1
|
Jussila A, Zhang B, Kirti S, Atit R. Tissue fibrosis associated depletion of lipid-filled cells. Exp Dermatol 2024; 33:e15054. [PMID: 38519432 PMCID: PMC10977660 DOI: 10.1111/exd.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
Fibrosis is primarily described as the deposition of excessive extracellular matrix, but in many tissues it also involves a loss of lipid or lipid-filled cells. Lipid-filled cells are critical to tissue function and integrity in many tissues including the skin and lungs. Thus, loss or depletion of lipid-filled cells during fibrogenesis, has implications for tissue function. In some contexts, lipid-filled cells can impact ECM composition and stability, highlighting their importance in fibrotic transformation. Recent papers in fibrosis address this newly recognized fibrotic lipodystrophy phenomenon. Even in disparate tissues, common mechanisms are emerging to explain fibrotic lipodystrophy. These findings have implications for fibrosis in tissues composed of fibroblast and lipid-filled cell populations such as skin, lung, and liver. In this review, we will discuss the roles of lipid-containing cells, their reduction/loss during fibrotic transformation, and the mechanisms of that loss in the skin and lungs.
Collapse
Affiliation(s)
- Anna Jussila
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Zhang
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sakin Kirti
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Radhika Atit
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Bocian-Jastrzębska A, Malczewska-Herman A, Kos-Kudła B. Role of Leptin and Adiponectin in Carcinogenesis. Cancers (Basel) 2023; 15:4250. [PMID: 37686525 PMCID: PMC10486522 DOI: 10.3390/cancers15174250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hormones produced by adipocytes, leptin and adiponectin, are associated with the process of carcinogenesis. Both of these adipokines have well-proven oncologic potential and can affect many aspects of tumorigenesis, from initiation and primary tumor growth to metastatic progression. Involvement in the formation of cancer includes interactions with the tumor microenvironment and its components, such as tumor-associated macrophages, cancer-associated fibroblasts, extracellular matrix and matrix metalloproteinases. Furthermore, these adipokines participate in the epithelial-mesenchymal transition and connect to angiogenesis, which is critical for cancer invasiveness and cancer cell migration. In addition, an enormous amount of evidence has demonstrated that altered concentrations of these adipocyte-derived hormones and the expression of their receptors in tumors are associated with poor prognosis in various types of cancer. Therefore, leptin and adiponectin dysfunction play a prominent role in cancer and impact tumor invasion and metastasis in different ways. This review clearly and comprehensively summarizes the recent findings and presents the role of leptin and adiponectin in cancer initiation, promotion and progression, focusing on associations with the tumor microenvironment and its components as well as roles in the epithelial-mesenchymal transition and angiogenesis.
Collapse
Affiliation(s)
- Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland; (A.M.-H.); (B.K.-K.)
| | | | | |
Collapse
|
3
|
Han X, Zhang Y, Zhang X, Ji H, Wang W, Qiao O, Li X, Wang J, Liu C, Huang L, Gao W. Targeting adipokines: A new strategy for the treatment of myocardial fibrosis. Pharmacol Res 2022; 181:106257. [DOI: 10.1016/j.phrs.2022.106257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
|
4
|
Remodeling and Fibrosis of the Cardiac Muscle in the Course of Obesity-Pathogenesis and Involvement of the Extracellular Matrix. Int J Mol Sci 2022; 23:ijms23084195. [PMID: 35457013 PMCID: PMC9032681 DOI: 10.3390/ijms23084195] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity is a growing epidemiological problem, as two-thirds of the adult population are carrying excess weight. It is a risk factor for the development of cardiovascular diseases (hypertension, ischemic heart disease, myocardial infarct, and atrial fibrillation). It has also been shown that chronic obesity in people may be a cause for the development of heart failure with preserved ejection fraction (HFpEF), whose components include cellular hypertrophy, left ventricular diastolic dysfunction, and increased extracellular collagen deposition. Several animal models with induced obesity, via the administration of a high-fat diet, also developed increased heart fibrosis as a result of extracellular collagen accumulation. Excessive collagen deposition in the extracellular matrix (ECM) in the course of obesity may increase the stiffness of the myocardium and thereby deteriorate the heart diastolic function and facilitate the occurrence of HFpEF. In this review, we include a rationale for that process, including a discussion about possible putative factors (such as increased renin–angiotensin–aldosterone activity, sympathetic overdrive, hemodynamic alterations, hypoadiponectinemia, hyperleptinemia, and concomitant heart diseases). To address the topic clearly, we include a description of the fundamentals of ECM turnover, as well as a summary of studies assessing collagen deposition in obese individuals.
