1
|
Sánchez-Villanueva JA, N’Guyen L, Poplineau M, Duprez E, Remy É, Thieffry D. Predictive modelling of acute Promyelocytic leukaemia resistance to retinoic acid therapy. Brief Bioinform 2024; 26:bbaf002. [PMID: 39807666 PMCID: PMC11729720 DOI: 10.1093/bib/bbaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse. Recent studies pointed to various underlying molecular components, but their precise contributions remain to be deciphered. We developed a logical network model integrating signalling, transcriptional, and epigenetic regulatory mechanisms, which captures key features of the APL cell responses to RA depending on the genetic background. The explicit inclusion of the histone methyltransferase EZH2 allowed the assessment of its role in the resistance mechanism, distinguishing between its canonical and non-canonical activities. The model dynamics was thoroughly analysed using tools integrated in the public software suite maintained by the CoLoMoTo consortium (https://colomoto.github.io/). The model serves as a solid basis to assess the roles of novel regulatory mechanisms, as well as to explore novel therapeutical approaches in silico.
Collapse
Affiliation(s)
| | - Lia N’Guyen
- Integrative molecular biology in hematopoiesis and leukemia, Equipe Labellisée Ligue Contre le Cancer, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Univ, 27 Bd Lei Roure, 13009 Marseille, France
| | - Mathilde Poplineau
- Integrative molecular biology in hematopoiesis and leukemia, Equipe Labellisée Ligue Contre le Cancer, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Univ, 27 Bd Lei Roure, 13009 Marseille, France
| | - Estelle Duprez
- Integrative molecular biology in hematopoiesis and leukemia, Equipe Labellisée Ligue Contre le Cancer, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Univ, 27 Bd Lei Roure, 13009 Marseille, France
| | - Élisabeth Remy
- Aix Marseille Université, CNRS, I2M, 163 avenue de Luminy, 13009 Marseille, France
| | - Denis Thieffry
- Department of Biology, École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
- Institut Curie - INSERM U900 - Mines Paris, PSL Research University, 26 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
2
|
Masci D, Puxeddu M, Silvestri R, La Regina G. Targeting CBP and p300: Emerging Anticancer Agents. Molecules 2024; 29:4524. [PMID: 39407454 PMCID: PMC11482477 DOI: 10.3390/molecules29194524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
CBP and p300 are versatile transcriptional co-activators that play essential roles in regulating a wide range of signaling pathways, including Wnt/β-catenin, p53, and HIF-1α. These co-activators influence various cellular processes such as proliferation, differentiation, apoptosis, and response to hypoxia, making them pivotal in normal physiology and disease progression. The Wnt/β-catenin signaling pathway, in particular, is crucial for cellular proliferation, differentiation, tissue homeostasis, and embryogenesis. Aberrant activation of this pathway is often associated with several types of cancer, such as colorectal tumor, prostate cancer, pancreatic and hepatocellular carcinomas. In recent years, significant efforts have been directed toward identifying and developing small molecules as novel anticancer agents capable of specifically inhibiting the interaction between β-catenin and the transcriptional co-activators CBP and p300, which are required for Wnt target gene expression and are consequently involved in the regulation of tumor cell proliferation, migration, and invasion. This review summarizes the most significant and original research articles published from 2010 to date, found by means of a PubMed search, highlighting recent advancements in developing both specific and non-specific inhibitors of CBP/β-catenin and p300/β-catenin interactions. For a more comprehensive view, we have also explored the therapeutic potential of CBP/p300 bromodomain and histone acetyltransferase inhibitors in disrupting the transcriptional activation of genes involved in various signaling pathways related to cancer progression. By focusing on these therapeutic strategies, this review aims to offer a detailed overview of recent approaches in cancer treatment that selectively target CBP and p300, with particular emphasis on their roles in Wnt/β-catenin-driven oncogenesis.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| |
Collapse
|
3
|
Sekiguchi M, Fujinami Y, Takado K, Kimoto Y, Higashimura Y. Activity difference of three labdane diterpenoids on human constitutive androstane receptor. Biosci Biotechnol Biochem 2023; 87:1310-1315. [PMID: 37580155 DOI: 10.1093/bbb/zbad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The constitutive androstane receptor (CAR) regulates enzyme transcription related to drug metabolism; therefore, natural compound clarification in food that interacts with CAR is significant for drug development. We revealed that 13-epimanool, which is a compound found in the common sage, is bound to hCAR based on differential scanning fluorometry (DSF) measurements using recombinant hCAR protein. Similar labdane diterpenoids were examined, which revealed that manool and sclareol, which were both natural compounds contained in herbs, are bound to hCAR. They exhibited different effects for CAR activity in the luciferase assay despite the structural similarity. Manool was a partial agonist, 13-epimanool was a weak partial agonist, and sclareol was an antagonist. The activity of hCAR may be regulated by slight differences in the bound compound.
