1
|
Reuveni I, Dan R, Canetti L, Bick AS, Segman R, Azoulay M, Kalla C, Bonne O, Goelman G. Aberrant Intrinsic Brain Network Functional Connectivity During a Face-Matching Task in Women Diagnosed With Premenstrual Dysphoric Disorder. Biol Psychiatry 2023; 94:492-500. [PMID: 37031779 DOI: 10.1016/j.biopsych.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/11/2023] [Accepted: 04/01/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Premenstrual dysphoric disorder (PMDD) is characterized by affective, cognitive, and physical symptoms, suggesting alterations at the brain network level. Women with PMDD demonstrate aberrant discrimination of facial emotions during the luteal phase of the menstrual cycle and altered reactivity to emotional stimuli. However, previous studies assessing emotional task-related brain reactivity using region-of-interest or whole-brain analysis have reported conflicting findings. Therefore, we utilized both region-of-interest task-reactivity and seed-voxel functional connectivity (FC) approaches to test for differences in the default mode network, salience network, and central executive network between women with PMDD and control participants during an emotional-processing task that yields an optimal setup for investigating brain network changes in PMDD. METHODS Twenty-four women with PMDD and 27 control participants were classified according to the Daily Record of Severity of Problems. Participants underwent functional magnetic resonance imaging scans while completing the emotional face-matching task during the midfollicular and late-luteal phases of their menstrual cycle. RESULTS No significant between-group differences in brain reactivity were found using region-of-interest analysis. In the FC analysis, a main effect of diagnosis was found showing decreased default mode network connectivity, increased salience network connectivity, and decreased central executive network connectivity in women with PMDD compared with control participants. A significant interaction between menstrual cycle phase and diagnosis was found in the central executive network for right posterior parietal cortex and left inferior lateral occipital cortex connectivity. A post hoc analysis revealed stronger FC during the midfollicular than the late-luteal phase of PMDD. CONCLUSIONS Aberrant FC in the 3 brain networks involved in PMDD may indicate vulnerability to experience affective and cognitive symptoms of the disorder.
Collapse
Affiliation(s)
- Inbal Reuveni
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Rotem Dan
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Laura Canetti
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Atira S Bick
- Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Segman
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Moria Azoulay
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carmel Kalla
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Omer Bonne
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Gadi Goelman
- Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
2
|
Winter A, Thiel K, Meinert S, Lemke H, Waltemate L, Breuer F, Culemann R, Pfarr JK, Stein F, Brosch K, Meller T, Ringwald KG, Thomas-Odenthal F, Jansen A, Nenadić I, Krug A, Repple J, Opel N, Dohm K, Leehr EJ, Grotegerd D, Kugel H, Hahn T, Kircher T, Dannlowski U. Familial risk for major depression: differential white matter alterations in healthy and depressed participants. Psychol Med 2023; 53:4933-4942. [PMID: 36052484 PMCID: PMC10476061 DOI: 10.1017/s003329172200188x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/13/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) has been associated with alterations in brain white matter (WM) microstructure. However, diffusion tensor imaging studies in biological relatives have presented contradicting results on WM alterations and their potential as biomarkers for vulnerability or resilience. To shed more light on associations between WM microstructure and resilience to familial risk, analyses including both healthy and depressed relatives of MDD patients are needed. METHODS In a 2 (MDD v. healthy controls, HC) × 2 (familial risk yes v. no) design, we investigated fractional anisotropy (FA) via tract-based spatial statistics in a large well-characterised adult sample (N = 528), with additional controls for childhood maltreatment, a potentially confounding proxy for environmental risk. RESULTS Analyses revealed a significant main effect of diagnosis on FA in the forceps minor and the left superior longitudinal fasciculus (ptfce-FWE = 0.009). Furthermore, a significant interaction of diagnosis with familial risk emerged (ptfce-FWE = 0.036) Post-hoc pairwise comparisons showed significantly higher FA, mainly in the forceps minor and right inferior fronto-occipital fasciculus, in HC with as compared to HC without familial risk (ptfce-FWE < 0.001), whereas familial risk played no role in MDD patients (ptfce-FWE = 0.797). Adding childhood maltreatment as a covariate, the interaction effect remained stable. CONCLUSIONS We found widespread increased FA in HC with familial risk for MDD as compared to a HC low-risk sample. The significant effect of risk on FA was present only in HC, but not in the MDD sample. These alterations might reflect compensatory neural mechanisms in healthy adults at risk for MDD potentially associated with resilience.
