1
|
Deng Y, Kim Y, Bratcher A, Jones JM, Simuzingili M, Gundlapalli AV, Hagen MB, Iachan R, Clarke KEN. Ratio of Infections to COVID-19 Cases and Hospitalizations in the United States based on SARS-CoV-2 Seroprevalence Data, September 2021-February 2022. Open Forum Infect Dis 2025; 12:ofae719. [PMID: 39822271 PMCID: PMC11736415 DOI: 10.1093/ofid/ofae719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Indexed: 01/19/2025] Open
Abstract
Background Understanding the risk of hospitalization from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can guide effective public health interventions and severity assessments. This study calculated infection-hospitalization ratios (IHRs) and infection-case ratios (ICRs) to understand the relationship between SARS-CoV-2 infections, cases, and hospitalizations among different age groups during periods of Delta and Omicron variant predominance. Methods After calculating antinucleocapsid SARS-CoV-2 antibody seroprevalence using residual commercial laboratory serum specimens, 2 ratios were computed: (1) IHRs using coronavirus disease 2019 hospitalization data and (2) ICRs using Centers for Disease Control and Prevention surveillance data. Ratios were calculated across age groups (0-17, 18-49, 50-69, and ≥70 years) for 2 time periods (September-December 2021 [Delta] and December 2021-February 2022 [Omicron]). Results Pediatric IHRs increased from 76.7 during Delta to 258.4 during Omicron. Adult IHRs ranged from 3.0 (≥70 years) to 21.6 (18-49 years) during Delta and from 10.0 (≥70 years) to 119.1 (18-49 years) during Omicron. The pediatric ICR was lower during the Delta period (2.7) compared with the Omicron period (3.7). Adult ICRs (Delta: 1.1 [18-49 years] to 2.1 [70+ years]; Omicron: 2.2 [>70+ years] to 2.9 [50-69 years]) were lower than pediatric ICRs during both time periods. Conclusions All age groups exhibited a lower proportion of infections associated with hospitalization in the Omicron period than the Delta period; the proportion of infections associated with hospitalization increased with each older age group. A lower proportion of SARS-CoV-2 infections were associated with reported cases in the Omicron period than in the Delta period among all age groups.
Collapse
Affiliation(s)
| | - Yun Kim
- ICF Macro, inc., Reston, Virginia, USA
| | - Anna Bratcher
- Epidemic Intelligence Service, CDC, Atlanta, Georgia, USA
| | - Jefferson M Jones
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Muloongo Simuzingili
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adi V Gundlapalli
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melissa Briggs Hagen
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Kristie E N Clarke
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Kakugawa T, Mimura Y, Mimura-Kimura Y, Doi K, Ohteru Y, Kakugawa H, Oishi K, Kakugawa M, Hirano T, Matsunaga K. Kinetics of pro- and anti-inflammatory spike-specific cellular immune responses in long-term care facility residents after COVID-19 mRNA primary and booster vaccination: a prospective longitudinal study in Japan. Immun Ageing 2024; 21:41. [PMID: 38909235 PMCID: PMC11193299 DOI: 10.1186/s12979-024-00444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND The magnitude and durability of cell-mediated immunity in older and severely frail individuals following coronavirus disease 2019 (COVID-19) vaccination remain unclear. A controlled immune response could be the key to preventing severe COVID-19; however, it is uncertain whether vaccination induces an anti-inflammatory cellular immune response. To address these issues, a 48-week-long prospective longitudinal study was conducted. A total of 106 infection-naive participants (57 long-term care facility [LTCF] residents [median age; 89.0 years], 28 outpatients [median age; 72.0 years], and 21 healthcare workers [median age; 51.0 years]) provided peripheral blood mononuclear cell (PBMC) samples for the assessment of spike-specific PBMC responses before primary vaccination, 24 weeks after primary vaccination, and three months after booster vaccination. Cellular immune responses to severe acute respiratory syndrome coronavirus 2 spike protein were examined by measuring interferon (IFN)-γ, tumor necrosis factor (TNF), interleukin (IL)-2, IL-4, IL-6, and IL-10 levels secreted from the spike protein peptide-stimulated PBMCs of participants. RESULTS LTCF residents exhibited significantly lower IFN-γ, TNF, IL-2, and IL-6 levels than healthcare workers after the primary vaccination. Booster vaccination increased IL-2 and IL-6 levels in LTCF residents comparable to those in healthcare workers, whereas IFN-γ and TNF levels in LTCF residents remained significantly lower than those in healthcare workers. IL-10 levels were not significantly different from the initial values after primary vaccination but increased significantly after booster vaccination in all subgroups. Multivariate analysis showed that age was negatively associated with IFN-γ, TNF, IL-2, and IL-6 levels but not with IL-10 levels. The levels of pro-inflammatory cytokines, including IFN-γ, TNF, IL-2, and IL-6, were positively correlated with humoral immune responses, whereas IL-10 levels were not. CONCLUSIONS Older and severely frail individuals may exhibit diminished spike-specific PBMC responses following COVID-19 vaccination compared to the general population. A single booster vaccination may not adequately enhance cell-mediated immunity in older and severely frail individuals to a level comparable to that in the general population. Furthermore, booster vaccination may induce not only a pro-inflammatory cellular immune response but also an anti-inflammatory cellular immune response, potentially mitigating detrimental hyperinflammation.