Collapse
Affiliation(s)
- Mitsuhiro Sekiguchi
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yui Fujinami
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Keiyu Takado
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yuu Kimoto
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yasuki Higashimura
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| |
Collapse
|
4
|
Yousuf SD, Ganie MA, Urwat U, Andrabi SM, Zargar MA, Dar MA, Manzoor-ul-Rehman M, Mudassar S, Rashid F. Oral contraceptive pill (OCP) treatment alters the gene expression of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1) in polycystic ovary syndrome (PCOS) women compared to drug-naive PCOS women. BMC Womens Health 2023; 23:68. [PMID: 36793022 PMCID: PMC9933286 DOI: 10.1186/s12905-023-02187-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) presents clinical symptoms of menstrual abnormalities, excessive hair growth (hirsutism), scalp hair loss, acne and infertility. Metabolic abnormalities such as obesity, insulin resistance, glucose intolerance and cardiovascular problems constitute an essential part of PCOS, all of which can have significant long-term health consequences. Low-grade chronic inflammation demonstrated by persistent moderately elevated serum levels of inflammatory and coagulatory markers plays a critical role in the pathogenesis of PCOS. Oral contraceptive pills (OCPs) constitute the mainstay of pharmacologic therapy for women with PCOS to regularize cyclicity and ameliorate androgen excess. On the other hand, OCP use is associated with various venous thromboembolic and proinflammatory events in the general population. PCOS women always carriers the increased lifetime risk of these events. The studies on the effect of OCPs on inflammatory, coagulation and metabolic parameters in PCOS are less robust. Therefore in this study, we investigated and compared the messenger RNA (mRNA) expression profiles of genes implicated in inflammatory and coagulation pathways between drug-naive and OCP-treated PCOS women. The selected genes include intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1). Furthermore, the correlation between the selected markers and various metabolic indices in the OCP group has also been explored. METHOD The relative amounts of ICAM-1, TNF-α, MCP-1 and PAI-1 mRNA in peripheral blood mononuclear cells from 25 drug-naive PCOS subjects (controls) and 25 PCOS subjects who received OCPs containing 0.03 mg-ethinyl-estradiol and 0.15 mg-levonorgestrel for at least six months (cases) were estimated using real-time qPCR. The statistical interpretation was conducted using SPSS version 20.0 (SPSS, Inc, Chicago, IL), Epi Info version 2002 (Disease Control and Prevention Centres, Atlanta, GA) and GraphPad Prism 5 (GraphPad Software, La Jolla, CA) software. RESULT Six months of OCP therapy enhanced the expression of inflammatory genes viz ICAM-1, TNF-α and MCP-1 mRNA in PCOS women by 2.54, 2.05 and 1.74 folds, respectively, in this study. However, PAI-1 mRNA in the OCP group showed no significant increase. Furthermore, in cases, ICAM-1 mRNA expression positively correlated with body mass index (BMI) (p = 0.01), fasting insulin (p = 0.01), insulin 2 h p = 0.02), glucose 2 h (p = 0.01) and triglycerides (p = 0.01). TNF-α mRNA expression positively correlated with fasting insulin (p = 0.0007). MCP-1 mRNA expression positively correlated with (BMI) (p = 0.002). CONCLUSION OCPs helped reduce clinical hyperandrogenism and regularise menstrual cycles in women with PCOS. However, OCP use was associated with increased fold expression of inflammatory markers which positively correlated with metabolic abnormalities.
