1
|
Barai M, Manna E, Sultana H, Mandal MK, Manna T, Patra A, Roy B, Gowda V, Chang CH, Akentiev AV, Bykov AG, Noskov BA, Moitra P, Ghosh C, Yusa SI, Bhattacharya S, Kumar Panda A. Physicochemical Studies on Amino Acid Based Metallosurfactants in Combination with Phospholipid. Chem Asian J 2024; 19:e202400284. [PMID: 38953124 DOI: 10.1002/asia.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Dicarboxylate metallosurfactants (AASM), synthesized by mixing N-dodecyl aminomalonate, -aspartate and -glutamate with CaCl2, MnCl2 and CdCl2, were characterized by XRD, FTIR, and NMR spectroscopy. Layered structures, formed by metallosurfactants, were evidenced from differential scanning calorimetry and thermogravimetric analyses. Solvent-spread monolayer of AASM in combination with soyphosphatidylcholine (SPC) and cholesterol (CHOL) were studied using Langmuir surface balance. With increasing mole fraction of AASM mean molecular area increased and passed through maxima at ~60 mol% of AASMs, indicating molecular packing reorganization. Systems with 20 and 60 mol% AASM exhibited positive deviations from ideal behavior signifying repulsive interaction between the AASM and SPC, while synergistic interactions were established from the negative deviation at other combinations. Dynamic surface elasticity increased with increasing surface pressure signifying formation of rigid monolayer. Transition of monolayer from gaseous to liquid expanded to liquid condensed state was established by Brewster angle microscopic studies. Stability of the hybrid vesicles, formed by AASM+SPC+CHOL, were established by monitoring their size, zeta potential and polydispersity index values over 100 days. Size and spherical morphology of hybrid vesicles were confirmed by transmission electron microscopic studies. Biocompatibility of the hybrid vesicles were established by cytotoxicity studies revealing their possible applications in drug delivery and imaging.
Collapse
Affiliation(s)
- Manas Barai
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Emili Manna
- Centre for Life Sciences, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Habiba Sultana
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Manas Kumar Mandal
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Tuhin Manna
- Department of Human Physiology, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Biplab Roy
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Vasantha Gowda
- Department of Biomedical Science, Malmö University, SE-20506, Malmö, Sweden
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Alexander V Akentiev
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. Sankt-Peterburg, 26, 198504, St. Petersburg, Russia
| | - Alexey G Bykov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. Sankt-Peterburg, 26, 198504, St. Petersburg, Russia
| | - Boris A Noskov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. Sankt-Peterburg, 26, 198504, St. Petersburg, Russia
| | - Parikshit Moitra
- Department of Chemical Sciences, IISER, Berhampur, Odisha, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Hyogo, 671-2280, Japan
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
- Indian Institute of Science Education and Research, Tirupati, -517507, Andhra Pradesh, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
| |
Collapse
|
2
|
Wang L, Wang J, Xu A, Wei L, Pei M, Shen T, Xian X, Yang K, Fei L, Pan Y, Yang H, Wang X. Future embracing: exosomes driving a revolutionary approach to the diagnosis and treatment of idiopathic membranous nephropathy. J Nanobiotechnology 2024; 22:472. [PMID: 39118155 PMCID: PMC11312222 DOI: 10.1186/s12951-024-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolutionary transformation in this field.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Tuwei Shen
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xian Xian
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450099, China
| | - Lingyan Fei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China.
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
3
|
Zhou L, Shan Z, Fan J. Extracellular Vesicles Derived from Human Bone Marrow Stem Cells Inhibit Acute Lymphoblastic Leukemia Cell Growth by Inhibiting MAPK Pathway via the miR-29b-3p/GDF15 Axis. Acta Haematol 2022; 146:505-517. [PMID: 36327876 DOI: 10.1159/000527456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/18/2022] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is a common hematologic neoplastic disease. This study discussed the effect of extracellular vesicles (EVs) released from bone marrow mesenchymal stem cells (BMSCs) on ALL cells and the mechanism. METHODS BMSCs-EVs were isolated by differential centrifugation and identified. The effect of BMSCs-EVs on ALL cell proliferation and apoptosis was evaluated. The expression of miR-29b-3p in ALL cells and EVs was detected. The uptake of EVs by ALL cells was observed. The effect of miR-29b-3p on ALL cell proliferation and apoptosis was assessed after silencing miR-29b-3p. The targeting relation of miR-29b-3p and GDF15 was analyzed by bioinformatics website and dual-luciferase assay. The role of GDF15 in proliferation and apoptosis of ALL cells was further confirmed, and Western blot assay was performed to measure MAPK pathway-related protein levels. RESULTS BMSC-derived EVs inhibited proliferation and promoted apoptosis of ALL cells, as shown by the up-regulation of caspase-3 and Bax expressions and down-regulation of Bcl-2 expression. EVs carried miR-29b-3p into ALL cells, upregulated miR-29b-3p expression in ALL cells, and inhibited GDF15 expression. Silencing of miR-29b-3p or overexpression of GDF15 partially reversed the effect of EVs. EVs inhibited the MAPK pathway through the miR-29b-3p/GDF15 axis. CONCLUSION BMSCs-EVs carried miR-29b-3p into ALL cells, upregulated miR-29b-3p, and inhibited GDF15 to suppress the MAPK pathway and further inhibit proliferation and promote apoptosis of ALL cells.
