1
|
Huang J, Xing G, Kong X. Lower peripheral blood CD4 + lymphocyte ratio is associated with severe bronchopulmonary dysplasia. Pediatr Pulmonol 2024; 59:2580-2588. [PMID: 38780202 DOI: 10.1002/ppul.27071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE To elucidate the characteristics of lymphocyte subsets in bronchopulmonary dysplasia (BPD) diagnosis following Jensen's criterion to understand the spectrum of lymphocytes in different degrees of BPD. STUDY DESIGN This single-center retrospective cohort study included 120 neonates admitted to the neonatal intensive care unit between 1 July 2014 and 30 June 2021, who had undergone peripheral blood lymphocyte subpopulation detection. RESULTS Thirty-one neonates were included in the control group, whereas 33 infants with BPD were included in the case group. In addition, we selected 56 infants with a gestational age (GA) <37 weeks without BPD who were receiving oxygen therapy. Among the three groups, the B cell and NK cell frequencies were significantly higher and the frequencies of T cells and CD4+ cells were significantly lower in the BPD group. In newborns without BPD, the distribution of T lymphocyte subsets was similar at different GAs. Comparing different degrees of BPD, the patients in the grades 2-3 BPD group had significantly lower percentages of T lymphocytes and CD4+ T cells than those in the other groups. Remarkably, the frequencies of NK cells were significantly higher in patients with grades 2-3 BPD, and the Treg cells slightly increased with BPD severity, although the differences were not significant. CONCLUSION Healthy neonates had similar ratios of lymphocyte subsets among different GAs; although as the GAs increased, the percentage of lymphocytes increased slightly. Severe BPD was associated with lower CD4+ T cells and higher NK cells. However, whether such changes were the cause or the consequence of BPD has not been determined.
Collapse
Affiliation(s)
- Jieting Huang
- Department of Neonatal Intensive Care Unit, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Guosheng Xing
- Fourth Department of Internal Pediatrics, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xiangyong Kong
- Department of Neonatal Intensive Care Unit, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Clinical Medical College, The Seventh Medical center of PLA General hospital, The Second School of Clinical Medicine, Southern Medical University, Beijing, China
| |
Collapse
|
2
|
Fang C, Tu H, Li R, Bi D, Shu G. Bronchopulmonary dysplasia: analysis and validation of ferroptosis-related diagnostic biomarkers and immune cell infiltration features. Pediatr Res 2024:10.1038/s41390-024-03249-6. [PMID: 38760473 DOI: 10.1038/s41390-024-03249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Early and precise diagnosis of bronchopulmonary dysplasia (BPD) is essential to improve the prognosis of preterm infants with BPD. Studying ferroptosis-related genes for diagnostic markers of BPD was the objective of this study. METHODS Using the GEO database and the FerrDb database, we obtained the GSE32472 dataset and screened the ferroptosis-related differentially expressed mRNAs (FRDE-mRNAs). By using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), possible biological functions and pathways were identified for FRDE-mRNAs. Three machine learning algorithms (LASSO, SVM-RFE, Random Forest) were used to recognize hub genes, as well as CIBERSORT for exploring the immune landscape of BPD and controls. Functional predictions for hub genes were made using single-gene gene set enrichment analysis (GSEA). RESULTS Twenty three FRDE-mRNAs were obtained and were mainly involved in autophagy, fatty acid metabolism and ferroptosis. The four hub genes (LPIN1, ACADSB, WIPI1 and SLC7A11) screened were utilized to construct a diagnostic nomogram. The receiver operating characteristic (ROC) curves and calibration curves demonstrateld that the nomogram exhibited good predictive performance. Eight types of immune cell markers differed significantly between BPD and controls. CONCLUSION We developed a diagnostic model for BPD, which could facilitate the early diagnosis and timely intervention of BPD. IMPACT The role of ferroptosis in bronchopulmonary dysplasia is rarely reported. The ferroptosis-related genes (LPIN1, ACADSB, WIPI1 and SLC7A11) we identified could serve as early diagnostic biomarkers for BPD. Immune cell infiltration features in BPD and signaling pathways associated with marker genes give new insight into the disease process and provide a basis for further research.