Collapse
Affiliation(s)
- Syed Douhath Yousuf
- grid.414739.c0000 0001 0174 2901Department of Clinical Biochemistry, Sheri- Kashmir Institute of Medical Sciences, SKIMS, Srinagar, J&K India
| | - Mohammad Ashraf Ganie
- grid.414739.c0000 0001 0174 2901Department of Endocrinology and Metabolism, Sheri- Kashmir Institute of Medical Sciences, SKIMS, Srinagar, J&K India
| | - Uneeb Urwat
- Division of Animal Biotechnology, Sheri- Kashmir Institute of Agricultural Sciences, Shuhama, J&K India
| | - Syed Mudasir Andrabi
- Division of Animal Biotechnology, Sheri- Kashmir Institute of Agricultural Sciences, Shuhama, J&K India
| | | | - Mashooq Ahmad Dar
- Division of Animal Biotechnology, Sheri- Kashmir Institute of Agricultural Sciences, Shuhama, J&K India
| | - Mir Manzoor-ul-Rehman
- Division of Animal Biochemistry, Sheri- Kashmir Institute of Agricultural Sciences, Shuhama, J&K India
| | - Syed Mudassar
- grid.414739.c0000 0001 0174 2901Department of Clinical Biochemistry, Sheri- Kashmir Institute of Medical Sciences, SKIMS, Srinagar, J&K India
| | - Fouzia Rashid
- Clinical Biochemistry, University of Kashmir, Srinagar, J&K, India.
| |
Collapse
|
5
|
Kumar R, Fatima F, Yadav G, Singh S, Haldar S, Alexiou A, Ashraf GM. Epigenetic Modifications by Estrogen and Androgen in Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:6-17. [PMID: 35232367 DOI: 10.2174/1871527321666220225110501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
For the development and maintenance of neuron networks in the brain, epigenetic mechanisms are necessary, as indicated by recent findings. This includes some of the high-order brain processes, such as behavior and cognitive functions. Epigenetic mechanisms could influence the pathophysiology or etiology of some neuronal diseases, altering disease susceptibility and therapy responses. Recent studies support epigenetic dysfunctions in neurodegenerative and psychiatric conditions, such as Alzheimer's disease (AD). These dysfunctions in epigenetic mechanisms also play crucial roles in the transgenerational effects of the environment on the brain and subsequently in the inheritance of pathologies. The possible role of gonadal steroids in the etiology and progression of neurodegenerative diseases, including Alzheimer's disease, has become the subject of a growing body of research over the last 20 years. Recent scientific findings suggest that epigenetic changes, driven by estrogen and androgens, play a vital role in brain functioning. Therefore, exploring the role of estrogen and androgen-based epigenetic changes in the brain is critical for the deeper understanding of AD. This review highlights the epigenetic modifications caused by these two gonadal steroids and the possible therapeutic strategies for AD.
Collapse
Affiliation(s)
- Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Faiza Fatima
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Garima Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Simran Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Subhagata Haldar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, 2770 NSW, Australia, and AFNP Med Austria, 1010 Wien, Austria
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Suardi D, Renita F, Kurniadi A, Pramatirta AY, Judistiani RTD, Hidayat YM, Setiabudiawan B. The Comparison of 25-Hydroxyvitamin D3 between Patients With and Without Cervical Cancer. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Vitamin D was currently believed to have effects on numerous cancer pathogenic processes.
AIM: This study was to assess the correlation of Vitamin D serum level in women with carcinoma cervix and also evaluate the effect of carcinoma cervix on the Vitamin D serum.
METHODS: This was an observational with a cross-sectional study. Participants were women with cervical cancer who have not received any treatment, presented to the Oncology Clinic of the Obstetrics and Gynecology Department of Dr. Hasan Sadikin General Hospital, and women without cervical cancer. The level of Vitamin D3 was analyzed in the Serology Laboratory of Clinical Pathology Department of Dr. Hasan Sadikin General Hospital.
