulatory components of stem cell-derived secretomes/exosomes in myocardial repair. Furthermore, we have critically reviewed the different strategies for optimizing both donor stem cells and the target cardiac microenvironments to enhance the engraftment and efficacy of stem cells, highlighting their clinical translatability and potential limitation. Stem Cells 2018;36:482-500.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|