Collapse
Affiliation(s)
| | - Haixia Tu
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Rong Li
- Dalian Medical University, Dalian, China
| | - Dengqin Bi
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Guihua Shu
- School of Medicine, Yangzhou University, Yangzhou, China.
- Department of Neonatology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Chen Y, Song Y, Peng H, Li J, Zhao C, Liu D, Tan J, Liu Y. Changes in Thymic Size and Immunity Are Associated with Bronchopulmonary Dysplasia. Am J Perinatol 2024; 41:e1732-e1739. [PMID: 37192653 DOI: 10.1055/s-0043-1768704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
OBJECTIVE Preterm infants with bronchopulmonary dysplasia (BPD) are at increased risk for dysfunctional immune responses in the postnatal period. This study aimed to verify the hypothesis that thymic function is altered in infants with BPD and changes in the expression of thymic function-related genes affect thymic development. STUDY DESIGN Included in the study were infants who had a gestational age ≤32 weeks and survived to a postmenstrual age of ≥36 weeks. The clinical features and thymic size were comparatively studied between infants with and without BPD. Thymic function and the expression of thymic function-related genes were determined in BPD infants at birth, week 2, and 4 of life. The thymic size was ultrasonographically assessed in terms of the thymic index (TI) and thymic weight index (TWI). T-cell receptor excision circles (TRECs) and gene expression were quantitatively determined by real-time quantitative reverse transcription polymerase chain reaction. RESULTS Compared to non-BPD infants, their BPD counterparts had a shorter GA, lower birth weight, lower Apgar scores at birth, and were more likely to be of the male gender. BPD infants had an elevated incidence of respiratory distress syndrome and sepsis. TI was 1.73 ± 0.68 versus 2.87 ± 0.70 cm3 and TWI was 1.38 ± 0.45 versus 1.72 ± 0.28 cm3/kg in the BPD group versus the non-BPD group (p < 0.05). In BPD infants, no significant changes were observed in thymic size, lymphocyte counts, and TREC copy numbers at the first 2 weeks (p > 0.05), but they all exhibited a significant increase at week 4 (p < 0.05). BPD infants presented a trend toward increased expression of transforming growth factor-β1 and decreased expression of forkhead box protein 3 (Foxp3) from birth to week 4 (p < 0.05). Nonetheless, no significant difference was found in IL-2 or IL-7 expression at all time points (p > 0.05). CONCLUSION For preterm infants with BPD, reduced thymic size at birth might be associated with impaired thymic function. Thymic function was developmentally regulated in the BPD process. KEY POINTS · For preterm infants with BPD, reduced thymic size at birth might be associated with impaired thymic.. · BPD infants had an elevated incidence of respiratory distress syndrome and sepsis.. · Thymic function was developmentally regulated in the BPD process..
Collapse
Affiliation(s)
- Yan Chen
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Lab of Molecular Imaging, China
| | - Hua Peng
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Zhao
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Liu
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Tan
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Liu
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Li J, Bao T, Cao L, Ma M, Yu B, Zhang Y, Wu R, Zhu H, Tian Z. Establishment of a juvenile mouse asthma model induced by postnatal hyperoxia exposure combined with early OVA sensitization. Heliyon 2024; 10:e23291. [PMID: 38148813 PMCID: PMC10750071 DOI: 10.1016/j.heliyon.2023.e23291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Objective To establish a juvenile mouse asthma model by postnatal hyperoxia exposure combined with early ovalbumin (OVA) sensitization. Methods Female C57BL/6J newborn mice were exposed to hyperoxia (95 % O2) from postnatal day-1 (PND1) to PND7; intraperitoneally injected with OVA suspension on PND21, PND28; and stimulated by nebulized inhalation of 1 % OVA from PND36 to PND42. Within 48 h of the last challenge, we observed their activity performance and evaluated airway responsiveness (AHR). All mice were executed at PND44. Female (n = 32) were divided into four groups as follows: room air(RA)+phosphate-buffered saline (PBS) group; O2 (hyperoxia, 95 % O2) + PBS group; RA + OVA group; O2+OVA group. We obtained the