RESULTS: There were 113 participants consisted of 58 women with cervical cancer and 55 healthy women. Mean levels of Vitamin D3 were significantly lower in cervical cancer group than non-cervical cancer group (26.74 ± 13.166 vs. 32.16±14.86, p = 0.022).
CONCLUSION: The level of Vitamin D3 was found to be significantly higher in the non-cervical cancer group than cervical cancer group.
Collapse
|
7
|
Dietrich N, Hoffman JA, Archer TK. BAF Complexes and the Glucocorticoid Receptor in Breast Cancers. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 15:8-14. [PMID: 35128145 PMCID: PMC8813045 DOI: 10.1016/j.coemr.2020.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breast cancers are a diverse group of diseases and are often characterized by their expression of receptors for hormones such as estrogen and progesterone. Recently another steroid hormone receptor, the glucocorticoid receptor (GR) has been shown to be a key player in breast cancer progression, metastasis, and treatment. These receptors bind to chromatin to elicit transcriptional changes within cells, which are often inhibited by the structure of chromatin itself. Chromatin remodeling proteins, such as Brahma-related gene 1 (BRG1), function to overcome this physical inhibition of transcription factor function and have been linked to many cancers including breast cancer. Recent efforts to understand the interactions of BRG1 and GR, including genomic and single cell analyses, within breast cancers may give insight into personalized medicine and other potential treatments.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, United States
| | - Jackson A. Hoffman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, United States
| | - Trevor K. Archer
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, United States
| |
Collapse
|
8
|
H3K4me3 Is a Potential Mediator for Antiproliferative Effects of Calcitriol (1α,25(OH)2D3) in Ovarian Cancer Biology. Int J Mol Sci 2020; 21:ijms21062151. [PMID: 32245092 PMCID: PMC7139961 DOI: 10.3390/ijms21062151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Posttranslational histone modification plays an important role in tumorigenesis. Histone modification is a dynamic response of chromatin to various signals, such as the exposure to calcitriol (1α,25(OH)2D3). Recent studies suggested that histone modification levels could be used to predict patient outcomes in various cancers. Our study evaluated the expression level of histone 3 lysine 4 trimethylation (H3K4me3) in a cohort of 156 epithelial ovarian cancer (EOC) cases by immunohistochemical staining and analyzed its correlation to patient prognosis. The influence of 1α,25(OH)2D3 on the proliferation of ovarian cancer cells was measured by BrdU proliferation assay in vitro. We could show that higher levels of H3K4me3 were correlated with improved overall survival (median overall survival (OS) not reached vs. 37.0 months, p = 0.047) and identified H3K4me3 as a potential prognostic factor for the present cohort. Ovarian cancer cell 1α,25(OH)2D3 treatment induced H3K4me3 protein expression and exhibited antiproliferative effects. By this, the study suggests a possible impact of H3K4me3 expression on EOC progression as well as its relation to calcitriol (1α,25(OH)2D3) treatment. These results may serve as an explanation on how 1α,25(OH)2D3 mediates its known antiproliferative effects. In addition, they further underline the potential benefit of 1α,25(OH)2D3 supplementation in context of ovarian cancer care.
Collapse
|
9
|
Jimenez JJ, Chale RS, Abad AC, Schally AV. Acute promyelocytic leukemia (APL): a review of the literature. Oncotarget 2020; 11:992-1003. [PMID: 32215187 PMCID: PMC7082115 DOI: 10.18632/oncotarget.27513] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Acute Promyelocytic Leukemia (APL) is characterized by a block in differentiation where leukemic cells are halted at the promyelocyte stage. A characteristic balanced chromosomal translocation between chromosomes 15 and 17 t (15;17) (q24; q21) is seen in 95% of cases — the translocation results in the formation of the PML-RARA fusion protein. The introduction of retinoic acid (RA) and arsenic trioxide (ATO) has been responsible for initially remarkable cure rates. However, relapsed APL, particularly in the high-risk subset of patients, remains an important clinical problem. In addition, despite the success of ATRA & ATO, many clinicians still elect to use cytotoxic chemotherapy in the treatment of APL. Patients who become resistant to ATO have an increased risk of mortality. The probability of relapse is significantly higher in the high-risk subset of patients undergoing treatment for APL; overall approximately 10-20% of APL patients relapse regardless of their risk stratification. Furthermore, 20-25% of patients undergoing treatment will develop differentiation syndrome, a common side effect of differentiation agents. Recent evidence using in vitro models has shown that mutations in the B2 domain of the PML protein, mediate arsenic resistance. Alternative agents and approaches considering these clinical outcomes are needed to address ATO resistance as well as the relapse rate in high risk APL.
