1
|
Sun WT, Du JY, Wang J, Wang YL, Dong ED. Potential preservative mechanisms of cardiac rehabilitation pathways on endothelial function in coronary heart disease. SCIENCE CHINA. LIFE SCIENCES 2025; 68:158-175. [PMID: 39395086 DOI: 10.1007/s11427-024-2656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 10/14/2024]
Abstract
Cardiac rehabilitation, a comprehensive exercise-based lifestyle and medical management, is effective in decreasing morbidity and improving life quality in patients with coronary heart disease. Endothelial function, an irreplaceable indicator in coronary heart disease progression, is measured by various methods in traditional cardiac rehabilitation pathways, including medicinal treatment, aerobic training, and smoking cessation. Nevertheless, studies on the effect of some emerging cardiac rehabilitation programs on endothelial function are limited. This article briefly reviewed the endothelium-beneficial effects of different cardiac rehabilitation pathways, including exercise training, lifestyle modification and psychological intervention in patients with coronary heart disease, and related experimental models, and summarized both uncovered and potential cellular and molecular mechanisms of the beneficial roles of various cardiac rehabilitation pathways on endothelial function. In exercise training and some lifestyle interventions, the enhanced bioavailability of nitric oxide, increased circulating endothelial progenitor cells (EPCs), and decreased oxidative stress are major contributors to preventing endothelial dysfunction in coronary heart disease. Moreover, the preservation of endothelial-dependent hyperpolarizing factors and inflammatory suppression play roles. On the one hand, to develop more endothelium-protective rehabilitation methods in coronary heart disease, adequately designed and sized randomized multicenter clinical trials should be advanced using standardized cardiac rehabilitation programs and existing assessment methods. On the other hand, additional studies using suitable experimental models are warranted to elucidate the relationship between some new interventions and endothelial protection in both macro- and microvasculature.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jian-Yong Du
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jia Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yi-Long Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Er-Dan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China.
- The Institute of Cardiovascular Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Landers-Ramos RQ, McCully KK, Knuth ND. Comparison of analysis strategies to assess sex differences in microvascular reperfusion using near-infrared spectroscopy. J Appl Physiol (1985) 2024; 137:864-872. [PMID: 39143903 DOI: 10.1152/japplphysiol.00203.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
The near-infrared spectroscopy (NIRS) vascular occlusion test (VOT) assesses microvascular reperfusion. Two strategies have been used to quantify reperfusion following reactive hyperemia, but it is unclear whether both yield similar results when comparing biological sex. This study aimed to determine whether sex differences in NIRS-based microvascular reperfusion are similarly apparent using the 10-s reactive hyperemia slope of the tissue saturation index (StO2) signal (slope 2) and the halftime to maximal reperfusion (T ½). Healthy, recreationally active males (n = 31) and females (n = 31) between 18 and 82 years took part in this study. A NIRS VOT was performed on the tibialis anterior muscle, and reperfusion was quantified using slope 2 (% s-1) and T ½ (s). Adipose tissue thickness (ATT) was higher in females (P = 0.009), which was associated with a lower StO2 (P = 0.001) and oxygenated hemoglobin (O2Hb) (P = 0.05) signal range. The StO2 slope 2 was significantly steeper in males versus females (P = 0.001) but not after correcting for ATT (P = 0.295). There were no sex differences in StO2 T ½ (P = 0.067) or O2Hb T ½ (P = 0.197). In a subset of males (n = 26) and females (n = 21) with similar ATT, there were no sex differences in StO2 slope 2 (P = 0.068), StO2 T ½ (P = 0.491), or O2Hb T ½ (P = 0.899). An ATT-corrected StO2 slope 2 or the T ½ approach is recommended for analysis of NIRS-based microvascular reperfusion when differences in ATT are present between sexes.NEW & NOTEWORTHY Sex differences in near-infrared spectroscopy (NIRS)-based microvascular reperfusion have been previously reported. We found that greater adipose tissue thickness in females reduces kinetic measures of NIRS-based microvascular reperfusion. Sex differences are eliminated when performing an adipose tissue thickness correction, when the NIRS signal range is accounted for, or when adipose tissue thickness is similar between sexes. This highlights the importance of considering factors that affect NIRS signals, such as adipose tissue thickness, when drawing comparisons between groups.