serum, bronchoalveolar lavage fluid (BALF), and lung tissues. The Wright-Giemsa staining was performed for leukocyte classification in BALF and HE staining for pathological examination. The levels of IL-2, IL-5, IL-13, IL-17A and IL-10 in BALF and tIgE and sIgE in serum were detected by ELISA. Results Compared with OVA sensitization or hyperoxia exposure alone, the mice in the model group (O2+OVA) showed asthma-like symptoms and increased airway hyperreactivity,The levels of IL-5,IL-13 IL-17A were increased in BLAF,and total leukocyte and eosinophil counts were also significant increasesed. The levels of tIgE and sIgE in serum were increased. Conclusion Postnatal hyperoxia exposure combined with early OVA sensitization might establish a juvenile mouse asthma model.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai 'an, Jiangsu, 223300, China
| | - Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai 'an, Jiangsu, 223300, China
| | - Linxia Cao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai 'an, Jiangsu, 223300, China
| | - Mengmeng Ma
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai 'an, Jiangsu, 223300, China
| | - Bingrui Yu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai 'an, Jiangsu, 223300, China
| | - Yuan Zhang
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai 'an, Jiangsu, 223300, China
| | - Rong Wu
- Neonatal Medical Center, Huaian Maternity and Child Healthcare Hospital, Anhui Medical University, Huai'an, Jiangsu, 223002, China
| | - Haiyan Zhu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai 'an, Jiangsu, 223300, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai 'an, Jiangsu, 223300, China
| |
Collapse
|
5
|
Wang P, Li T, Niu C, Sun S, Liu D. ROS-activated MAPK/ERK pathway regulates crosstalk between Nrf2 and Hif-1α to promote IL-17D expression protecting the intestinal epithelial barrier under hyperoxia. Int Immunopharmacol 2023; 116:109763. [PMID: 36736221 DOI: 10.1016/j.intimp.2023.109763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) damage to the intestinal barrier is a side effect of prolonged hyperoxia therapy in neonates, which impairs growth and development of the intestine and promotes intestinal diseases. However, the research on clinical prevention and treatment is lacking. Therefore, we investigated the molecular mechanisms of the neonate intestinal response against hyperoxia-derived ROS to find targets for intestinal barrier damage prevention. Human intestinal epithelial cells were incubated under hyperoxia (85% oxygen) to build an in vitro model. ROS and the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway were inhibited to detect the MAPK/ERK pathway, nuclear factor erythroid factor 2-related factor 2 (Nrf2), hypoxia-inducible factor-1α (Hif-1α), and interleukin-17D (IL-17D) expression. Nrf2 was inhibited to detect Hif-1α and IL-17D expression. Hif-1α was inhibited to detect Nrf2, IL-17D, and tight junction proteins expression and apoptosis. Cells were treated with human recombinant IL-17D to detect TNF-α, IL-1β, IL-10, and tight junction proteins expression. ROS, Nrf2, Hif-1α, and IL-17D were upregulated and the MAPK/ERK pathway was activated under hyperoxia. But ROS inhibition downregulated the MAPK/ERK pathway, Nrf2, Hif-1α, and IL-17D. MAPK/ERK pathway inhibition downregulated Nrf2, Hif-1α, and IL-17D. Nrf2 inhibition downregulated Hif-1α and IL-17D. Hif-1α inhibition downregulated Nrf2, IL-17D, tight junction proteins, and exacerbated apoptosis. The recombinant IL-17D downregulated TNF-α, IL-1β, but upregulated IL-10 and tight junction proteins. We concluded that Hyperoxia-generated ROS activated the MAPK/ERK pathway to regulate Nrf2, Hif-1α, and IL-17D expression. Nrf2 and Hif-1α were interdependent and promoted IL-17D. Importantly, Hif-1α and IL-17D expression protected the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Pingchuan Wang
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China
| | - Tianming Li
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China
| | - Changping Niu
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China
| | - Siyu Sun
- ShengJing Hospital of China Medical University, Department of Gastroenterology, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China
| | - Dongyan Liu
- ShengJing Hospital of China Medical University, Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, SanHao Street No.36, HePing District, ShenYang, Liaoning 110000, China.