Collapse
Affiliation(s)
- Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ravinder S Chale
- Dr. Phillip Frost Department of Dermatology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Andrea C Abad
- Dr. Phillip Frost Department of Dermatology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Andrew V Schally
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA.,Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA.,Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.,Division of Hematology Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
10
|
A Systematic Analysis Revealed the Potential Gene Regulatory Processes of ATRA-Triggered Neuroblastoma Differentiation and Identified a Novel RA Response Sequence in the NTRK2 Gene. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6734048. [PMID: 32149119 PMCID: PMC7053487 DOI: 10.1155/2020/6734048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Retinoic acid- (RA-) triggered neuroblastoma cell lines are widely used cell modules of neuronal differentiation in neurodegenerative disease studies, but the gene regulatory mechanism underlying differentiation is unclear now. In this study, system biological analysis was performed on public microarray data from three neuroblastoma cell lines (SK-N-SH, SH-SY5Y-A, and SH-SY5Y-E) to explore the potential molecular processes of all-trans retinoic acid- (ATRA-) triggered differentiation. RT-qPCR, functional genomics analysis, western blotting, chromatin immunoprecipitation (ChIP), and homologous sequence analysis were further performed to validate the gene regulation processes and identify the RA response element in a specific gene. The potential disturbed biological pathways (111 functional GO terms in 14 interactive functional groups) and gene regulatory network (10 regulators and 71 regulated genes) in neuroblastoma differentiation were obtained. 15 of the 71 regulated genes are neuronal projection-related. Among them, NTRK2 is the only one that was dramatically upregulated in the RT-qPCR test that we performed on ATRA-treated SH-SY5Y-A cells. We further found that the overexpression of the NTRK2 gene can trigger differentiation-like changes in SH-SY5Y-A cells. Functional genomic analysis and western blotting assay suggested that, in neuroblastoma cells, ATRA may directly regulate the NTRK2 gene by activating the RA receptor (RAR) that binds in its promoter region. A novel RA response DNA element in the NTRK2 gene was then identified by bioinformatics analysis and chromatin immunoprecipitation (ChIP) assay. The novel element is sequence conservation and position variation among different species. Our study systematically provided the potential regulatory information of ATRA-triggered neuroblastoma differentiation, and in the NTRK2 gene, we identified a novel RA response DNA element, which may contribute to the differentiation in a human-specific manner.
Collapse
|
11
|
Safi-Stibler S, Gabory A. Epigenetics and the Developmental Origins of Health and Disease: Parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin Cell Dev Biol 2019; 97:172-180. [PMID: 31587964 DOI: 10.1016/j.semcdb.2019.09.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The literature about Developmental Origins of Health and Disease (DOHaD) studies is considerably growing. Maternal and paternal environment, during all the development of the individual from gametogenesis to weaning and beyond, as well as the psychosocial environment in childhood and teenage, can shape the adult and the elderly person's susceptibility to her/his own environment and diseases. This non-conventional, non-genetic, inheritance is underlain by several mechanisms among which epigenetics is obviously central, due to the notion of memory of early decisional events during development even when this stimulus is gone, that is implied in Waddington's developmental concept. This review first summarizes the different mechanisms by which the environment can model the epigenome: receptor signalling, energy metabolism and signal mechanotransduction from extracellular matrix to chromatin. Then an overview of the epigenetic changes in response to maternal environment during the vulnerability time windows, gametogenesis, early development, placentation and foetal growth, and postnatal period, is described, with the specific example of overnutrition and food deprivation. The implication of epigenetics in DOHaD is obvious, however the precise causal chain from early environment to the epigenome modifications to the phenotype still needs to be deciphered.