Collapse
|
5
|
Zhong C, Min K, Zhao Z, Zhang C, Gao E, Huang Y, Zhang X, Baldini M, Roy R, Yang X, Koch WJ, Bennett AM, Yu J. MAP Kinase Phosphatase-5 Deficiency Protects Against Pressure Overload-Induced Cardiac Fibrosis. Front Immunol 2021; 12:790511. [PMID: 34992607 PMCID: PMC8724134 DOI: 10.3389/fimmu.2021.790511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibrosis, a pathological condition due to excessive extracellular matrix (ECM) deposition in the myocardium, is associated with nearly all forms of heart disease. The processes and mechanisms that regulate cardiac fibrosis are not fully understood. In response to cardiac injury, macrophages undergo marked phenotypic and functional changes and act as crucial regulators of myocardial fibrotic remodeling. Here we show that the mitogen-activated protein kinase (MAPK) phosphatase-5 (MKP-5) in macrophages is involved in pressure overload-induced cardiac fibrosis. Cardiac pressure overload resulting from transverse aortic constriction (TAC) leads to the upregulation of Mkp-5 gene expression in the heart. In mice lacking MKP-5, p38 MAPK and JNK were hyperactivated in the heart, and TAC-induced cardiac hypertrophy and myocardial fibrosis were attenuated. MKP-5 deficiency upregulated the expression of the ECM-degrading matrix metalloproteinase-9 (Mmp-9) in the Ly6Clow (M2-type) cardiac macrophage subset. Consistent with in vivo findings, MKP-5 deficiency promoted MMP-9 expression and activity of pro-fibrotic macrophages in response to IL-4 stimulation. Furthermore, using pharmacological inhibitors against p38 MAPK, JNK, and ERK, we demonstrated that MKP-5 suppresses MMP-9 expression through a combined effect of p38 MAPK/JNK/ERK, which subsequently contributes to the inhibition of ECM-degrading activity. Taken together, our study indicates that pressure overload induces MKP-5 expression and facilitates cardiac hypertrophy and fibrosis. MKP-5 deficiency attenuates cardiac fibrosis through MAPK-mediated regulation of MMP-9 expression in Ly6Clow cardiac macrophages.
Collapse
Affiliation(s)
- Chao Zhong
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Translational Medicine, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Kisuk Min
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Kinesiology, University of Texas at El Paso, El Paso, TX, United States
| | - Zhiqiang Zhao
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Cheng Zhang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Erhe Gao
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yan Huang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xinbo Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Margaret Baldini
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Rajika Roy
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J. Koch
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, United States
| | - Jun Yu
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Motevalian M, Joukar S, Esmaeili-Mahani S, Karimi A, Masoumi-Ardakani Y, Safari S. Interaction of high-intensity endurance exercise and nandrolone on cardiac remodeling: role of adipo-cardiac axis. Horm Mol Biol Clin Investig 2021; 43:63-70. [PMID: 34786896 DOI: 10.1515/hmbci-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Given the cardiac pathological remodeling following to anabolic androgenic steroids (AASs) consumption, we examined the effect of chronic administration of nandrolone decanoate with high-intensity endurance exercise on the left ventricular hypertrophy index, levels of hydroxyproline, tumor necrosis factor-alpha (TNF-α), adiponectin (APN) and its receptors (AdipoR1 and AdipoR2) expression in rats' hearts. METHODS The male Wistar rats randomly divided to six groups included the control (CTL), exercise (Ex), nandrolone (Nan), vehicle (Arach), trained vehicle (Ex + Arach), and trained nandrolone (Ex + Nan) groups that were treated for eight weeks. RESULTS Nandrolone consumption significantly enhanced the hypertrophy index (p<0.05) and exercise intensified this effect. It also increased the level of cardiac hydroxyproline (p<0.001), however exercise completely masked this effect. The values of TNF-α protein and AdipoR1 protein significantly increased in trained nandrolone-treated (Ex + Nan) group in comparison with CTL group (p<0.05), however, did not show significant alteration in Nan or Ex groups. High-intensity endurance exercise significantly enhanced the AdipoR2 protein (p<0.05), but, co-administration of nandrolone with exercise prevented this effect. The mRNA expression of AdipoR1 significantly reduced in the animals that received nandrolone for eight weeks and exercise recovered this effect (p<0.001). CONCLUSIONS Despite an additive effect of high-intensity endurance exercise plus nandrolone on TNF-α level, their effects on hydroxyproline and APN receptors expression is incompatible in heart of rat. It is suggests a part of beneficial regulatory role of endurance exercise against nandrolone induced heart remodeling may apply through modulation of APN system.