| |
Collapse
|
6
|
Li T, Liu Y, Yu X, Wang P, Sun S, Liu D. IL-17D affects the chemokines and chemokine receptors of intestinal epithelial cells under hyperoxia. Int Immunopharmacol 2022; 113:109386. [PMID: 36461593 DOI: 10.1016/j.intimp.2022.109386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
IL-17D is a new member of the IL-17 family. Currently, it is believed that IL-17D can directly act on immune cells or may indirectly modulate immune responses by regulating cytokine expression. Herein, we hypothesized that IL-17D regulates the expression of chemokines in intestinal epithelial cells, in turn modulating the immune response within intestinal mucosa under hyperoxia. To explore this notion, newborn rats were divided into a hyperoxia group (85 % O2) and control group (21 % O2). Small intestinal tissues were obtained from neonatal rats at 3, 7, 10, and 14 days. Similarly, intestinal epithelial cells were treated by hyperoxia (85 % O2) as the hyperoxia group or were incubated under normal oxygen (21 % O2) as the control group. Finally, intestinal epithelial cells subjected to hyperoxia were treated with recombinant IL-17D and IL-17D antibodies for 24, 48, and 72 h. Immunohistochemistry, western blot, and reverse transcription-quantitative polymerase chain reaction were used to detect the expression levels of chemokines and chemokine receptors in intestinal tissues of newborn rats and intestinal epithelial cells. We found that hyperoxia affected chemokine expression both in vivo and in vitro. Under hyperoxia, IL-17D promoted the expression of CCL2, CCL25, CCL28, and CCR9 in intestinal epithelial cells while downregulating CCR2, CCR5, CCL5, and CCL20. Our findings provide a basis for further study on the effects of hyperoxia-induced intestinal inflammation and intestinal injury.
Collapse
Affiliation(s)
- Tianming Li
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110000, PR China
| | - Yanping Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110000, PR China
| | - Xuefei Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110000, PR China
| | - Pingchuan Wang
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110000, PR China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110000, PR China.
| | - Dongyan Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110000, PR China.
| |
Collapse
|
7
|
Gordon SM, O'Connell AE. Inborn Errors of Immunity in the Premature Infant: Challenges in Recognition and Diagnosis. Front Immunol 2022; 12:758373. [PMID: 35003071 PMCID: PMC8738084 DOI: 10.3389/fimmu.2021.758373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Due to heightened awareness and advanced genetic tools, inborn errors of immunity (IEI) are increasingly recognized in children. However, diagnosing of IEI in premature infants is challenging and, subsequently, reports of IEI in premature infants remain rare. This review focuses on how common disorders of prematurity, such as sepsis, necrotizing enterocolitis, and bronchopulmonary dysplasia, can clinically overlap with presenting signs of IEI. We present four recent cases from a single neonatal intensive care unit that highlight diagnostic dilemmas facing neonatologists and clinical immunologists when considering IEI in preterm infants. Finally, we present a conceptual framework for when to consider IEI in premature infants and a guide to initial workup of premature infants suspected of having IEI.
Collapse
Affiliation(s)
- Scott M Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Ristescu AI, Tiron CE, Tiron A, Grigoras I. Exploring Hyperoxia Effects in Cancer-From Perioperative Clinical Data to Potential Molecular Mechanisms. Biomedicines 2021; 9:1213. [PMID: 34572400 PMCID: PMC8470547 DOI: 10.3390/biomedicines9091213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Increased inspiratory oxygen concentration is constantly used during the perioperative period of cancer patients to prevent the potential development of hypoxemia and to provide an adequate oxygen transport to the organs, tissues and cells. Although the primary tumours are surgically removed, the effects of perioperative hyperoxia exposure on distal micro-metastases and on circulating cancer cells can potentially play a role in cancer progression or recurrence. In clinical trials, hyperoxia seems to increase the rate of postoperative complications and, by delaying postoperative recovery, it can alter the return to intended oncological treatment. The effects of supplemental oxygen on the long-term mortality of surgical cancer patients offer, at this point, conflicting results. In experimental studies, hyperoxia effects on cancer biology were explored following multiple pathways. In cancer cell cultures and animal models, hyperoxia increases the production of reactive oxygen species (ROS) and increases the oxidative stress. These can be followed by the induction of the expression of Brain-derived neurotrophic factor (BDNF) and other molecules involved in angiogenesis and by the promotion of various degrees of epithelial mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Anca Irina Ristescu
- Department of Anaesthesia and Intensive Care, School of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.R.); (I.G.)
- Department of Anaesthesia and Intensive Care, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Crina Elena Tiron
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania;
| | - Adrian Tiron
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania;
| | - Ioana Grigoras
- Department of Anaesthesia and Intensive Care, School of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.R.); (I.G.)