Collapse
Affiliation(s)
- Sofiane Safi-Stibler
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Anne Gabory
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
12
|
Ilicic M, Zakar T, Paul JW. Epigenetic regulation of progesterone receptors and the onset of labour. Reprod Fertil Dev 2019; 31:1035-1048. [DOI: 10.1071/rd18392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Progesterone plays a crucial role in maintaining pregnancy by promoting myometrial quiescence. The withdrawal of progesterone action signals the end of pregnancy and, in most mammalian species, this is achieved by a rapid fall in progesterone concentrations. However, in humans circulating progesterone concentrations remain high up to and during labour. Efforts to understand this phenomenon led to the ‘functional progesterone withdrawal’ hypothesis, whereby the pro-gestation actions of progesterone are withdrawn, despite circulating concentrations remaining elevated. The exact mechanism of functional progesterone withdrawal is still unclear and in recent years has been the focus of intense research. Emerging evidence now indicates that epigenetic regulation of progesterone receptor isoform expression may be the crucial mechanism by which functional progesterone withdrawal is achieved, effectively precipitating human labour despite high concentrations of circulating progesterone. This review examines current evidence that epigenetic mechanisms play a role in determining whether the pro-gestation or pro-contractile isoform of the progesterone receptor is expressed in the pregnant human uterus. We explore the mechanism by which these epigenetic modifications are achieved and, importantly, how these underlying epigenetic mechanisms are influenced by known regulators of uterine physiology, such as prostaglandins and oestrogens, in order to phenotypically transform the pregnant uterus and initiate labour.
Collapse
|
13
|
Forger NG. Past, present and future of epigenetics in brain sexual differentiation. J Neuroendocrinol 2018; 30. [PMID: 28585265 DOI: 10.1111/jne.12492] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
Sexual differentiation has long been considered "epigenetic", although the meaning of that word has shifted over time. Here, we track the evolution of ideas about epigenetics in sexual differentiation, and identify principles that have emerged from recent studies. Experiments manipulating a particular epigenetic mechanism during neonatal life demonstrate a role for both histone acetylation and DNA methylation in the development of sex differences in the brain and behaviour of rodents. In addition, hormone-dependent sex differences in the number of neurones of a particular phenotype may be programmed by differences in DNA methylation early in life. Genome-wide studies suggest that many effects of neonatal testosterone on the brain methylome do not emerge until adulthood, and there may be sex biases in the use of epigenetic marks that do not correlate with differences in gene expression. In other words, even when the transcription of a gene does not differ between males and females, the epigenetic underpinnings of that expression may differ. Finally, recent evidence suggests that sex differences in epigenetic marks may primarily serve to make gene expression more similar in males and females. We discuss the implications of these findings for understanding sex differences in susceptibility to disease, and point to recent conceptual and technical advances likely to influence the field going forward.
Collapse
Affiliation(s)
- N G Forger
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
14
|
Gazmuri RJ, Patel DJ, Stevens R, Smith S. Circulatory collapse, right ventricular dilatation, and alveolar dead space: A triad for the rapid diagnosis of massive pulmonary embolism. Am J Emerg Med 2016; 35:936.e1-936.e4. [PMID: 28040384 DOI: 10.1016/j.ajem.2016.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
Abstract
A triad of circulatory collapse, right ventricular dilatation, and large alveolar dead space is proposed for the rapid diagnosis and treatment of massive pulmonary embolism. A 17year-old female on oral contraceptives collapsed at home becoming incoherent with shallow breathing. Paramedics initiated mechanical chest compression and transported the patient to our emergency department, arriving minimally responsive with undetectable blood pressure but having positive corneal reflexes and bradycardia with wide QRS. The trachea was intubated and goal-directed echocardiography revealed marked right ventricular dilatation with septal flattening. The arterial PCO2 was 40mmHg with an end-tidal PCO2 of 8mmHg, revealing a large alveolar dead space. Persistent hypotension, bradycardia, and fading alertness despite epinephrine and norepinephrine infusions prompted resumption of chest compression. Intravenous alteplase (10mg bolus over 10min followed by 90mg over 110min) begun 125min after collapse improved hemodynamic function within 10min allowing discontinuation of chest compression. Five and a half hours after starting alteplase, the patient was hemodynamically stable and had normal end-tidal PCO2. A CT-angiogram showed the pulmonary arteries free of emboli but a thrombus in the right common iliac vein. The patient recovered fully and was discharged home on warfarin 8days later. Based on this and other reports, we propose a triad of circulatory collapse, right ventricular dilatation, and large alveolar dead space for the rapid diagnosis and treatment of massive pulmonary embolism, with systemic fibrinolysis as the first-line intervention.