Collapse
Affiliation(s)
- Li Zhou
- Department of Hematopathology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Zhe Shan
- Department of Hematopathology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Jiangsha Fan
- Department of Hematopathology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| |
Collapse
|
4
|
Bahmani L, Ullah M. Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells 2022; 11:cells11131989. [PMID: 35805074 PMCID: PMC9265969 DOI: 10.3390/cells11131989] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of natural cell-derived nanostructures that are increasingly regarded as promising biotherapeutic agents and drug delivery vehicles in human medicine. Desirable intrinsic properties of EVs including the ability to bypass natural membranous barriers and to deliver their unique biomolecular cargo to specific cell populations position them as fiercely competitive alternatives for currently available cell therapies and artificial drug delivery platforms. EVs with distinct characteristics can be released from various cell types into the extracellular environment as a means of transmitting bioactive components and altering the status of the target cell. Despite the existence of a large number of preclinical studies confirming the therapeutic efficacy of different originated EVs for treating several pathological conditions, in this review, we first provide a brief overview of EV biophysical properties with an emphasis on their intrinsic therapeutic benefits over cell-based therapies and synthetic delivery systems. Next, we describe in detail different EVs derived from distinct cell sources, compare their advantages and disadvantages, and recapitulate their therapeutic effects on various human disorders to highlight the progress made in harnessing EVs for clinical applications. Finally, knowledge gaps and concrete hurdles that currently hinder the clinical translation of EV therapies are debated with a futuristic perspective.
Collapse
Affiliation(s)
- Leila Bahmani
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence:
| |
Collapse
|
5
|
Adewoyin M, Teoh SL, Azmai MNA, Nasruddin NS. Exploiting the Differences Between Zebrafish and Medaka in Biological Research: A Complementary Approach. PHARMACOPHORE 2022. [DOI: 10.51847/a5qhctavdz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Eirin A, Lerman LO. Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles for Chronic Kidney Disease: Are We There Yet? Hypertension 2021; 78:261-269. [PMID: 34176287 DOI: 10.1161/hypertensionaha.121.14596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are the most utilized cell type for cellular therapy, partly due to their important proliferative potential and ability to differentiate into various cell types. MSCs produce large amounts of extracellular vesicles (EVs), which carry genetic and protein cargo to mediate MSC paracrine function. Recently, MSC-derived EVs have been successfully used in several preclinical models of chronic kidney disease. However, uncertainty remains regarding EV fate, safety, and long-term effects, which might impose important limitations on their path to clinical translation. This review discusses the therapeutic application of MSC-derived EV therapy for renal disease, with particular emphasis on potential mechanisms of kidney repair and major translational barriers. Emerging evidence indicates that the cargo of MSC-derived EVs is capable of modulating several pathways responsible for renal injury, including inflammation, oxidative stress, apoptosis, fibrosis, and microvascular remodeling. EV-induced modulation of these pathways has been associated with important renoprotective effects in experimental studies. However, scarce clinical data are available, and several challenges need to be addressed as we move toward clinical translation, including standardization of methods for EV isolation and characterization, EV fate, duration of EV effects, and effects of cardiovascular risk factors. MSC-derived EVs have the potential to preserve renal structure and function, but further experimental and clinical evidence is needed to confirm their protective effects in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Fuloria S, Subramaniyan V, Dahiya R, Dahiya S, Sudhakar K, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Sekar M, Malviya R, Singh A, Fuloria NK. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Regenerative Potential and Challenges. BIOLOGY 2021; 10:172. [PMID: 33668707 PMCID: PMC7996168 DOI: 10.3390/biology10030172] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Evidence suggests that stem cells exert regenerative potential via the release of extracellular vesicles. Mesenchymal stem cell extracellular vesicles (MSCEVs) offer therapeutic benefits for various pathophysiological ailments by restoring tissues. Facts suggest that MSCEV action can be potentiated by modifying the mesenchymal stem cells culturing methodology and bioengineering EVs. Limited clinical trials of MSCEVs have questioned their superiority, culturing quality, production scale-up and isolation, and administration format. Translation of preclinically successful MSCEVs into a clinical platform requires paying attention to several critical matters, such as the production technique, quantification/characterization, pharmacokinetics/targeting/transfer to the target site, and the safety profile. Keeping these issues as a priority, the present review was designed to highlight the challenges in translating preclinical MSCEV research into clinical platforms and provide evidence for the regenerative potential of MSCEVs in various conditions of the liver, kidney, heart, nervous system, bone, muscle, cartilage, and other organs/tissues.