Collapse
Affiliation(s)
- Tomoyuki Kakugawa
- Department of Pulmonology and Gerontology, Graduate School of Medicine, Yamaguchi University, Ube, Japan.
- Medical Corporation WADOKAI, Hofu Rehabilitation Hospital, Hofu, Japan.
- Department of Respiratory Medicine, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan.
| | - Yusuke Mimura
- The Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Yuka Mimura-Kimura
- The Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Keiko Doi
- Department of Pulmonology and Gerontology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yuichi Ohteru
- Medical Corporation WADOKAI, Hofu Rehabilitation Hospital, Hofu, Japan
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hiroyuki Kakugawa
- Medical Corporation WADOKAI, Hofu Rehabilitation Hospital, Hofu, Japan
| | - Keiji Oishi
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Masahiro Kakugawa
- Medical Corporation WADOKAI, Hofu Rehabilitation Hospital, Hofu, Japan
| | - Tsunahiko Hirano
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| |
Collapse
|
3
|
Skowronski DM, Zhan Y, Kaweski SE, Sabaiduc S, Khalid A, Olsha R, Carazo S, Dickinson JA, Mather RG, Charest H, Jassem AN, Levade I, Hasso M, Zelyas N, Gao R, Bastien N. 2023/24 mid-season influenza and Omicron XBB.1.5 vaccine effectiveness estimates from the Canadian Sentinel Practitioner Surveillance Network (SPSN). Euro Surveill 2024; 29:2400076. [PMID: 38362622 PMCID: PMC10986657 DOI: 10.2807/1560-7917.es.2024.29.7.2400076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024] Open
Abstract
The Canadian Sentinel Practitioner Surveillance Network reports mid-season 2023/24 influenza vaccine effectiveness (VE) of 63% (95% CI: 51-72) against influenza A(H1N1)pdm09, lower for clade 5a.2a.1 (56%; 95% CI: 33-71) than clade 5a.2a (67%; 95% CI: 48-80), and lowest against influenza A(H3N2) (40%; 95% CI: 5-61). The Omicron XBB.1.5 vaccine protected comparably well, with VE of 47% (95% CI: 21-65) against medically attended COVID-19, higher among people reporting a prior confirmed SARS-CoV-2 infection at 67% (95% CI: 28-85).
Collapse
Affiliation(s)
- Danuta M Skowronski
- British Columbia Centre for Disease Control, Vancouver, Canada
- University of British Columbia, Vancouver, Canada
| | - Yuping Zhan
- British Columbia Centre for Disease Control, Vancouver, Canada
| | | | - Suzana Sabaiduc
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Ayisha Khalid
- British Columbia Centre for Disease Control, Vancouver, Canada
| | | | - Sara Carazo
- Institut National de Santé Publique du Québec, Québec, Canada
| | | | - Richard G Mather
- Public Health Ontario, Toronto, Canada
- Queen's University, Kingston, Canada
| | - Hugues Charest
- Institut National de Santé Publique du Québec, Québec, Canada
| | - Agatha N Jassem
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Inès Levade
- Institut National de Santé Publique du Québec, Québec, Canada
| | | | - Nathan Zelyas
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Canada
| | - Ruimin Gao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Nathalie Bastien
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| |
Collapse
|