Collapse
Affiliation(s)
- Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute of Translational Neuroscience, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Regina Culemann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Kai Gustav Ringwald
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J. Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- University Clinic for Radiology, University of Muenster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Sacu S, Wackerhagen C, Erk S, Romanczuk-Seiferth N, Schwarz K, Schweiger JI, Tost H, Meyer-Lindenberg A, Heinz A, Razi A, Walter H. Effective connectivity during face processing in major depression - distinguishing markers of pathology, risk, and resilience. Psychol Med 2023; 53:4139-4151. [PMID: 35393001 PMCID: PMC10317809 DOI: 10.1017/s0033291722000824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 02/20/2022] [Accepted: 03/09/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Aberrant brain connectivity during emotional processing, especially within the fronto-limbic pathway, is one of the hallmarks of major depressive disorder (MDD). However, the methodological heterogeneity of previous studies made it difficult to determine the functional and etiological implications of specific alterations in brain connectivity. We previously reported alterations in psychophysiological interaction measures during emotional face processing, distinguishing depressive pathology from at-risk/resilient and healthy states. Here, we extended these findings by effective connectivity analyses in the same sample to establish a refined neural model of emotion processing in depression. METHODS Thirty-seven patients with MDD, 45 first-degree relatives of patients with MDD and 97 healthy controls performed a face-matching task during functional magnetic resonance imaging. We used dynamic causal modeling to estimate task-dependent effective connectivity at the subject level. Parametric empirical Bayes was performed to quantify group differences in effective connectivity. RESULTS MDD patients showed decreased effective connectivity from the left amygdala and left lateral prefrontal cortex to the fusiform gyrus compared to relatives and controls, whereas patients and relatives showed decreased connectivity from the right orbitofrontal cortex to the left insula and from the left orbitofrontal cortex to the right fusiform gyrus compared to controls. Relatives showed increased connectivity from the anterior cingulate cortex to the left dorsolateral prefrontal cortex compared to patients and controls. CONCLUSIONS Our results suggest that the depressive state alters top-down control of higher visual regions during face processing. Alterations in connectivity within the cognitive control network present potential risk or resilience mechanisms.
Collapse
Affiliation(s)
- Seda Sacu
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Wackerhagen
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Erk
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nina Romanczuk-Seiferth
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kristina Schwarz
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Janina I. Schweiger
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Heike Tost
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Heinz
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Adeel Razi
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
- Turner Institute for Brain and Mental Health & Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Henrik Walter
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
Fulton SL, Bendl J, Gameiro-Ros I, Fullard JF, Al-Kachak A, Lepack AE, Stewart AF, Singh S, Poller WC, Bastle RM, Hauberg ME, Fakira AK, Chen M, Cuttoli RDD, Cathomas F, Ramakrishnan A, Gleason K, Shen L, Tamminga CA, Milosevic A, Russo SJ, Swirski F, Blitzer RD, Slesinger PA, Roussos P, Maze I. ZBTB7A regulates MDD-specific chromatin signatures and astrocyte-mediated stress vulnerability in orbitofrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539425. [PMID: 37205394 PMCID: PMC10187272 DOI: 10.1101/2023.05.04.539425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hyperexcitability in the orbitofrontal cortex (OFC) is a key clinical feature of anhedonic domains of Major Depressive Disorder (MDD). However, the cellular and molecular substrates underlying this dysfunction remain unknown. Here, cell-population-specific chromatin accessibility profiling in human OFC unexpectedly mapped genetic risk for MDD exclusively to non-neuronal cells, and transcriptomic analyses revealed significant glial dysregulation in this region. Characterization of MDD-specific cis-regulatory elements identified ZBTB7A - a transcriptional regulator of astrocyte reactivity - as an important mediator of MDD-specific chromatin accessibility and gene expression. Genetic manipulations in mouse OFC demonstrated that astrocytic Zbtb7a is both necessary and sufficient to promote behavioral deficits, cell-type-specific transcriptional and chromatin profiles, and OFC neuronal hyperexcitability induced by chronic stress - a major risk factor for MDD. These data thus highlight a critical role for OFC astrocytes in stress vulnerability and pinpoint ZBTB7A as a key dysregulated factor in MDD that mediates maladaptive astrocytic functions driving OFC hyperexcitability.