Collapse
Affiliation(s)
| | - Kevin K McCully
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States
| | - Nicolas D Knuth
- Department of Kinesiology, Towson University, Towson, Maryland, United States
| |
Collapse
|
3
|
Alvares TS, Soares RN. Tissue desaturation is not a major determinant of aging-related impairment in skeletal muscle reactive hyperemia: a retrospective analysis. Am J Physiol Regul Integr Comp Physiol 2024; 327:R362-R368. [PMID: 39005082 DOI: 10.1152/ajpregu.00130.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Near-infrared spectroscopy combined with vascular occlusion test (NIRS-VOT) is a reactive hyperemia technique for in vivo evaluation of skeletal muscle microvascular reactivity. Previous studies using NIRS-VOT have been shown to be able to detect impairments in microvascular function in high-risk cardiovascular disease populations, such as older individuals. It has been demonstrated that older individuals have slower reactive hyperemia compared with young individuals. Importantly, older individuals also show less desaturation during ischemia compared with young individuals. Based on these findings, it has been suggested that the slower reactive hyperemia observed in older individuals is explained by the lower desaturation during blood flow occlusion (reduced ischemic stimulus). This retrospective analysis compared reactive hyperemia in 36 young and 47 older tissue desaturation-matched individuals that underwent 5-min blood flow occlusion. Overall, we showed that older individuals have impaired reactive hyperemia compared with young when matching for the degree of desaturation and blood flow occlusion time. These findings provide evidence that lower tissue desaturation during ischemia is not a major determinant of impaired reactive hyperemia in older individuals.NEW & NOTEWORTHY Previous findings have suggested that aging-related impairment in skeletal muscle reactive hyperemia is majorly influenced by a lower degree of tissue desaturation during ischemia in older individuals compared with young individuals. In a retrospective analysis including 83 tissue desaturation-matched individuals, we show that the degree of tissue desaturation is not a major determinant of aging-related impairments in reactive hyperemia.
Collapse
Affiliation(s)
| | - Rogerio Nogueira Soares
- Division of Kinesiology, Health, and Sports Studies, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
4
|
Scano A, Guanziroli E, Brambilla C, Amendola C, Pirovano I, Gasperini G, Molteni F, Spinelli L, Molinari Tosatti L, Rizzo G, Re R, Mastropietro A. A Narrative Review on Multi-Domain Instrumental Approaches to Evaluate Neuromotor Function in Rehabilitation. Healthcare (Basel) 2023; 11:2282. [PMID: 37628480 PMCID: PMC10454517 DOI: 10.3390/healthcare11162282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
In clinical scenarios, the use of biomedical sensors, devices and multi-parameter assessments is fundamental to provide a comprehensive portrait of patients' state, in order to adapt and personalize rehabilitation interventions and support clinical decision-making. However, there is a huge gap between the potential of the multidomain techniques available and the limited practical use that is made in the clinical scenario. This paper reviews the current state-of-the-art and provides insights into future directions of multi-domain instrumental approaches in the clinical assessment of patients involved in neuromotor rehabilitation. We also summarize the main achievements and challenges of using multi-domain approaches in the assessment of rehabilitation for various neurological disorders affecting motor functions. Our results showed that multi-domain approaches combine information and measurements from different tools and biological signals, such as kinematics, electromyography (EMG), electroencephalography (EEG), near-infrared spectroscopy (NIRS), and clinical scales, to provide a comprehensive and objective evaluation of patients' state and recovery. This multi-domain approach permits the progress of research in clinical and rehabilitative practice and the understanding of the pathophysiological changes occurring during and after rehabilitation. We discuss the potential benefits and limitations of multi-domain approaches for clinical decision-making, personalized therapy, and prognosis. We conclude by highlighting the need for more standardized methods, validation studies, and the integration of multi-domain approaches in clinical practice and research.