Collapse
Affiliation(s)
- Manijeh Motevalian
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman, Kerman, Iran
| | - Abdollah Karimi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Safari
- Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman, Kerman, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Kim YS, Cho HH, Cho DI, Jeong HY, Lim SY, Jun JH, Kim MR, Kang BG, Cho M, Kang HJ, Kang WS, Oh GT, Ahn Y. The adipokine Retnla deficiency increases responsiveness to cardiac repair through adiponectin-rich bone marrow cells. Cell Death Dis 2021; 12:307. [PMID: 33753732 PMCID: PMC7985519 DOI: 10.1038/s41419-021-03593-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Resistin-like alpha (Retnla) is a member of the resistin family and known to modulate fibrosis and inflammation. Here, we investigated the role of Retnla in the cardiac injury model. Myocardial infarction (MI) was induced in wild type (WT), Retnla knockout (KO), and Retnla transgenic (TG) mice. Cardiac function was assessed by echocardiography and was significantly preserved in the KO mice, while worsened in the TG group. Angiogenesis was substantially increased in the KO mice, and cardiomyocyte apoptosis was markedly suppressed in the KO mice. By Retnla treatment, the expression of p21 and the ratio of Bax to Bcl2 were increased in cardiomyocytes, while decreased in cardiac fibroblasts. Interestingly, the numbers of cardiac macrophages and unsorted bone marrow cells (UBCs) were higher in the KO mice than in the WT mice. Besides, phosphorylated histone H3(+) cells were more frequent in bone marrow of KO mice. Moreover, adiponectin in UBCs was notably higher in the KO mice compared with WT mice. In an adoptive transfer study, UBCs were isolated from KO mice to transplant to the WT infarcted heart. Cardiac function was better in the KO-UBCs transplanted group in the WT-UBCs transplanted group. Taken together, proliferative and adiponectin-rich bone marrow niche was associated with substantial cardiac recovery by suppression of cardiac apoptosis and proliferation of cardiac fibroblast.
Collapse
Affiliation(s)
- Yong Sook Kim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea.,Biomedical Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyang Hee Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea.,Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Dong Im Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea.,Biomedical Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hye-Yun Jeong
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Soo Yeon Lim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ju Hee Jun
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Mi Ra Kim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Bo Gyeong Kang
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Meeyoung Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hye-Jin Kang
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Wan Seok Kang
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea. .,Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea. .,Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea.