Collapse
Affiliation(s)
- Sasha L. Fulton
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaroslav Bendl
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Isabel Gameiro-Ros
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F. Fullard
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Amni Al-Kachak
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley E. Lepack
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew F. Stewart
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sumnima Singh
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Wolfram C. Poller
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Ryan M. Bastle
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mads E. Hauberg
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Amanda K. Fakira
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min Chen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Durand-de Cuttoli
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flurin Cathomas
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly Gleason
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Li Shen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ana Milosevic
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York, USA
| | - Scott J. Russo
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip Swirski
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Robert D. Blitzer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Paul A. Slesinger
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, USA
| | - Ian Maze
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Individual- and Connectivity-Based Real-Time fMRI Neurofeedback to Modulate Emotion-Related Brain Responses in Patients with Depression: A Pilot Study. Brain Sci 2022; 12:brainsci12121714. [PMID: 36552173 PMCID: PMC9775232 DOI: 10.3390/brainsci12121714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Individual real-time functional magnetic resonance imaging neurofeedback (rtfMRI NF) might be a promising adjuvant in treating depressive symptoms. Further studies showed functional variations and connectivity-related changes in the dorsolateral prefrontal cortex (dlPFC) and the insular cortex. OBJECTIVES The aim of this pilot study was to investigate whether individualized connectivity-based rtfMRI NF training can improve symptoms in depressed patients as an adjunct to a psychotherapeutic programme. The novel strategy chosen for this was to increase connectivity between individualized regions of interest, namely the insula and the dlPFC. METHODS Sixteen patients diagnosed with major depressive disorder (MDD, ICD-10) and 19 matched healthy controls (HC) participated in a rtfMRI NF training consisting of two sessions with three runs each, within an interval of one week. RtfMRI NF was applied during a sequence of negative emotional pictures to modulate the connectivity between the dlPFC and the insula. The MDD REAL group was divided into a Responder and a Non-Responder group. Patients with an increased connectivity during the second NF session or during both the first and the second NF session were identified as "MDD REAL Responder" (N = 6). Patients that did not show any increase in connectivity and/or a decreased connectivity were identified as "MDD REAL Non-Responder" (N = 7). RESULTS Before the rtfMRI sessions, patients with MDD showed higher neural activation levels in ventromedial PFC and the insula than HC; by contrast, HC revealed increased hemodynamic activity in visual processing areas (primary visual cortex and visual association cortex) compared to patients with MDD. The comparison of hemodynamic responses during the first compared to during the last NF session demonstrated significantly increased BOLD-activation in the medial orbitofrontal cortex (mOFC) in patients and HC, and additionally in the lateral OFC in patients with MDD. These findings were particularly due to the MDD Responder group, as the MDD Non-Responder group showed no increase in this region during the last NF run. There was a decrease of neural activation in emotional processing brain regions in both groups in the last NF run compared to the first: HC showed differences in the insula, parahippocampal gyrus, basal ganglia, and cingulate gyrus. Patients with MDD demonstrated deceased responses in the parahippocampal gyrus. There was no significant reduction of BDI scores after NF training in patients. CONCLUSIONS Increased neural activation in the insula and vmPFC in MDD suggests an increased emotional reaction in patients with MDD. The activation of the mOFC could be associated with improved control-strategies and association-learning processes. The increased lOFC activation could indicate a stronger sensitivity to failed NF attempts in MDD. A stronger involvement of visual processing areas in HC may indicate better adaptation to negative emotional stimuli after repeated presentation. Overall, the rtfMRI NF had an impact on neurobiological mechanisms, but not on psychometric measures in patients with MDD.
Collapse
|
6
|
Structural and Functional Brain Alterations in Populations with Familial Risk for Depression: A Narrative Review. Harv Rev Psychiatry 2022; 30:327-349. [PMID: 36534836 DOI: 10.1097/hrp.0000000000000350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
LEARNING OBJECTIVES After completing this activity, practitioners will be better able to:• Discuss the association between brain alterations and vulnerability or resilience to MDD in people with familial risk• Define how structural and functional brain alterations associated with vulnerability or resilience could lead to a better understanding of the pathophysiology of MDD. AIM Familial history is associated with an increased risk for major depressive disorder (MDD). Despite the increased risk, some members of the familial high-risk population remain healthy, that is, resilient. Defining the structural and functional brain alterations associated with vulnerability or resilience could lead to a better understanding of the pathophysiology of MDD. This study aimed to review the current literature and discuss the association between brain alterations and vulnerability or resilience to MDD in people with familial risk. METHODS A literature search on MRI studies investigating structural and functional alterations in populations at familial risk for MDD was performed using the PubMed and SCOPUS databases. The search was conducted through June 13, 2022. RESULTS We reviewed and summarized the data of 72 articles (25 structural MRI, 35 functional MRI, 10 resting-state fMRI, one structural/functional MRI combined, and one structural/functional/resting-state fMRI combined). These findings suggested that resilience in high-risk individuals is related to the amygdala structure, frontal lobe activity, and functional connectivity between the amygdala and multiple frontal regions. CONCLUSION Resilient and vulnerable individuals exhibit structural and functional differences in multiple frontal and limbic regions. However, further systematic longitudinal research incorporating environmental factors is required to validate the current findings.