Collapse
Affiliation(s)
- Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Cristina Brambilla
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Caterina Amendola
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.A.); (R.R.)
| | - Ileana Pirovano
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| | - Giulio Gasperini
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Lorenzo Spinelli
- Institute for Photonics and Nanotechnology (IFN), Italian National Research Council (CNR), Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Lorenzo Molinari Tosatti
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Giovanna Rizzo
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.A.); (R.R.)
- Institute for Photonics and Nanotechnology (IFN), Italian National Research Council (CNR), Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Alfonso Mastropietro
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| |
Collapse
|
5
|
Ambrosino P, Bachetti T, D’Anna SE, Galloway B, Bianco A, D’Agnano V, Papa A, Motta A, Perrotta F, Maniscalco M. Mechanisms and Clinical Implications of Endothelial Dysfunction in Arterial Hypertension. J Cardiovasc Dev Dis 2022; 9:136. [PMID: 35621847 PMCID: PMC9146906 DOI: 10.3390/jcdd9050136] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
The endothelium is composed of a monolayer of endothelial cells, lining the interior surface of blood and lymphatic vessels. Endothelial cells display important homeostatic functions, since they are able to respond to humoral and hemodynamic stimuli. Thus, endothelial dysfunction has been proposed as a key and early pathogenic mechanism in many clinical conditions. Given the relevant repercussions on cardiovascular risk, the complex interplay between endothelial dysfunction and systemic arterial hypertension has been a matter of study in recent years. Numerous articles have been published on this issue, all of which contribute to providing an interesting insight into the molecular mechanisms of endothelial dysfunction in arterial hypertension and its role as a biomarker of inflammation, oxidative stress, and vascular disease. The prognostic and therapeutic implications of endothelial dysfunction have also been analyzed in this clinical setting, with interesting new findings and potential applications in clinical practice and future research. The aim of this review is to summarize the pathophysiology of the relationship between endothelial dysfunction and systemic arterial hypertension, with a focus on the personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction while treating hypertension and cardiovascular comorbidities.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Tiziana Bachetti
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Direction, 27100 Pavia, Italy;
| | - Silvestro Ennio D’Anna
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Brurya Galloway
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Antimo Papa
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy;
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy
| |
Collapse
|
6
|
Niezen CK, Massari D, Vos JJ, Scheeren TWL. The use of a vascular occlusion test combined with near-infrared spectroscopy in perioperative care: a systematic review. J Clin Monit Comput 2022; 36:933-946. [PMID: 34982349 DOI: 10.1007/s10877-021-00779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
In the perioperative phase oxygen delivery and consumption can be influenced by different factors, i.e. type of surgery, anesthetic and cardiovascular drugs, or fluids. By combining near-infrared spectroscopy (NIRS) monitoring of regional tissue oxygen saturation (StO2) with an ischemic provocation test, the vascular occlusion test (VOT), local tissue oxygen consumption and vascular reactivity at the microcirculatory level can be assessed. This systematic review aims to give an overview of the clinical information that VOT-derived NIRS values can provide in the perioperative period. After performing a systematic literature search, we included 29 articles. It was not possible to perform a meta-analysis because of the lack of comparable data and the observational nature of the majority of the included articles. We have clustered the found articles in two groups: non-cardiac surgery and cardiac surgery. We found that VOT-derived NIRS values show a wide variability and are influenced by the effects of anesthetics, cardiovascular drugs, fluids, and by the type of surgery. Additionally, deviations in VOT-derived NIRS values are also associated with adverse patients' outcomes, such as postoperative complications, prolonged mechanical ventilation and prolonged hospital length of stay. However, given the variability in VOT-derived NIRS values, clinical applicability remains elusive. Future clinical interventional trials might provide additional insight into the potential of VOT associated with NIRS to optimize perioperative care by targeting specific interventions to optimize the function of the microvasculature.