| |
Collapse
|
8
|
Adiponectin enhances the bioenergetics of cardiac myocytes via an AMPK- and succinate dehydrogenase-dependent mechanism. Cell Signal 2021; 78:109866. [PMID: 33271223 PMCID: PMC9619024 DOI: 10.1016/j.cellsig.2020.109866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
Adiponectin is one of the most abundant circulating hormones, which through adenosine monophosphate-activated protein kinase (AMPK), enhances fatty acid and glucose oxidation, and exerts a cardioprotective effect. However, its effects on cellular bioenergetics have not been explored. We have previously reported that 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, an AMPK activator) enhances mitochondrial respiration through a succinate dehydrogenase (SDH or complex II)-dependent mechanism in cardiac myocytes, leading us to predict that Adiponectin would exert a similar effect via activating AMPK. Our results show that Adiponectin enhances basal mitochondrial oxygen consumption rate (OCR), ATP production, and spare respiratory capacity (SRC), which were all abolished by the knockdown of AMPKγ1, inhibition of SDH complex assembly, via the knockdown of the SDH assembly factor 1 (Sdhaf1), or inhibition of SDH activity. Additionally, Adiponectin alleviated hypoxia-induced reductions in OCR and ATP production, in a Sdhaf1-dependent manner, whereas overexpression of Sdhaf1 confirmed its sufficiency for mediating these effects. Importantly, the levels of holoenzyme SDH under the various conditions correlated with OCR. We also show that the effects of Adiponectin, AMPK, Sdhaf1, as well as, SDH complex assembly all required sirtuin 3 (Sirt3). In conclusion, Adiponectin potentiates mitochondrial bioenergetics via promoting SDH complex assembly in an AMPK-, Sdhaf1-, and Sirt3-dependent fashion in cardiac myocytes.
Collapse
|
9
|
Hang W, Chen C, Seubert JM, Wang DW. Fulminant myocarditis: a comprehensive review from etiology to treatments and outcomes. Signal Transduct Target Ther 2020; 5:287. [PMID: 33303763 PMCID: PMC7730152 DOI: 10.1038/s41392-020-00360-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Fulminant myocarditis (FM) is characterized by a rapid progressive decline in cardiac function and a high mortality rate. Since the first report of FM patients in the 1980s, several clinical trials and research studies have been published increasing our knowledge regarding FM. Currently, the diagnosis of FM depends on various techniques including electrocardiography, echocardiography, endomyocardial biopsy, and cardiac magnetic resonance. The development of mechanical circulation support (MCS) devices and progress in our understanding of the pathophysiological mechanisms underlying FM, treatment regimens have evolved from simple symptomatic treatment to a life support-based comprehensive treatment approach. The core mechanism underlying the development of FM is the occurrence of an inflammatory cytokine storm. This review provides a comprehensive account of the current understanding of FM pathophysiology and knowledge regarding its etiology, pathophysiology, treatments, and outcomes.
Collapse
Affiliation(s)
- Weijian Hang
- Division of Cardiology, Department of Internal Medicine, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Jiang Q, Zhang C, Chen S, Shi L, Li DC, Lv N, Cui L, Chen Y, Zheng Y. Particulate Matter 2.5 Induced Developmental Cardiotoxicity in Chicken Embryo and Hatchling. Front Pharmacol 2020; 11:841. [PMID: 32581800 PMCID: PMC7289969 DOI: 10.3389/fphar.2020.00841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Particulate matter poses health risk to developing organisms. To investigate particulate matters with a diameter smaller than 2.5 um (PM2.5)-induced developmental cardiotoxicity, fertile chicken eggs were exposed to PM2.5 via air cell injection at doses of 0.05, 0.2, 0.5, 2, and 5 mg/egg kg. Morphological changes in the embryonic day four (ED4) and hatchling hearts were assessed with histological techniques. Heart rates of hatchling chickens were measured with electrocardiography. The protein expression levels of nuclear factor kappa-light-chain-enhancer of activated B cells p65 (NF-kb p65), inducible nitric oxide synthase (iNOS), and matrix metallopeptidase 9 (MMP9) were assessed with immunohistochemistry or western blotting in hatchling hearts. PM2.5 exposure elevated areas of heart in ED4 embryo, increased heart rate, and thickened right ventricular wall thickness in hatchling chickens. Immunohistochemistry revealed enhanced NF-kb p65 expression in hatchling hearts. Western blotting results indicated that both iNOS and MMP9 expression were enhanced by lower doses of PM2.5 exposure (0.2 and 0.5 mg/kg) but not 2 mg/kg. In summary, developmental exposure to PM2.5 induced developmental cardiotoxicity in chicken embryo and hatchling chickens, which is associated with NF-kb p65, iNOS, and MMP9.