Collapse
|
7
|
Transcranial Photobiomodulation Therapy for Sexual Dysfunction Associated with Depression or Induced by Antidepressant Medications. PHOTONICS 2022. [DOI: 10.3390/photonics9050330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sexual dysfunction (SD) is frequently encountered in patients suffering from depression. There is a bidirectional relationship between various types of SD and depression, so the presence or treatment of one condition may exacerbate or improve the other condition. The most frequent sexual problem in untreated depressed patients is declining sexual desire, while in treated depressed patients it is difficulties with erection/ejaculation and with orgasm. Numerous classes of neuropsychiatric medications, commonly used in depressed patients—such as antidepressant, antipsychotic, alpha sympathetic, and opioid drugs—may cause SD. Photobiomodulation (PBM) therapy, also called low-level light/laser therapy, is a novel neuromodulation technique for neuropsychiatric conditions, such as depression. Transcranial PBM (tPBM) targets the cellular metabolism—through the mitochondrial respiratory enzyme, cytochrome c oxidase—and has numerous cellular and physiological beneficial effects on the central nervous system. This paper represents a comprehensive review of the application of tPBM to SD, coexisting with depression or induced by antidepressant medications.
Collapse
|
8
|
Zhang ZQ, Yang MH, Guo ZP, Liao D, Sörös P, Li M, Walter M, Wang L, Liu CH. Increased prefrontal cortex connectivity associated with depression vulnerability and relapse. J Affect Disord 2022; 304:133-141. [PMID: 35219743 DOI: 10.1016/j.jad.2022.02.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/28/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a highly prevalent mood disorder, characterized by depressed mood, reduced capabilities to concentrate, impaired cognition, as well as a high risk of relapse. Unaffected siblings who have high risks for MDD development and yet without clinical symptoms may be helpful for understanding the neural mechanisms of MDD traits. METHODS We investigated both regional fluctuation and inter-regional synchronization in 31 fully remitted MDD patients, 29 unaffected siblings and 43 age, gender, and educational level matched helathy controls (HCs) using resting-state functional magnetic resonance imaging (rs-fMRI). The 17-item HAMD and neurocognitive scales were performed. Fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) strength were investigated. RESULTS Compared with healthy control group, patients with remitted MDD and unaffected siblings showed increased fALFF in the left dorsomedial prefrontal cortex (dmPFC) and increased FC between the left dmPFC and the right ventromedial prefrontal cortex (vmPFC). In addition, a negative correlation was observed between the fALFF value in the left dmPFC and the speed of Trail Making Test in the remitted MDD patients. Higher vmPFC-dmPFC FC was positively correlated with Wisconsin Card Sorting Test (WCST) total correct, and negatively correlated with WCST random errors. CONCLUSIONS In the absence of clinical symptoms, individuals with remitted MDD and unaffected siblings showed increased fALFF in left dmPFC as well as the vmPFC-dmPFC connectivity. These results suggest a specific trait abnormality in the default mode network associated with vulnerability to MDD, which may have implications for developing effective therapies using this network as a target.
Collapse
Affiliation(s)
- Zhu-Qing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Ming-Hao Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Dan Liao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Peter Sörös
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Department of Psychiatry and Psychotherapy, University Tuebingen, Tuebingen 72074, Germany; Department of Psychiatry and Psychotherapy, University Hospital Jena, Philosophenweg 3, 07743 Jena, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Department of Psychiatry and Psychotherapy, University Tuebingen, Tuebingen 72074, Germany; Leibniz Institute for Neurobiology, Magdeburg 39118, Germany; Department of Psychiatry and Psychotherapy, University Hospital Jena, Philosophenweg 3, 07743 Jena, Germany
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China.
| |
Collapse
|
9
|
Investigating the association between depression and cerebral haemodynamics-A systematic review and meta-analysis. J Affect Disord 2022; 299:144-158. [PMID: 34800572 DOI: 10.1016/j.jad.2021.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Vascular mechanisms may play a role in depression. The aim of this review is to summarise the evidence on alterations in cerebral haemodynamics in depression. METHODS MEDLINE (1946- present), Embase (1947-present), Web of Science (1970-present), PsycINFO (1984-present), CINAHL (1976-present) and CENTRAL were searched using a predefined search strategy. A meta-analysis was conducted in four groups: 1) global cerebral blood flow (CBF) in ml/min/100 g, 2) CBF velocity (CBFv) in cm/s (maximum flow of left middle cerebral artery, 3) combined CBF and CBFv, 4) Ratio of uptake of Tc 99 m HMPAO (region of interest compared to whole brain). Data are presented as mean difference or standardised mean difference and 95% confidence interval (95% CI). A narrative synthesis of the remaining studies was performed. RESULTS 87 studies were included. CBF was significantly reduced in depressed patients compared to HC [15 studies, 538 patients, 416 HC, MD: -2.24 (95% CI -4.12, -0.36), p = 0.02, I2 = 64%]. There were no statistically significant differences in other parameters. The narrative synthesis revealed variable changes in CBF in depressed patients, particularly affecting the anterior cingulate and prefrontal cortices. LIMITATIONS There were various sources of heterogeneity including the severity of depression, use of antidepressant medication, imaging modality used and reporting of outcomes. All of these factors made direct comparisons between studies difficult. CONCLUSIONS The reduction in CBF in depressed patients compared to HCs may indicate a role for assessment and CBF altering interventions in high-risk groups. However, results were inconsistent across studies, warranting further work to investigate specific subgroups.