- Department of Anaesthesia and Intensive Care, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
9
|
Reis M, Willis GR, Fernandez-Gonzalez A, Yeung V, Taglauer E, Magaletta M, Parsons T, Derr A, Liu X, Maehr R, Kourembanas S, Mitsialis SA. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Front Immunol 2021; 12:640595. [PMID: 33936055 PMCID: PMC8082426 DOI: 10.3389/fimmu.2021.640595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
Treating premature infants with high oxygen is a routine intervention in the context of neonatal intensive care. Unfortunately, the increase in survival rates is associated with various detrimental sequalae of hyperoxia exposure, most notably bronchopulmonary dysplasia (BPD), a disease of disrupted lung development. The effects of high oxygen exposure on other developing organs of the infant, as well as the possible impact such disrupted development may have on later life remain poorly understood. Using a neonatal mouse model to investigate the effects of hyperoxia on the immature immune system we observed a dramatic involution of the thymic medulla, and this lesion was associated with disrupted FoxP3+ regulatory T cell generation and T cell autoreactivity. Significantly, administration of mesenchymal stromal cell-derived extracellular vesicles (MEx) restored thymic medullary architecture and physiological thymocyte profiles. Using single cell transcriptomics, we further demonstrated preferential impact of MEx treatment on the thymic medullary antigen presentation axis, as evidenced by enrichment of antigen presentation and antioxidative-stress related genes in dendritic cells (DCs) and medullary epithelial cells (mTECs). Our study demonstrates that MEx treatment represents a promising restorative therapeutic approach for oxygen-induced thymic injury, thus promoting normal development of both central tolerance and adaptive immunity.
Collapse
Affiliation(s)
- Monica Reis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Gareth R Willis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Vincent Yeung
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Elizabeth Taglauer
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Margaret Magaletta
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Teagan Parsons
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Alan Derr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Xianlan Liu
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Rene Maehr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Sengupta S, Ince L, Sartor F, Borrmann H, Zhuang X, Naik A, Curtis A, McKeating JA. Clocks, Viruses, and Immunity: Lessons for the COVID-19 Pandemic. J Biol Rhythms 2021; 36:23-34. [PMID: 33480287 PMCID: PMC7970201 DOI: 10.1177/0748730420987669] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are evolutionarily conserved anticipatory systems that
allow the host to prepare and respond to threats in its environment.
This article summarizes a European Biological Rhythms Society (EBRS)
workshop held in July 2020 to review current knowledge of the
interplay between the circadian clock and viral infections to inform
therapeutic strategies against SARS-CoV-2 and COVID-19. A large body
of work supports the role of the circadian clock in regulating various
aspects of viral replication, host responses, and associated
pathogenesis. We review the evidence describing the multifaceted role
of the circadian clock, spanning host susceptibility, antiviral
mechanisms, and host resilience. Finally, we define the most pressing
research questions and how our knowledge of chronobiology can inform
key translational research priorities.
Collapse
Affiliation(s)
- Shaon Sengupta
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louise Ince
- Departement de Pathologie et Immunologie, Geneva, Switzerland
| | - Francesca Sartor
- Institute of Medical Psychology, Medical Faculty, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Amruta Naik
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Annie Curtis
- School of Pharmacy and Biomolecular Sciences, Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Toldi G, Hummler H, Pillay T. T Lymphocytes, Multi-Omic Interactions and Bronchopulmonary Dysplasia. Front Pediatr 2021; 9:694034. [PMID: 34169050 PMCID: PMC8217456 DOI: 10.3389/fped.2021.694034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains a significant clinical challenge in neonatal medicine. BPD is clearly a multifactorial disease with numerous antenatal and postnatal components influencing lung development. Extremely immature infants are born in the late canalicular or early saccular stage and usually receive intensive care until the early alveolar stage of lung development, resulting in varying magnitudes of impairment of alveolar septation, lung fibrosis, and abnormal vascular development. The interactions between T lymphocytes, the genome and the epigenome, the microbiome and the metabolome, as well as nutrition and therapeutic interventions such as the exposure to oxygen, volutrauma, antibiotics, corticosteroids, caffeine and omeprazole, play an important role in pathogenesis and disease progression. While our general understanding of these interactions thanks to basic research is improving, this knowledge is yet to be translated into comprehensive prevention and clinical management strategies for the benefit of preterm infants developing BPD and later during infancy and childhood suffering from the disease itself and its sequelae. In this review, we summarise existing evidence on the interplay between T lymphocytes, lung multi-omics and currently used therapeutic interventions in BPD, and highlight avenues for potential future immunology related research in the field.