Collapse
Affiliation(s)
- C K Niezen
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands.
| | - D Massari
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | - J J Vos
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | - T W L Scheeren
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
7
|
Whyte E, Thomas S, Marzolini S. Muscle Oxygenation of the Paretic and Nonparetic Legs During and After Arterial Occlusion in Chronic Stroke. J Stroke Cerebrovasc Dis 2021; 31:106265. [PMID: 34954600 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oxygen delivery and demand are reduced in the paretic leg post-stroke, reflecting decreased vascular function and reduced muscle quantity and quality. However, it is unknown how muscle oxygenation, the balance between muscle oxygen delivery and utilization, is altered in chronic stroke during and after occlusion-induced ischemia. OBJECTIVES The objective was to determine muscle oxygen consumption rate, microvascular responsiveness and reactive hyperemia in the paretic and nonparetic legs during and after arterial occlusion post-stroke. MATERIALS AND METHODS Muscle oxygen saturation was measured with near-infrared spectroscopy on the vastus lateralis of each leg during 3-minute arterial occlusion and recovery (3 min). Muscle oxygen consumption was derived from the desaturation slope during ischemia, microvascular responsiveness was derived from the resaturation slope after ischemia and reactive hyperemia was derived from the area under the curve above baseline after ischemia. RESULTS Eleven subjects (91% male; 32.2±6.1 months post-stroke; age 62.9±13.6 years) with a hemiparetic gait pattern participated. There was no significant between-leg muscle oxygenation difference at rest (paretic: 64.9±16.6%; nonparetic: 70.6±15.6%, p = 0.13). Muscle oxygen consumption in the paretic leg (-0.53±0.24%/s) was significantly reduced compared to the nonparetic leg (-0.70±0.36%/s; p = 0.03). Microvascular responsiveness was significantly reduced in the paretic leg compared to the nonparetic leg (paretic: 4.6±1.8%/s; nonparetic: 5.7±1.6%/s, p = 0.04). Reactive hyperemia was not significantly different between legs (paretic:4384±2341%·s; nonparetic: 3040±2216%·s, p = 0.07). CONCLUSION Muscle oxygen consumption and microvascular responsiveness are impaired in the paretic compared to the nonparetic leg, suggesting both reduced skeletal muscle aerobic function and reduced ability to maximally perfuse muscle tissue.
Collapse
Affiliation(s)
- Elizabeth Whyte
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute-Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Scott Thomas
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute-Toronto Rehabilitation Institute, University Health Network, Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Susan Marzolini
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute-Toronto Rehabilitation Institute, University Health Network, Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, ON, Canada.
| |
Collapse
|
8
|
Mattioni Maturana F, Soares RN, Murias JM, Schellhorn P, Erz G, Burgstahler C, Widmann M, Munz B, Thiel A, Nieß AM. Responders and non-responders to aerobic exercise training: beyond the evaluation of V˙O2max. Physiol Rep 2021; 9:e14951. [PMID: 34409753 PMCID: PMC8374384 DOI: 10.14814/phy2.14951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023] Open
Abstract
The evaluation of the maximal oxygen uptake ( V ˙ O 2 max ) following exercise training is the classical assessment of training effectiveness. Research has lacked in investigating whether individuals that do not respond to the training intervention ( V ˙ O 2 max ), also do not improve in other health-related parameters. We aimed to investigate the cardiovascular and metabolic adaptations (i.e., performance, body composition, blood pressure, vascular function, fasting blood markers, and resting cardiac function and morphology) to exercise training among participants who showed different levels of V ˙ O 2 max responsiveness. Healthy sedentary participants engaged in a 6-week exercise training program, three times a week. Our results showed that responders had a greater increase in peak power output, second lactate threshold, and microvascular responsiveness, whereas non-responders had a greater increase in cycling efficiency. No statistical differences were observed in body composition, blood pressure, fasting blood parameters, and resting cardiac adaptations. In conclusion, our study showed, for the first time, that in addition to the differences in the V ˙ O 2 max , a greater increase in microvascular responsiveness in responders compared to non-responders was observed. Additionally, responders and non-responders did not show differences in the adaptations on metabolic parameters. There is an increasing need for personalized training prescription, depending on the target clinical outcome.