Collapse
|
10
|
Pizzagalli DA, Roberts AC. Prefrontal cortex and depression. Neuropsychopharmacology 2022; 47:225-246. [PMID: 34341498 PMCID: PMC8617037 DOI: 10.1038/s41386-021-01101-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
The prefrontal cortex (PFC) has emerged as one of the regions most consistently impaired in major depressive disorder (MDD). Although functional and structural PFC abnormalities have been reported in both individuals with current MDD as well as those at increased vulnerability to MDD, this information has not translated into better treatment and prevention strategies. Here, we argue that dissecting depressive phenotypes into biologically more tractable dimensions - negative processing biases, anhedonia, despair-like behavior (learned helplessness) - affords unique opportunities for integrating clinical findings with mechanistic evidence emerging from preclinical models relevant to depression, and thereby promises to improve our understanding of MDD. To this end, we review and integrate clinical and preclinical literature pertinent to these core phenotypes, while emphasizing a systems-level approach, treatment effects, and whether specific PFC abnormalities are causes or consequences of MDD. In addition, we discuss several key issues linked to cross-species translation, including functional brain homology across species, the importance of dissecting neural pathways underlying specific functional domains that can be fruitfully probed across species, and the experimental approaches that best ensure translatability. Future directions and clinical implications of this burgeoning literature are discussed.
Collapse
Affiliation(s)
- Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School & McLean Hospital, Belmont, MA, USA.
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Chen Y, Zhou F, Lu W, Zeng W, Wang X, Xie J. Identification of potential Mitogen-Activated Protein Kinase-related key genes and regulation networks in molecular subtypes of major depressive disorder. Front Psychiatry 2022; 13:1004945. [PMID: 36339846 PMCID: PMC9634261 DOI: 10.3389/fpsyt.2022.1004945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a heterogeneous and prevalent mental disorder associated with increased morbidity, disability, and mortality. However, its underlying mechanisms remain unclear. MATERIALS AND METHODS All analyses were conducted based on integrated samples from the GEO database. Differential expression analysis, unsupervised consensus clustering analysis, enrichment analysis, and regulation network analysis were performed. RESULTS Mitogen-activated protein kinase (MAPK) signaling pathway was identified as an associated pathway in the development of MDD. From transcriptional signatures, we classified the MDD patients into two subgroups using unsupervised clustering and revealed 13 differential expression genes between subgroups, which indicates the probably relative complications. We further illustrated potential molecular mechanisms of MDD, including dysregulation in the neurotrophin signaling pathway, peptidyl-serine phosphorylation, and endocrine resistance. Moreover, we identified hub genes, including MAPK8, TP53, and HRAS in the maintenance of MDD. Furthermore, we demonstrated that the axis of miRNAs-TFs-HRAS/TP53/MAPK8 may play a critical role in MDD. CONCLUSION Taken together, we demonstrated an overview of MAPK-related key genes in MDD, determined two molecular subtypes, and identified the key genes and core network that may contribute to the procession of MDD.
Collapse
Affiliation(s)
- Youfang Chen
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, China
| | - Feng Zhou
- Department of Neurology, First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Weicheng Lu
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xudong Wang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Li L, Li R, Shen F, Wang X, Zou T, Deng C, Wang C, Li J, Wang H, Huang X, Lu F, He Z, Chen H. Negative bias effects during audiovisual emotional processing in major depression disorder. Hum Brain Mapp 2021; 43:1449-1462. [PMID: 34888973 PMCID: PMC8837587 DOI: 10.1002/hbm.25735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
Aberrant affective neural processing and negative emotional bias are trait‐marks of major depression disorders (MDDs). However, most research on biased emotional perception in depression has only focused on unimodal experimental stimuli, the neural basis of potentially biased emotional processing of multimodal inputs remains unclear. Here, we addressed this issue by implementing an audiovisual emotional task during functional MRI scanning sessions with 37 patients with MDD and 37 gender‐, age‐ and education‐matched healthy controls. Participants were asked to distinguish laughing and crying sounds while being exposed to faces with different emotional valences as background. We combined general linear model and psychophysiological interaction analyses to identify abnormal local functional activity and integrative processes during audiovisual emotional processing in MDD patients. At the local neural level, MDD patients showed increased bias activity in the ventromedial prefrontal cortex (vmPFC) while listening to negative auditory stimuli and concurrently processing visual facial expressions, along with decreased dorsolateral prefrontal cortex (dlPFC) activity in both the positive and negative visual facial conditions. At the network level, MDD exhibited significantly decreased connectivity in areas involved in automatic emotional processes and voluntary control systems during perception of negative stimuli, including the vmPFC, dlPFC, insula, as well as the subcortical regions of posterior cingulate cortex and striatum. These findings support a multimodal emotion dysregulation hypothesis for MDD by demonstrating that negative bias effects may be facilitated by the excessive ventral bottom‐up negative emotional influences along with incapability in dorsal prefrontal top‐down control system.