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chao Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Limei Shi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dao Chuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Na Lv
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanxia Chen
- Department of Occupational Diseases, Occupational Disease Center, Qingdao Central Hospital, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Ushakov A, Ivanchenko V, Gagarina A. Regulation of Myocardial Extracellular Matrix Dynamic Changes in Myocardial Infarction and Postinfarct Remodeling. Curr Cardiol Rev 2020; 16:11-24. [PMID: 31072294 PMCID: PMC7393593 DOI: 10.2174/1573403x15666190509090832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The article represents literature review dedicated to molecular and cellular mechanisms underlying clinical manifestations and outcomes of acute myocardial infarction. Extracellular matrix adaptive changes are described in detail as one of the most important factors contributing to healing of damaged myocardium and post-infarction cardiac remodeling. Extracellular matrix is reviewed as dynamic constantly remodeling structure that plays a pivotal role in myocardial repair. The role of matrix metalloproteinases and their tissue inhibitors in fragmentation and degradation of extracellular matrix as well as in myocardium healing is discussed. This review provides current information about fibroblasts activity, the role of growth factors, particularly transforming growth factor β and cardiotrophin-1, colony-stimulating factors, adipokines and gastrointestinal hormones, various matricellular proteins. In conclusion considering the fact that dynamic transformation of extracellular matrix after myocardial ischemic damage plays a pivotal role in myocardial infarction outcomes and prognosis, we suggest a high importance of further investigation of mechanisms underlying extracellular matrix remodeling and cell-matrix interactions in cardiovascular diseases.
Collapse
Affiliation(s)
- Alexey Ushakov
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Vera Ivanchenko
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Alina Gagarina
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
12
|
Suehiro CL, Toledo-Arruda ACD, Vieira RDP, Almeida FMD, Olivo CR, Martins MDA, Lin CJ. A possible association between fructose consumption and pulmonary emphysema. Sci Rep 2019; 9:9344. [PMID: 31249347 PMCID: PMC6597575 DOI: 10.1038/s41598-019-45594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/30/2019] [Indexed: 01/12/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a syndrome that comprises several distinct and overlapping phenotypes. In addition to persistent airflow limitation and respiratory symptoms, COPD is also characterized by chronic systemic inflammation. Epidemiological studies have shown that dietary fibers, fruits and vegetables intake protects against the COPD development, while fructose-loading is associated with increased risk of asthma and chronic bronchitis. Since dietary factors might affect susceptibility to COPD by modulating oxidative stress and inflammatory responses, we evaluated how fructose feeding might affect the smoking-induced emphysema in mice. We found that chronic fructose intake induced destruction and remodeling of lung parenchyma and impairment of respiratory mechanics, which are associated with distinctive cytokine profiles in bronchoalveolar lavage fluid, blood plasma and skeletal muscle. The combined effects of chronic fructose intake and cigarette smoking on destruction of lung parenchyma are more pronounced than the effects of either alone. Excessive intake of fructose might directly cause pulmonary emphysema in mice rather than just altering its natural history by facilitating the installation of a low-grade systemic inflammatory milieu.