Collapse
Affiliation(s)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago;
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar 144411, India;
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Malaysia;
| | - Rishabha Malviya
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 203201, India; (R.M.); (A.S.)
| | - Amit Singh
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 203201, India; (R.M.); (A.S.)
| | | |
Collapse
|
8
|
Pesaresi M, Bonilla-Pons SA, Sebastian-Perez R, Di Vicino U, Alcoverro-Bertran M, Michael R, Cosma MP. The Chemokine Receptors Ccr5 and Cxcr6 Enhance Migration of Mesenchymal Stem Cells into the Degenerating Retina. Mol Ther 2020; 29:804-821. [PMID: 33264643 DOI: 10.1016/j.ymthe.2020.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cell therapy approaches hold great potential for treating retinopathies, which are currently incurable. This study addresses the problem of inadequate migration and integration of transplanted cells into the host retina. To this end, we have identified the chemokines that were most upregulated during retinal degeneration and that could chemoattract mesenchymal stem cells (MSCs). The results were observed using a pharmacological model of ganglion/amacrine cell degeneration and a genetic model of retinitis pigmentosa, from both mice and human retinae. Remarkably, MSCs overexpressing Ccr5 and Cxcr6, which are receptors bound by a subset of the identified chemokines, displayed improved migration after transplantation in the degenerating retina. They also led to enhanced rescue of cell death and to preservation of electrophysiological function. Overall, we show that chemokines released from the degenerating retinae can drive migration of transplanted stem cells, and that overexpression of chemokine receptors can improve cell therapy-based regenerative approaches.
Collapse
Affiliation(s)
- Martina Pesaresi
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Sergi A Bonilla-Pons
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Ruben Sebastian-Perez
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marc Alcoverro-Bertran
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ralph Michael
- Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona 08021, Spain; Centro de Oftalmología Barraquer, Barcelona 08021, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; ICREA, Passeig de Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
9
|
Masaoutis C, Al Besher S, Koutroulis I, Theocharis S. Exosomes in Nephropathies: A Rich Source of Novel Biomarkers. DISEASE MARKERS 2020; 2020:8897833. [PMID: 32849923 PMCID: PMC7441435 DOI: 10.1155/2020/8897833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The biomarkers commonly utilized in diagnostic evaluations of kidney disease suffer from low sensitivity, especially in the early stages of renal damage. On the other hand, obtaining a renal biopsy to augment clinical decision making can lead to potentially serious complications. In order to overcome the shortcomings of currently available diagnostic tools, recent studies suggest that exosomes, cell-secreted extracellular vesicles containing a large array of active molecules to facilitate cell-to-cell communication, may represent a rich source of novel disease biomarkers. Because of their endocytic origin, exosomes carry markers typical for their parent cells, which could permit the localization of biochemical cellular alterations in specific kidney compartments. Different types of exosomes can be isolated from noninvasively obtained biofluids; however, in the context of kidney disease, evidence has emerged on the role of urinary exosomes in the diagnostic and predictive modeling of renal pathology. The current review summarizes the potential application of exosomes in the detection of acute and chronic inflammatory, metabolic, degenerative, and genetic renal diseases.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias street, Bld 10, Goudi, 11527 Athens, Greece
| | - Samer Al Besher
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias street, Bld 10, Goudi, 11527 Athens, Greece
| | - Ioannis Koutroulis
- Children's National Hospital, Division of Emergency Medicine and Center for Genetic Medicine, George Washington University School of Medicine and Health Sciences, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|
10
|
Matsukura T, Inaba C, Weygant EA, Kitamura D, Janknecht R, Matsumoto H, Hyink DP, Kashiwada S, Obara T. Extracellular vesicles from human bone marrow mesenchymal stem cells repair organ damage caused by cadmium poisoning in a medaka model. Physiol Rep 2020; 7:e14172. [PMID: 31325249 PMCID: PMC6642321 DOI: 10.14814/phy2.14172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Treatment modalities for kidney disease caused by long-term exposure to heavy metals, such as cadmium (Cd), are limited. Often, chronic, long-term environmental exposure to heavy metal is not recognized in the early stages; therefore, chelation therapy is not an effective option. Extracellular vesicles (EVs) derived from stem cells have been demonstrated to reduce disease pathology in both acute and chronic kidney disease models. To test the ability of EVs derived from human bone marrow mesenchymal stem cells (hBM-MSCs) to treat Cd damage, we generated a Cd-exposed medaka model. This model develops heavy metal-induced cell damage in various organs and tissues, and shows decreased overall survival. Intravenous injection of highly purified EVs from hBM-MSCs repaired the damage to apical and basolateral membranes and mitochondria of kidney proximal tubules, glomerular podocytes, bone deformation, and improved survival. Our system also serves as a model with which to study age- and sex-dependent cell injuries of organs caused by various agents and diseases. The beneficial effects of EVs on the tissue repair process, as shown in our novel Cd-exposed medaka model, may open new broad avenues for interventional strategies.