Collapse
Affiliation(s)
- Liyuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Fei Shen
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Chijun Deng
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Chong Wang
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Jiyi Li
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Hongyu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xinju Huang
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China.,Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
13
|
Yomogida Y, Ota M, Matsuo J, Ishida I, Hidese S, Teraishi T, Sato N, Matsuda H, Hattori K, Kunugi H. Neuroanatomical basis of harm avoidance personality traits in major depressive disorder. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Chu Z, Han W, Liu P, Liu F, Lei G, Deng L, Yang L, Dang Y. Electrolytic lesions of the bilateral ventrolateral orbital cortex not only directly reduce depression-like behavior but also decreased desperate behavior induced by chronic unpredicted mild stress in rats. BMC Neurosci 2021; 22:69. [PMID: 34814852 PMCID: PMC8611979 DOI: 10.1186/s12868-021-00677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Previous studies have revealed that ventrolateral orbital cortex (VLO) may play an important role in the regulation of emotional behavior. However, it is not known what effect VLO damage will have on emotion regulation. RESULTS Data showed that damage of VLO increased the anxiety-like behavior in open field test and elevated plus maze, and decreased the depressive behavior in forced swimming test and learned helplessness test. Besides, the impulsive aggressive behaviors were also increased while the attack latency decreased after VLO lesion. What's more, damage of VLO decreased depressive behaviors induced by chronic unpredicted mild stress in rats. CONCLUSIONS These results suggest that the integrity of VLO plays an important role in emotional regulation, and the damage of VLO may inhibit the development of depression-like behavior.
Collapse
Affiliation(s)
- Zheng Chu
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Wei Han
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Peng Liu
- Department of Pharmacology and Toxicology, Institute of Basic Medicine Science, Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Fei Liu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Gang Lei
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lisha Deng
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Liu Yang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
- Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.
- Key Laboratory of Shaanxi Province for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
15
|
Lai CH. Task MRI-Based Functional Brain Network of Major Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:19-33. [PMID: 33834392 DOI: 10.1007/978-981-33-6044-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter will focus on task magnetic resonance imaging (MRI) to understand the biological mechanisms and pathophysiology of brain in major depressive disorder (MDD), which would have minor alterations in the brain function. Therefore, the functional study, such as task MRI functional connectivity, would play a crucial role to explore the brain function in MDD. Different kinds of tasks would determine the alterations in functional connectivity in task MRI studies of MDD. The emotion-related tasks are linked with alterations in anterior cingulate cortex, insula, and default mode network. The emotional memory task is linked with amygdala-hippocampus alterations. The reward-related task would be related to the reward circuit alterations, such as fronto-straital. The cognitive-related tasks would be associated with frontal-related functional connectivity alterations, such as the dorsolateral prefrontal cortex, anterior cingulate cortex, and other frontal regions. The visuo-sensory characteristics of tasks might be associated with the parieto-occipital alterations. The frontolimbic regions might be major components of task MRI-based functional connectivity in MDD. However, different scenarios and tasks would influence the representations of results.