Collapse
Affiliation(s)
- Felipe Mattioni Maturana
- Sports Medicine DepartmentUniversity Hospital of TübingenTübingenGermany
- Interfaculty Research Institute for Sport and Physical ActivityEberhard Karls University of TübingenTübingenGermany
| | | | - Juan M. Murias
- Faculty of KinesiologyUniversity of CalgaryCalgaryCanada
| | - Philipp Schellhorn
- Sports Medicine DepartmentUniversity Hospital of TübingenTübingenGermany
| | - Gunnar Erz
- Sports Medicine DepartmentUniversity Hospital of TübingenTübingenGermany
| | | | - Manuel Widmann
- Sports Medicine DepartmentUniversity Hospital of TübingenTübingenGermany
- Interfaculty Research Institute for Sport and Physical ActivityEberhard Karls University of TübingenTübingenGermany
| | - Barbara Munz
- Sports Medicine DepartmentUniversity Hospital of TübingenTübingenGermany
- Interfaculty Research Institute for Sport and Physical ActivityEberhard Karls University of TübingenTübingenGermany
| | - Ansgar Thiel
- Interfaculty Research Institute for Sport and Physical ActivityEberhard Karls University of TübingenTübingenGermany
- Institute of Sports ScienceEberhard Karls University TübingenTübingenGermany
| | - Andreas M. Nieß
- Sports Medicine DepartmentUniversity Hospital of TübingenTübingenGermany
- Interfaculty Research Institute for Sport and Physical ActivityEberhard Karls University of TübingenTübingenGermany
| |
Collapse
|
9
|
Maturana FM, Schellhorn P, Erz G, Burgstahler C, Widmann M, Munz B, Soares RN, Murias JM, Thiel A, Nieß AM. Individual cardiovascular responsiveness to work-matched exercise within the moderate- and severe-intensity domains. Eur J Appl Physiol 2021; 121:2039-2059. [PMID: 33811557 PMCID: PMC8192395 DOI: 10.1007/s00421-021-04676-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
Purpose We investigated the cardiovascular individual response to 6 weeks (3×/week) of work-matched within the severe-intensity domain (high-intensity interval training, HIIT) or moderate-intensity domain (moderate-intensity continuous training, MICT). In addition, we analyzed the cardiovascular factors at baseline underlying the response variability. Methods 42 healthy sedentary participants were randomly assigned to HIIT or MICT. We applied the region of practical equivalence-method for identifying the levels of responders to the maximal oxygen uptake (V̇O2max) response. For investigating the influence of cardiovascular markers, we trained a Bayesian machine learning model on cardiovascular markers. Results Despite that HIIT and MICT induced significant increases in V̇O2max, HIIT had greater improvements than MICT (p < 0.001). Greater variability was observed in MICT, with approximately 50% classified as “non-responder” and “undecided”. 20 “responders”, one “undecided” and no “non-responders” were observed in HIIT. The variability in the ∆V̇O2max was associated with initial cardiorespiratory fitness, arterial stiffness, and left-ventricular (LV) mass and LV end-diastolic diameter in HIIT; whereas, microvascular responsiveness and right-ventricular (RV) excursion velocity showed a significant association in MICT. Conclusion Our findings highlight the critical influence of exercise-intensity domains and biological variability on the individual V̇O2max response. The incidence of “non-responders” in MICT was one third of the group; whereas, no “non-responders” were observed in HIIT. The incidence of “responders” was 11 out of 21 participants in MICT, and 20 out of 21 participants in HIIT. The response in HIIT showed associations with baseline fitness, arterial stiffness, and LV-morphology; whereas, it was associated with RV systolic function in MICT.
Collapse
Affiliation(s)
- Felipe Mattioni Maturana
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, Germany.