Collapse
Affiliation(s)
- Gergely Toldi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Helmut Hummler
- Department of Neonatology, University of Tuebingen, Tuebingen, Germany
| | - Thillagavathie Pillay
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom.,Department of Neonatology, University Hospitals Leicester NHS Foundation Trust, Leicester, United Kingdom.,College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
12
|
Abstract
Purpose of Review Detail normal adaptive immune maturation during fetal and neonatal life and review the clinical implications of arrested immune development. Recent Findings Advancements in the field of immunology have enabled investigations of the adaptive immunity starting during fetal life. New insights have drawn important distinctions between the neonatal and adult immune systems. The presence of diverse immunologic responses in the perinatal period suggests the importance of in utero immune development. Disruption of immune maturation due to premature birth may have significant implications for clinical pathology. Summary Establishing protective adaptive immunity during the perinatal period is critical for effective immune responses later in life. Preterm infants are susceptible to aberrant immune system maturation and inflammatory immune responses have been associated with the development of necrotizing enterocolitis (NEC) and bronchopulmonary dysplasia (BPD). Improving our understanding of how immune responses contribute to the pathogenesis of NEC and BPD may offer new opportunities for future treatment and prevention of these diseases.
Collapse
|
13
|
Liu PJ, Balfe P, McKeating JA, Schilling M. Oxygen Sensing and Viral Replication: Implications for Tropism and Pathogenesis. Viruses 2020; 12:E1213. [PMID: 33113858 PMCID: PMC7693908 DOI: 10.3390/v12111213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to detect and respond to varying oxygen tension is an essential prerequisite to life. Several mechanisms regulate the cellular response to oxygen including the prolyl hydroxylase domain (PHD)/factor inhibiting HIF (FIH)-hypoxia inducible factor (HIF) pathway, cysteamine (2-aminoethanethiol) dioxygenase (ADO) system, and the lysine-specific demethylases (KDM) 5A and KDM6A. Using a systems-based approach we discuss the literature on oxygen sensing pathways in the context of virus replication in different tissues that experience variable oxygen tension. Current information supports a model where the PHD-HIF pathway enhances the replication of viruses infecting tissues under low oxygen, however, the reverse is true for viruses with a selective tropism for higher oxygen environments. Differences in oxygen tension and associated HIF signaling may play an important role in viral tropism and pathogenesis. Thus, pharmaceutical agents that modulate HIF activity could provide novel treatment options for viral infections and associated pathological conditions.
Collapse
|
14
|
Liu X, Zhang D, Cai Q, Liu D, Sun S. Involvement of nuclear factor erythroid 2‑related factor 2 in neonatal intestinal interleukin‑17D expression in hyperoxia. Int J Mol Med 2020; 46:1423-1432. [PMID: 32945417 PMCID: PMC7447302 DOI: 10.3892/ijmm.2020.4697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin 17D (IL-17D) plays an important role in host defense against inflammation and infection. In the present study, the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in regulating the production of IL-17D was investigated under hyperoxia. For this purpose, neonatal rats were randomized into two groups; the model group was exposed to hyperoxia (80-85% O2), while the control group was maintained under normoxic conditions (21% O2). Small intestine tissue was collected on postnatal days 3, 7, 10 and 14. IL-17D expression was detected by immunofluorescence, immunohistochemistry and western blotting. The levels of Nrf2 and kelch-like ECH-associated protein 1 (keap1) were detected by immunohistochemistry and western blotting. Results showed that IL-17D expression in intestine epithelial cells increased steadily, reaching a peak on day 7, and decreased gradually on days 10 and 14 under hyperoxia. Nrf2 expression was consis-tent with IL-17D, and it was positively correlated with IL-17D. However, on postnatal days 10 and 14, the number of CD4+ T cells and CD19+ B cells expressing IL-17D was increased, and positive cells of the model group were significantly more than that of the control group. Keap1 levels were lower at the early stage. In conclusion, the expression levels of intestinal IL-17D and Nrf2 were altered simultaneously following neonatal rat development in hyperoxia, indicating that Nrf2 may be involved in regulating the expression of IL-17D in intestinal epithelial cells. Moreover, IL-17D in intestinal epithelial cells may play a unique immunological role during hyperoxia.