Collapse
Affiliation(s)
- Chien-Han Lai
- Psychiatry & Neuroscience Clinic, Taoyuan, Taiwan. .,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
16
|
Tost H, Reichert M, Braun U, Reinhard I, Peters R, Lautenbach S, Hoell A, Schwarz E, Ebner-Priemer U, Zipf A, Meyer-Lindenberg A. Neural correlates of individual differences in affective benefit of real-life urban green space exposure. Nat Neurosci 2019; 22:1389-1393. [DOI: 10.1038/s41593-019-0451-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/18/2019] [Indexed: 11/09/2022]
|
17
|
Petrican R, Söderlund H, Kumar N, Daskalakis ZJ, Flint A, Levine B. Electroconvulsive therapy "corrects" the neural architecture of visuospatial memory: Implications for typical cognitive-affective functioning. Neuroimage Clin 2019; 23:101816. [PMID: 31003068 PMCID: PMC6468194 DOI: 10.1016/j.nicl.2019.101816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/04/2022]
Abstract
Although electroconvulsive therapy (ECT) is a widely used and effective treatment for refractory depression, the neural underpinnings of its therapeutic effects remain poorly understood. To address this issue, here, we focused on a core cognitive deficit associated with depression, which tends to be reliably ameliorated through ECT, specifically, the ability to learn visuospatial information. Thus, we pursued three goals. First, we tested whether ECT can "normalize" the functional brain organization patterns associated with visuospatial memory and whether such corrections would predict post-ECT improvements in learning visuospatial information. Second, we investigated whether, among healthy individuals, stronger expression of the neural pattern, susceptible to adjustments through ECT, would predict reduced incidence of depression-relevant cognition and affect. Third, we sought to quantify the heritability of the ECT-correctable neural profile. Thus, in a task fMRI study with a clinical and a healthy comparison sample, we characterized two functional connectome patterns: one that typifies trait depression (i.e., differentiates patients from healthy individuals) and another that is susceptible to "normalization" through ECT. Both before and after ECT, greater expression of the trait depression neural profile was associated with more frequent repetitive thinking about past personal events (affective persistence), a hallmark of depressogenic cognition. Complementarily, post-treatment, stronger expression of the ECT-corrected neural profile was linked to improvements in visuospatial learning, a mental ability which is markedly impaired in depression. Subsequently, using data from the Human Connectome Project (HCP) (N = 333), we demonstrated that the functional brain organization of healthy participants with greater levels of subclinical depression and higher incidence of its associated cognitive deficits (affective persistence, impaired learning) shows greater similarity to the trait depression neural profile and reduced similarity to the ECT-correctable neural profile, as identified in the patient sample. These results tended to be specific to learning-relevant task contexts (working memory, perceptual relational processing). Genetic analyses based on HCP twin data (N = 128 pairs) suggested that, among healthy individuals, a functional brain organization similar to the one normalized by ECT in the patient sample is endogenous to cognitive contexts that require visuospatial processing that extends beyond the here-and-now. Broadly, the present findings supported our hypothesis that some of the therapeutic effects of ECT may be due to its correcting the expression of a naturally occurring pattern of functional brain organization that facilitates integration of internal and external cognition beyond the immediate present. Given their substantial susceptibility to both genetic and environmental effects, such mechanisms may be useful both for identifying at risk individuals and for monitoring progress of interventions targeting mood-related pathology.
Collapse
Affiliation(s)
| | | | - Namita Kumar
- Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Centre for Addiction and Mental Health, Clarke Division,Toronto, Ontario, Canada; University of Toronto, Canada
| | - Alastair Flint
- University Health Network, Toronto, Ontario, Canada; University of Toronto, Canada
| | - Brian Levine
- Rotman Research Institute, University of Toronto, Canada.
| |
Collapse
|
18
|
Opel N, Redlich R, Repple J, Kaehler C, Grotegerd D, Dohm K, Zaremba D, Goltermann J, Steinmann LAM, Krughöfer R, Leehr EJ, Böhnlein J, Förster K, Bürger C, Meinert S, Enneking V, Emden D, Leenings R, Winter N, Heindel W, Kugel H, Thalamuthu A, Hahn T, Arolt V, Baune BT, Dannlowski U. Childhood maltreatment moderates the influence of genetic load for obesity on reward related brain structure and function in major depression. Psychoneuroendocrinology 2019; 100:18-26. [PMID: 30268003 DOI: 10.1016/j.psyneuen.2018.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/16/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
Obesity is a clinically relevant and highly prevalent somatic comorbidity of major depression (MDD). Genetic predisposition and history of childhood trauma have both independently been demonstrated to act as risk factors for obesity and to be associated with alterations in reward related brain structure and function. We therefore aimed to investigate the influence of childhood maltreatment and genetic risk for obesity on structural and functional imaging correlates associated with reward processing in MDD. 161 MDD patients underwent structural and functional MRI during a frequently used card guessing paradigm. Main and interaction effects of a polygenic risk score for obesity (PRS) and childhood maltreatment experiences as assessed using the Childhood Trauma Questionnaire (CTQ) were investigated. We found that maltreatment experiences and polygenic risk for obesity significantly interacted on a) body mass index b) gray matter volume of the orbitofrontal cortex as well as on c) BOLD response in the right insula during reward processing. While polygenic risk for obesity was associated with elevated BMI as well as with decreased OFC gray matter and increased insular BOLD response in non-maltreated patients, these associations were absent in patients with a history of childhood trauma. No significant main effect of PRS or maltreatment on gray matter or BOLD response could be detected at the applied thresholds. The present study suggests that childhood maltreatment moderates the influence of genetic load for obesity on BMI as well as on altered brain structure and function in reward related brain circuits in MDD.