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Philipp Schellhorn
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, Germany
| | - Gunnar Erz
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, Germany
| | | | - Manuel Widmann
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, Germany
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Barbara Munz
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, Germany
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Ansgar Thiel
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
- Institute of Sports Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas M Nieß
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, Germany
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Chung J, Ji SH, Jang YE, Kim EH, Lee JH, Kim JT, Kim HS. Evaluation of Different Near-Infrared Spectroscopy Devices for Assessing Tissue Oxygenation with a Vascular Occlusion Test in Healthy Volunteers. J Vasc Res 2020; 57:341-347. [PMID: 32894846 DOI: 10.1159/000510072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/18/2020] [Indexed: 11/19/2022] Open
Abstract
Near-infrared spectroscopy devices can measure peripheral tissue oxygen saturation (StO2). This study aims to compare StO2 using INVOS® and different O3™ settings (O325:75 and O330:70). Twenty adults were recruited. INVOS® and O3™ probes were placed simultaneously on 1 side of forearm. After baseline measurement, the vascular occlusion test was initiated. The baseline value, rate of deoxygenation and reoxygenation, minimum and peak StO2, and time from cuff release to peak value were measured. The parameters were compared using ANOVA and Kruskal-Wallis tests. Bonferroni's correction and Mann-Whitney pairwise comparison were used for post hoc analysis. The agreement between StO2 of devices was evaluated using Bland-Altman plots. INVOS® baseline value was higher (79.7 ± 6.4%) than that of O325:75 and O330:70 (62.4 ± 6.0% and 63.7 ± 5.5%, respectively, p < 0.001). The deoxygenation rate was higher with INVOS® (10.6 ± 2.1%/min) than with O325:75 and O330:70 (8.4 ± 2.2%/min, p = 0.006 and 7.5 ± 2.1%/min, p < 0.001). The minimum and peak StO2 were higher with INVOS®. No significant difference in the reoxygenation rate was found between the devices and settings. The time to reach peak after cuff deflation was faster with INVOS® (both p < 0.001). Other parameters were similar. There were no differences between the different O3™ settings. There were differences in StO2 measurements between the devices, and these devices should not be interchanged. Differences were not observed between O3™ device settings.
Collapse
Affiliation(s)
- Jaeyeon Chung
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang-Hwan Ji
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young-Eun Jang
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun-Hee Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin-Tae Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hee-Soo Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea, .,Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea,
| |
Collapse
|
11
|
Soares RN, de Oliveira GV, Alvares TS, Murias JM. The effects of the analysis strategy on the correlation between the NIRS reperfusion measures and the FMD response. Microvasc Res 2019; 127:103922. [PMID: 31479661 DOI: 10.1016/j.mvr.2019.103922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 11/19/2022]
Abstract
This study aimed to investigate the correlation between near-infrared spectroscopy (NIRS)-derived measures of microvascular responses using a range of different analysis and flow-mediated dilation (FMD). Additionally, we aimed to investigate whether assessing NIRS and FMD simultaneously or non-simultaneously would affect this association. Thirty-five healthy young individuals (26 ± 13 years old) participated in the study. Twenty were submitted to a simultaneous NIRS/FMD test (NIRS probe placed below the cuff during FMD test) and fifteen to a non-simultaneous FMD and NIRS intervention (NIRS test performed 20 min after FMD). NIRS-derived oxygen saturation signal (StO2) during reperfusion was analyzed as follow: upslope of a 10 s (slope 10 s) and 30 s (slope 30 s) reperfusion window immediately following cuff deflation, time for the StO2 to reach the pre-occlusion (baseline) values after cuff release (time to baseline) and to reach the peak after cuff release (time to max), difference between the minimum and maximum StO2 value reached after cuff deflation (Magnitude) and; the total area under the reperfusion curve above the baseline value until the end of the 2 min post cuff release (AUC 2 min). There was a significant positive correlation between slope 10 s and FMD in the simultaneous (r = 0.60; p < 0.05) and non-simultaneous (r = 0.62; p < 0.05) assessments. There was no significant correlation between NIRS-derived slope 30 s, time to baseline, time to max, magnitude, and AUC 2 min and the FMD in both methods. The association between NIRS and FMD is analysis strategy dependent, regardless if assessed simultaneously or non-simultaneously.
Collapse
Affiliation(s)
| | - Gustavo Vieira de Oliveira
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil; Postgraduate Program in Bioactive Products and Biosciences, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Thiago Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil; Postgraduate Program in Bioactive Products and Biosciences, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Juan Manuel Murias
- Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada.
| |
Collapse
|