Collapse
Affiliation(s)
- Tomomi Matsukura
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Life Sciences, Toyo University, Gunma, Japan
| | - Chisako Inaba
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Esther A Weygant
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Daiki Kitamura
- Department of Life Sciences, Toyo University, Gunma, Japan
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hiroyuki Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Clinical Proteomics and Gene Therapy Laboratory, Kurume University Graduate School of Medicine, Kurume, Japan
| | - Deborah P Hyink
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Tomoko Obara
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
11
|
miR-210 transferred by lung cancer cell-derived exosomes may act as proangiogenic factor in cancer-associated fibroblasts by modulating JAK2/STAT3 pathway. Clin Sci (Lond) 2020; 134:807-825. [PMID: 32219336 DOI: 10.1042/cs20200039] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
It has been generally believed that cancer-associated fibroblasts (CAFs) have the ability to increase the process of tumor angiogenesis. However, the potential mechanisms by which cancer-derived exosomes in lung cancer (LC) remains to be investigated. LC-derived exosomes were administrated to NIH/3T3 cells. A variety of experiments were conducted to investigate the proangiogenic factors of CAFs, including Western blot, RT-PCR, colony formation assay, tube formation assay, Matrigel plug assay et al. In addition, the impact of JAK2/STAT3 signaling pathway were also explored. The role of hsa-miR-210 was identified with microarray profiling and validated in vitro and in vivo assays. The target of miR-210 was screened by RNA pull down, RNA-sequencing and then verified. It was shown that LC-derived exosomes could induce cell reprogramming, thus promoting the fibroblasts transferring into CAFs. In addition, the exosomes with overexpressed miR-210 could increase the level of angiogenesis and vice versa, which suggested the miR-210 secreted by the LC-derived exosomes may initiate the CAF proangiogenic switch. According to our analysis, the miR-210 had the ability of elevating the expression of some proangiogenic factors such as MMP9, FGF2 and vascular endothelial growth factor (VEGF) a (VEGFa) by activating the JAK2/STAT3 signaling pathway, ten-eleven translocation 2 (TET2) was identified as the target of miR-210 in CAFs which has been involved in proangiogenic switch. miR-210 was overexpressed in serum exosomes of untreated non-small cell LC (NSCLC) patients. We concluded that the promotion effect of exosomal miR-210 on proangiogenic switch of CAFs may be explained by the modulation of JAK2/STAT3 signaling pathway and TET2 in recipient fibroblasts.
Collapse
|
12
|
Cai J, Wu J, Wang J, Li Y, Hu X, Luo S, Xiang D. Extracellular vesicles derived from different sources of mesenchymal stem cells: therapeutic effects and translational potential. Cell Biosci 2020; 10:69. [PMID: 32483483 PMCID: PMC7245623 DOI: 10.1186/s13578-020-00427-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) were known to have excellent properties in cell therapy. However, the risk of immune rejection associated with cell transplant therapy hampers its use. Extracellular vesicles secreted by MSCs derived from different sources that contain therapeutic molecules such as RNA and proteins, which is a novel strategy for cell-free therapy. Recently, researches show EVs from MSCs (MSC-EVs) of different sources have special functions and effects on different diseases. Here, we collected these researches and compared them to each other. In addition, their potential and possible application in clinical treatment are described.