Collapse
Affiliation(s)
- Camila Liyoko Suehiro
- Laboratory of Molecular Pathology (LIM-22), Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Rodolfo de Paula Vieira
- Federal University of Sao Paulo (UNIFESP), Post-graduation Program in Sciences of Human Movement and Rehabilitation, Santos - SP, Brazil
- Universidade Brasil, Post-graduation Program in Bioengineering and in Biomedical Engineering, Sao Paulo - SP, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (LABPEI), Sao Jose dos Campos - SP, Brazil
- Anhembi Morumbi University, School of Medicine, Sao Jose dos Campos - SP, Brazil
| | | | - Clarice Rosa Olivo
- Department of Medicine (LIM-20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Chin Jia Lin
- Laboratory of Molecular Pathology (LIM-22), Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Hao R, Su G, Sun X, Kong X, Zhu C, Su G. Adiponectin attenuates lipopolysaccharide-induced cell injury of H9c2 cells by regulating AMPK pathway. Acta Biochim Biophys Sin (Shanghai) 2019; 51:168-177. [PMID: 30668810 DOI: 10.1093/abbs/gmy162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Adiponectin, an adipokine synthesized and secreted majorly by adipose tissue, is reported to exert cardioprotective properties via anti-inflammation and antiapoptosis. Lipopolysaccharide (LPS) is a common inflammation and apoptosis inducer of cardiomyocytes. However, few studies have reported the roles of adiponectin on LPS-induced inflammation as well as apoptosis of H9c2 cells, and the possible mechanisms of these effects. In the present study, we found that adiponectin significantly relieved LPS-induced cytotoxicity including decreased viability and elevated LDH release, inhibited LPS-triggered inflammation, which is evidenced by increases in release of TNF-α, IL-1β as well as IL-6, and attenuated the enhanced rates of apoptotic cells as well as increased caspase-3 activity caused by LPS in H9c2 cells. In addition, our data demonstrated that adiponectin upregulated AMP-activated protein kinase (AMPK) activation of H9c2 cells with or without LPS administration. Moreover, we found that blocking AMPK pathway by compound c attenuated the protective effects of adiponectin against the cytotoxicity, inflammatory response, and apoptosis of H9c2 cells resulted from LPS. Our observations bring novel insights for understanding the mediatory role of AMPK pathway implicated in the protective effects of adiponectin against LPS-induced cardiotoxicity.
Collapse
Affiliation(s)
- Rui Hao
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Ji’nan, China
- College of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan University, Ji’nan, China
| | - Guoying Su
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Ji’nan, China
| | - Xiaolin Sun
- College of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan University, Ji’nan, China
- The Fourth People’s Hospital of Ji’nan City, Ji’nan, China
| | - Xiangran Kong
- College of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan University, Ji’nan, China
| | - Cuiying Zhu
- College of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan University, Ji’nan, China
| | - Guohai Su
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Ji’nan, China
| |
Collapse
|
14
|
Tian A, Yang C, Zhu B, Wang W, Liu K, Jiang Y, Qiao Y, Fu H, Li Z. Polyethylene-glycol-coated gold nanoparticles improve cardiac function after myocardial infarction in mice. Can J Physiol Pharmacol 2018; 96:1318-1327. [PMID: 30383982 DOI: 10.1139/cjpp-2018-0227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gold nanoparticles (AuNPs) are widely used for drug delivery because of their unique biological properties, such as their safety and ability to prolong drug action. Some studies have demonstrated that AuNPs accumulate in the heart, especially during pathological processes. Therefore, it is very important to understand the effect of AuNPs on the heart. Myocardial infarction (MI) is a major cause of morbidity and mortality; however, the effect of AuNPs on MI remains unclear. In the present study, we carried out a comprehensive evaluation of AuNPs on acute MI. The results showed that AuNPs accumulated in infarcted hearts, decreased infarction size, improved systolic function, and inhibited cardiac fibrosis and TNF-α accumulation. Our work indicated that AuNPs have cardioprotective effects and can be used in drug delivery systems for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Aiju Tian
- a Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Chengzhi Yang
- a Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Baoling Zhu
- a Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Wenjing Wang
- a Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Kai Liu
- a Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yunqi Jiang
- a Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yuhui Qiao
- a Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Haian Fu
- b Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zijian Li
- a Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| |
Collapse
|
15
|
Kumar P, Raeman R, Chopyk DM, Smith T, Verma K, Liu Y, Anania FA. Adiponectin inhibits hepatic stellate cell activation by targeting the PTEN/AKT pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3537-3545. [PMID: 30293572 PMCID: PMC6529190 DOI: 10.1016/j.bbadis.2018.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 02/08/2023]
Abstract
Adiponectin inhibits hepatic stellate cell (HSC) activation and subsequent development of liver fibrosis via multiple mechanisms. Phosphatase and tensin homolog deletion 10 (PTEN) plays a crucial role in suppression of HSC activation, but its regulation by adiponectin is not fully understood. Here, we investigated the effect of adiponectin on PTEN in LX-2 cells, a human cell line and examined the underlying molecular mechanisms involved in adiponectin-mediated upregulation of PTEN activity during fibrosis. PTEN expression was found to be significantly reduced in the livers of mice treated with CCl4, whereas its expression was rescued by adiponectin treatment. The DNA methylation proteins DNMT1, DNMT3A, and DNMT3B are all highly expressed in activated primary HSCs compared to quiescent HSCs, and thus represent additional regulatory targets during liver fibrogenesis. Expression of DNMT proteins was significantly induced in the presence of fibrotic stimuli; however, only DNMT3B expression was reduced in the presence of adiponectin. Adiponectin-induced suppression of DNMT3B was found to be mediated by enhanced miR-29b expression. Furthermore, PTEN expression was significantly increased by overexpression of miR-29b, whereas its expression was markedly reduced by a miR-29b inhibitor in LX-2 cells. These findings suggest that adiponectin-induced upregulation of miR-29b can suppress DNMT3B transcription in LX-2 cells, thus resulting in reduced methylation of PTEN CpG islands and ultimately suppressing the PI3K/AKT pathway. Together, these data suggest a possible new explanation for the inhibitory effect of adiponectin on HSC activation and liver fibrogenesis.