Collapse
Affiliation(s)
- Nils Opel
- Department of Psychiatry, University of Münster, Germany.
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Germany
| | | | - Claas Kaehler
- Department of Psychiatry, University of Münster, Germany; Department of Mathematics and Computer Science, University of Münster, Germany
| | | | - Katharina Dohm
- Department of Psychiatry, University of Münster, Germany
| | - Dario Zaremba
- Department of Psychiatry, University of Münster, Germany
| | | | | | | | | | | | | | | | | | | | - Daniel Emden
- Department of Psychiatry, University of Münster, Germany
| | | | - Nils Winter
- Department of Psychiatry, University of Münster, Germany
| | - Walter Heindel
- Institute of Clinical Radiology, University of Münster, Germany
| | - Harald Kugel
- Institute of Clinical Radiology, University of Münster, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Germany
| |
Collapse
|
19
|
Schulze L, Schulze A, Renneberg B, Schmahl C, Niedtfeld I. Neural Correlates of Affective Disturbances: A Comparative Meta-analysis of Negative Affect Processing in Borderline Personality Disorder, Major Depressive Disorder, and Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:220-232. [PMID: 30581154 DOI: 10.1016/j.bpsc.2018.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/17/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Borderline personality disorder (BPD), major depressive disorder (MDD), and posttraumatic stress disorder (PTSD) are prominent examples of mental disorders with affective disturbances. Notably, all three disorders share a generally heightened negative affect, which is presumably the result of shared neural abnormalities in affective processing. In this meta-analysis, we aimed to identify transdiagnostic and disorder-specific abnormalities during the processing of negative compared with neutral stimuli. METHODS We synthesized neuroimaging findings of affect processing in BPD, MDD, and PTSD and calculated combined coordinate- and image-based meta-analyses. The analysis comprised 70 distinct study samples with a total of 31 unthresholded statistical parametric maps. Twenty-four studies had a focus on BPD (431 individuals with BPD, 436 healthy control subjects [HCs]), 32 studies on MDD (789 individuals with current MDD, 870 HCs), and 14 studies on PTSD (247 individuals with PTSD, 245 HCs). RESULTS Findings showed limbic hyperactivations in BPD and PTSD compared with limbic activation of HCs. In contrast, patients with MDD showed blunted amygdala activation in comparison with that of HCs. Additionally, the calculation of overlapping brain abnormalities in BPD, MDD, and PTSD highlighted transdiagnostic hyperactivation of the right median cingulate gyri and hypoactivation of the right middle frontal gyrus and the right middle occipital gyrus. Finally, disorder-specific comparisons also illustrate unique abnormalities for each mental disorder. CONCLUSIONS The present results support shared and disorder-specific neural abnormalities in patients with affective disturbances.
Collapse
Affiliation(s)
- Lars Schulze
- Department of Clinical Psychology and Psychotherapy, Freie Universität Berlin, Berlin, Germany.
| | - Andreas Schulze
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| | - Babette Renneberg
- Department of Clinical Psychology and Psychotherapy, Freie Universität Berlin, Berlin, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| | - Inga Niedtfeld
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| |
Collapse
|
20
|
Trovão JN, Serefoglu EC. Neurobiology of male sexual dysfunctions in psychiatric disorders: the cases of depression, anxiety, mania and schizophrenia. Int J Impot Res 2018; 30:279-286. [PMID: 30228317 DOI: 10.1038/s41443-018-0077-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/16/2018] [Accepted: 09/03/2018] [Indexed: 01/09/2023]
Abstract
While the pathophysiology of several psychiatric disorders has become modestly elucidated in the last decade, comorbid sexual dysfunctions in such patients are frequently left apart from clinical and research interest. We aimed to address the malfunctioning neurocircuitry underlying sexual dysfunctions in depression, anxiety, schizophrenia and mania. We performed a comprehensive literature review, addressing any combination of the topics of "neurobiology"/"neural", "sexual"/"desire"/"arousal"/"orgasm"/"ejaculation" and "depression"/"anxiety"/"schizophrenia"/"mania"/"bipolar". Altered neurotransmitter levels or connectivity in patients are reported in sexual dysfunctions (either desire, arousal, orgasm and ejaculation) and main psychiatric disorders (depression, anxiety, mania and schizophrenia). Neuronal pathways responsible for the occurrence of sexual dysfunctions in psychiatric disorders can be figured out by overlap of their acknowledged pathophysiology. However, specific research in that group is scant, so future tailored studies are warranted to elucidate actual mechanisms.
Collapse
Affiliation(s)
- José Nuno Trovão
- Department of Psychiatry of Centro Hospitalar Vila Nova de Gaia/Espinho, Porto, Portugal
| | | |
Collapse
|