1
|
Inada A, Fujii NL, Inada O, Higaki Y, Furuichi Y, Nabeshima YI. Effects of 17β-Estradiol and Androgen on Glucose Metabolism in Skeletal Muscle. Endocrinology 2016; 157:4691-4705. [PMID: 27653033 DOI: 10.1210/en.2016-1261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes develops predominantly in males in experimental models, and extensive evidence suggests that 17β-estradiol (E2) modulates progression of diabetes in humans. We previously developed a severely diabetic transgenic (Tg) mouse model by β-cell-specific overexpression of inducible cAMP early repressor (ICER) and found that male ICER-Tg mice exhibit sustained severe hyperglycemia, but female ICER-Tg mice gradually became normoglycemic with aging. This implies that differences in circulating androgen and E2 levels might influence skeletal muscle glucose uptake and glycemic status. Here we examined whether a decrease of androgen or E2 excess can improve muscle glucose uptake in hyperglycemic male ICER-Tg mice and, conversely, whether a decrease of E2 or androgen excess can elevate blood glucose levels and impair muscle glucose uptake in normoglycemic female ICER-Tg mice. We treated hyperglycemic male ICER-Tg mice with orchiectomy (ORX) or ORX+E2 pellet implantation and normoglycemic female ICER-Tg mice with ovariectomy (OVX) or OVX+5α-DHT pellet implantation to alter the androgen to E2 ratio. ORX+E2 treatment of male ICER-Tg mice caused a rapid drop in blood glucose via both a dramatic increase of β-cells and significantly improved muscle glucose uptake due to the induction of glucose transporter type 4 (GLUT4) expression and translocation of GLUT4 to the cell membrane. In contrast, OVX+5α-DHT-treated female ICER-Tg mice showed an elevation of blood glucose without any decrease of β-cells; instead, they showed decreased muscle glucose uptake due to decreased activation of serine/threonine-specific protein kinase AKT and GLUT4 expression. These findings suggest that androgen (5α-DHT) promotes insulin resistance in females, whereas E2 improves insulin sensitivity in severely diabetic male mice.
Collapse
Affiliation(s)
- Akari Inada
- Laboratory of Molecular Life Science (A.I., Y.N.), Institute of Biomedical Research and Innovation, Kobe 650-0047, Japan; Department of Diabetes and Genes (A.I., O.I.), Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Health Promotion Sciences (N.L.F.), Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan; and Faculty of Sports and Health Science (Y.H.) and Institute for Physical Activity (Y.H.), Fukuoka University, Fukuoka 814-0180, Japan
| | - Nobuharu L Fujii
- Laboratory of Molecular Life Science (A.I., Y.N.), Institute of Biomedical Research and Innovation, Kobe 650-0047, Japan; Department of Diabetes and Genes (A.I., O.I.), Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Health Promotion Sciences (N.L.F.), Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan; and Faculty of Sports and Health Science (Y.H.) and Institute for Physical Activity (Y.H.), Fukuoka University, Fukuoka 814-0180, Japan
| | - Oogi Inada
- Laboratory of Molecular Life Science (A.I., Y.N.), Institute of Biomedical Research and Innovation, Kobe 650-0047, Japan; Department of Diabetes and Genes (A.I., O.I.), Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Health Promotion Sciences (N.L.F.), Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan; and Faculty of Sports and Health Science (Y.H.) and Institute for Physical Activity (Y.H.), Fukuoka University, Fukuoka 814-0180, Japan
| | - Yasuki Higaki
- Laboratory of Molecular Life Science (A.I., Y.N.), Institute of Biomedical Research and Innovation, Kobe 650-0047, Japan; Department of Diabetes and Genes (A.I., O.I.), Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Health Promotion Sciences (N.L.F.), Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan; and Faculty of Sports and Health Science (Y.H.) and Institute for Physical Activity (Y.H.), Fukuoka University, Fukuoka 814-0180, Japan
| | - Yasuro Furuichi
- Laboratory of Molecular Life Science (A.I., Y.N.), Institute of Biomedical Research and Innovation, Kobe 650-0047, Japan; Department of Diabetes and Genes (A.I., O.I.), Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Health Promotion Sciences (N.L.F.), Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan; and Faculty of Sports and Health Science (Y.H.) and Institute for Physical Activity (Y.H.), Fukuoka University, Fukuoka 814-0180, Japan
| | - Yo-Ichi Nabeshima
- Laboratory of Molecular Life Science (A.I., Y.N.), Institute of Biomedical Research and Innovation, Kobe 650-0047, Japan; Department of Diabetes and Genes (A.I., O.I.), Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Health Promotion Sciences (N.L.F.), Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan; and Faculty of Sports and Health Science (Y.H.) and Institute for Physical Activity (Y.H.), Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