Collapse
Affiliation(s)
- Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA.
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel M Chopyk
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Kiran Verma
- Labratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
16
|
Jenke A, Schur R, Röger C, Karadeniz Z, Grüger M, Holzhauser L, Savvatis K, Poller W, Schultheiss HP, Landmesser U, Skurk C. Adiponectin attenuates profibrotic extracellular matrix remodeling following cardiac injury by up-regulating matrix metalloproteinase 9 expression in mice. Physiol Rep 2018; 5:5/24/e13523. [PMID: 29263115 PMCID: PMC5742698 DOI: 10.14814/phy2.13523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/05/2017] [Indexed: 01/25/2023] Open
Abstract
Adiponectin (APN) is a multifunctional adipocytokine that inhibits myocardial fibrosis, dilatation, and left ventricular (LV) dysfunction after myocardial infarction (MI). Coxsackievirus B3 (CVB3) myocarditis is associated with intense extracellular matrix (ECM) remodeling which might progress to dilated cardiomyopathy. Here, we investigated in experimental CVB3 myocarditis whether APN inhibits adverse ECM remodeling following cardiac injury by affecting matrix metalloproteinase (MMP) expression. Cardiac injury was induced by CVB3 infection in APN knockout (APN-KO) and wild-type (WT) mice. Expression and activity of MMPs was quantified by qRT-PCR and zymography, respectively. Activation of protein kinases was assessed by immunoblot. In cardiac myocytes and fibroblasts APN up-regulates MMP-9 expression via activation of 5' adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK)1/2 which function as master regulators of inflammation-induced MMP-9 expression. Correspondingly, APN further increased up-regulation of MMP-9 expression triggered by tumor necrosis factor (TNF)α, lipopolysaccharide (LPS) and R-848 in cardiac fibroblasts. In vivo, compared to WT mice cardiac MMP-9 activity and serum levels of carboxy-terminal telopeptide of type I collagen (ICTP) were attenuated in APN-KO mice in subacute (day 7 p.i.) CVB3 myocarditis. Moreover, on day 3 and day 7 post CVB3 infection splenic MMP-9 expression was diminished in APN-KO mice correlating with attenuated myocardial immune cell infiltration in subacute CVB3 myocarditis. These results indicate that APN attenuates adverse cardiac remodeling following cardiac injury by up-regulating MMP-9 expression in cardiac and immune cells. Thus, APN mediates intensified collagen cleavage that might explain inhibition of LV fibrosis and dysfunction.
Collapse
Affiliation(s)
- Alexander Jenke
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Robert Schur
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carsten Röger
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Zehra Karadeniz
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Mathias Grüger
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Luise Holzhauser
- Department of Internal Medicine, Albert-Einstein College of Medicine, Bronx, New York
| | - Kostas Savvatis
- Department of Cardiology, Barts Heart Centre Barts Health NHS Trust, London, United Kingdom
| | - Wolfgang Poller
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Heinz-Peter Schultheiss
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|