Collapse
Affiliation(s)
- Jiaxin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Jiemin Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Yongjiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Shifu Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| |
Collapse
|
13
|
Tsiapalis D, O’Driscoll L. Mesenchymal Stem Cell Derived Extracellular Vesicles for Tissue Engineering and Regenerative Medicine Applications. Cells 2020; 9:E991. [PMID: 32316248 PMCID: PMC7226943 DOI: 10.3390/cells9040991] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are being extensively investigated for their potential in tissue engineering and regenerative medicine. However, recent evidence suggests that the beneficial effects of MSCs may be manifest by their released extracellular vesicles (EVs); typically not requiring the administration of MSCs. This evidence, predominantly from pre-clinical in vitro and in vivo studies, suggests that MSC-EVs may exhibit substantial therapeutic properties in many pathophysiological conditions, potentially restoring an extensive range of damaged or diseased tissues and organs. These benefits of MSC EVs are apparently found, regardless of the anatomical or body fluid origin of the MSCs (and include e.g., bone marrow, adipose tissue, umbilical cord, urine, etc). Furthermore, early indications suggest that the favourable effects of MSC-EVs could be further enhanced by modifying the way in which the donor MSCs are cultured (for example, in hypoxic compared to normoxic conditions, in 3D compared to 2D culture formats) and/or if the EVs are subsequently bio-engineered (for example, loaded with specific cargo). So far, few human clinical trials of MSC-EVs have been conducted and questions remain unanswered on whether the heterogeneous population of EVs is beneficial or some specific sub-populations, how best we can culture and scale-up MSC-EV production and isolation for clinical utility, and in what format they should be administered. However, as reviewed here, there is now substantial evidence supporting the use of MSC-EVs in tissue engineering and regenerative medicine and further research to establish how best to exploit this approach for societal and economic benefit is warranted.
Collapse
Affiliation(s)
| | - Lorraine O’Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland;
| |
Collapse
|
14
|
Zhang X, Kuang X, Cao F, Chen R, Fang Z, Liu W, Shi P, Wang H, Shen Y, Huang Z. Effect of cadmium on mRNA mistranslation in Saccharomyces cerevisiae. J Basic Microbiol 2020; 60:372-379. [PMID: 31912517 DOI: 10.1002/jobm.201900495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
Although highly accurate molecular processes and various messenger RNA (mRNA) quality control and ribosome proofreading mechanisms are used by organisms to transcribe their genes and maintain the fidelity of genetic information, errors are inherent in all biological systems. Low-level translation errors caused by an imbalance of homologous and nonhomologous amino acids caused by stress conditions are particularly common. Paradoxically, advantageous phenotypic diversity can be generated by such errors in eukaryotes through unknown molecular processes. Here, we found that the significant cadmium-resistant phenotype was correlated with an increased mistranslation rate of the mRNA in Saccharomyces cerevisiae. This phenotypic change was also related to endogenous sulfur amino acid starvation. Compared with the control, the mistranslation rate caused by cadmium was significantly increased (p < .01). With the increase of cysteine contents in medium, the mistranslation rate of WT(BY4742a) decreased significantly (p < .01). This demonstrates that cadmium treatment and sulfur amino acid starvation both can induce translation errors. Although cadmium uptake is independent of the Sul1 transporter, cadmium-induced mRNA mistranslation is dependent on the sulfate uptake of the Sul1p transporter. Furthermore, cadmium-induced translation errors depend on methionine biosynthesis. Taken together, cadmium causes endogenous sulfur starvation, leading to an increase in the mRNA mistranslation, which contributes to the resistance of yeast cells to cadmium. We provide a new pathway mediating the toxicity of cadmium, and we propose that altering mRNA mistranslation may portray a different form of environmental adaptation.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Lab of Eco-textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xin Kuang
- Key Lab of Eco-textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Fangqi Cao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ranran Chen
- Key Lab of Eco-textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Zhijia Fang
- Key Lab of Eco-textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Handong Wang
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, The Innovative Academy of Seed Design, Northwest Institute of Plateau Biology, CAS, Xining, Qinghai Province, China
| | - Yuhu Shen
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, The Innovative Academy of Seed Design, Northwest Institute of Plateau Biology, CAS, Xining, Qinghai Province, China
| | - Zhiwei Huang
- Key Lab of Eco-textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China.,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, The Innovative Academy of Seed Design, Northwest Institute of Plateau Biology, CAS, Xining, Qinghai Province, China
| |
Collapse
|