2
|
Oliveira CA, Carnes K, França LR, Hermo L, Hess RA. Aquaporin-1 and -9 are differentially regulated by oestrogen in the efferent ductule epithelium and initial segment of the epididymis. Biol Cell 2005; 97:385-95. [PMID: 15850448 PMCID: PMC2760966 DOI: 10.1042/bc20040078] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Efferent ductules reabsorb more than 90% of the rete testis fluid, a process that involves ion transporters and AQP (aquaporin) water channels. Oestrogen has been shown to modulate the expression of the ion transporters involved in this activity, but reports of AQP regulation in the male tract have been confounding. To understand better the regulation of AQP1 and AQP9, we investigated their expression in rat efferent ductules and initial segment of the epididymis after treatment with the pure antioestrogen ICI 182,780 or bilateral efferent duct ligation, or castration, followed by hormone replacement. RESULTS Results show that AQP9 is modulated by oestrogen in the efferent ductule epithelium, but not in the initial segment of the epididymis. DHT (5alpha-dihydrotestosterone) also modulated AQP9 in efferent ductules. AQP9 was down-regulated by the antioestrogen in efferent ductules on day 45 post-treatment, which occurred before the non-ciliated cells had shown significant loss of microvilli. DHT, but not oestradiol, modulated AQP9 expression in the initial segment of the epididymis. In contrast, testosterone, DHT, oestrogen or the antioestrogen did not alter AQP1 staining, indicating constitutive expression of AQP1 in the efferent ductule epithelium. AQP1 expression was induced in peritubular cells of efferent ductules and in the initial segment of the epididymis after castration and long-term treatment with the antioestrogen. Although peritubular AQP1 staining in efferent ductules was partially reversed by the androgens, it was not reversed after any treatment in the initial segment of the epididymis. CONCLUSIONS These results demonstrate that efferent ductules are unique in requiring both oestrogen and androgen to regulate an important mediator of fluid reabsorption, whereas the initial segment is dependent only on androgen stimulation.
Collapse
Affiliation(s)
- Cleida A. Oliveira
- Department of Veterinary Biosciences, University of Illinois, 2001 S. Lincoln, Urbana, IL 61802-6199, U.S.A
- Departments of Morphology and Physiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kay Carnes
- Department of Veterinary Biosciences, University of Illinois, 2001 S. Lincoln, Urbana, IL 61802-6199, U.S.A
| | - Luiz R. França
- Departments of Morphology and Physiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Rex A. Hess
- Department of Veterinary Biosciences, University of Illinois, 2001 S. Lincoln, Urbana, IL 61802-6199, U.S.A
- To whom correspondence should be addressed ()
| |
Collapse
|
3
|
Hisatomi A, Fujihira S, Fujimoto Y, Fujii T, Mine Y, Ohara K. Effect of Prograf (FK506) on spermatogenesis in rats. Toxicology 1996; 109:75-83. [PMID: 8658548 DOI: 10.1016/0300-483x(96)03312-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Prograf (FK506) was given to male mature rats in a daily subcutaneous dose of 1 or 3 mg/kg/day for 2 weeks to investigate its effect on spermatogenesis. Prograf dose-dependently sperm counts and motility, but did not affect testosterone level in the serum of rats. Histopathologically, there were no abnormal changes in the testis, seminal vesicle or prostate in any rats dosed with Prograf, but intra-ductal eosinophilic globules, probably degeneration of the sperm cells, were observed in the epididymis of the 3 mg/kg/day group. Sperm counts and motility returned to the control levels after stopping of the drug. The results indicate that Prograf decreased sperm counts and motility through direct action on the sperm in the epididymis, but not the production of sperm in the testis. Cyclosporine A (CsA) was used as the reference drug in the present study. Thirty mg/kg/day of CsA also decreased sperm counts and motility, and stopping of the drug led to the recovery of these changes. The males dosed with Prograf for 2 weeks were mated with non-dosed females to investigate its effect on the fertility potential of the males. Prograf did not affect copulation or fertility index, but a decrease in the number of live fetuses associated with implantation loss was observed in the 3 mg/kg/day group. The changes were considered to be due to the decrease of sperm counts and motility, although 1 mg/kg/day of Prograf, 5-10 times the clinical dose, did not affect any fertility parameters including implantation index.
Collapse
Affiliation(s)
- A Hisatomi
- Toxicology Research Laboratories, Fujisawa Pharmaceutical Co. Ltd., Osaka, Japan
| | | | | | | | | | | |
Collapse
|