Collapse
Affiliation(s)
- Xuying Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Dongyang Zhang
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Qing Cai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Dongyan Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
15
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
16
|
Kumar VHS, Wang H, Nielsen L. Adaptive immune responses are altered in adult mice following neonatal hyperoxia. Physiol Rep 2019; 6. [PMID: 29368801 PMCID: PMC5789729 DOI: 10.14814/phy2.13577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023] Open
Abstract
Premature infants with bronchopulmonary dysplasia (BPD), are at risk for frequent respiratory infections and reduced pulmonary function. We studied whether neonatal hyperoxia disrupts adaptive immune responses in adult mice, contributing to higher respiratory‐related morbidities seen in these infants. Newborn mice litters were randomized at 3 days to 85% O2 or room air (RA) for 12 days. Whole lung mRNA was isolated in both the groups at 2 weeks and 3 months. Gene expression for T‐cell and B‐cell adaptive immune response was performed by real‐time PCR and qRT‐PCR; protein expression (p21, IL4, IL10, IL27, cd4) was performed by enzyme immunoassay along with p21 immunohistochemistry. Hyperoxia increased expression of p21 and decreased expression of 19 genes representing T/B‐cell activation by ≥ fourfold; three of them significantly (Rag1, Cd1d1, Cd28) compared to the RA group at 2 weeks. Despite RA recovery, the expression of IFNγ, IL27, and CD40 was significantly reduced at 3 months in the hyperoxia group. Expression of p21 was significantly higher and IL27 protein lower at 2 weeks following hyperoxia. Adult mice exposed to neonatal hyperoxia had lower IL4 and IL10 in the lung at 3 months. Adaptive immune responses are developmentally regulated and neonatal hyperoxia suppresses expression of genes involved in T‐/B‐cell activation with continued alterations in gene expression at 3 months. Dysfunction of adaptive immune responses increases the risk for susceptibility to infection in premature infants.
Collapse
Affiliation(s)
| | - Huamei Wang
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| | - Lori Nielsen
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| |
Collapse
|
17
|
McGrath-Morrow SA, Collaco JM. Bronchopulmonary dysplasia: what are its links to COPD? Ther Adv Respir Dis 2019; 13:1753466619892492. [PMID: 31818194 PMCID: PMC6904782 DOI: 10.1177/1753466619892492] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
Emerging evidence suggests that adverse early life events can affect long-term health trajectories throughout life. Preterm birth, in particular, is a significant early life event that affects approximately 10% of live births. Worldwide, prematurity is the number one cause of death in children less than 5 years of age and has been shown to disrupt normal lung development with lasting effects into adult life. Along with impaired lung development, interventions used to support gas exchange and other sequelae of prematurity can lead to the development of bronchopulmonary dysplasia (BPD). BPD is a chronic respiratory disease of infancy characterized by alveolar simplification, small airways disease, and pulmonary vascular changes. Although many survivors of BPD improve with age, survivors of BPD often have chronic lung disease characterized by airflow obstruction and intermittent pulmonary exacerbations. Long-term lung function trajectories as measured by FEV1 can be lower in children and adults with a history BPD. In this review, we discuss the epidemiology and manifestations of BPD and its long-term consequences throughout childhood and into adulthood. Available evidence suggests that disrupted lung development, genetic susceptibility and subsequent environment and infectious events that occur in prenatal and postnatal life likely increase the predisposition of children with BPD to develop early onset chronic obstructive pulmonary disease (COPD). The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Sharon A. McGrath-Morrow
- Eudowood Division of Pediatric Respiratory
Sciences, David M. Rubenstein Building, Suite 3075B, 200 North Wolfe Street,
Baltimore, MD, 21287-2533, USA
| | - Joseph M. Collaco
- Department of Pediatrics, Eudowood Division of
Respiratory Sciences, Johns Hopkins University School of Medicine,
Baltimore, MD, USA
| |
Collapse
|