Collapse
Affiliation(s)
- Raúl J Gazmuri
- Section of Critical Care Medicine, Captain James A. Lovell Federal Health Care Center, North Chicago, IL, United States; Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.
| | - Dimple J Patel
- Pharmacy Service, Captain James A. Lovell Federal Health Care Center, North Chicago, IL, United States
| | - Rom Stevens
- Section of Critical Care Medicine, Captain James A. Lovell Federal Health Care Center, North Chicago, IL, United States
| | - Shani Smith
- Section of Critical Care Medicine, Captain James A. Lovell Federal Health Care Center, North Chicago, IL, United States
| |
Collapse
|
15
|
Sakkiah S, Ng HW, Tong W, Hong H. Structures of androgen receptor bound with ligands: advancing understanding of biological functions and drug discovery. Expert Opin Ther Targets 2016; 20:1267-82. [PMID: 27195510 DOI: 10.1080/14728222.2016.1192131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Androgen receptor (AR) is a ligand-dependent transcription factor and a member of the nuclear receptor superfamily. It plays a vital role in male sexual development and regulates gene expression in various tissues, including prostate. Androgens are compounds that exert their biological effects via interaction with AR. Binding of androgens to AR initiates conformational changes in AR that affect binding of co-regulator proteins and DNA. AR agonists and antagonists are widely used in a variety of clinical applications (i.e. hypogonadism and prostate cancer therapy). AREAS COVERED This review provides a close look at structures of AR-ligand complexes and mutations in the receptor that have been revealed, discusses current challenges in the field, and sheds light on future directions. EXPERT OPINION AR is one of the primary targets for the treatment of prostate cancer, as AR antagonists inhibit prostate cancer growth. However, these drugs are not effective for long-term treatment and lead to castration-resistant prostate cancer. The structures of AR-ligand complexes are an invaluable scientific asset that enhances our understanding of biological functions and mechanisms of androgenic and anti-androgenic chemicals as well as promotes the discovery of superior drug candidates.
Collapse
Affiliation(s)
- Sugunadevi Sakkiah
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Hui Wen Ng
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Weida Tong
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Huixiao Hong
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| |
Collapse
|
16
|
Osorio JS, Lohakare J, Bionaz M. Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation. Physiol Genomics 2016; 48:231-56. [DOI: 10.1152/physiolgenomics.00016.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The demand for high-quality milk is increasing worldwide. The efficiency of milk synthesis can be improved by taking advantage of the accumulated knowledge of the transcriptional and posttranscriptional regulation of genes coding for proteins involved in the synthesis of fat, protein, and lactose in the mammary gland. Research in this area is relatively new, but data accumulated in the last 10 years provide a relatively clear picture. Milk fat synthesis appears to be regulated, at least in bovines, by an interactive network between SREBP1, PPARγ, and LXRα, with a potential role for other transcription factors, such as Spot14, ChREBP, and Sp1. Milk protein synthesis is highly regulated by insulin, amino acids, and amino acid transporters via transcriptional and posttranscriptional routes, with the insulin-mTOR pathway playing a central role. The transcriptional regulation of lactose synthesis is still poorly understood, but it is clear that glucose transporters play an important role. They can also cooperatively interact with amino acid transporters and the mTOR pathway. Recent data indicate the possibility of nutrigenomic interventions to increase milk fat synthesis by feeding long-chain fatty acids and milk protein synthesis by feeding amino acids. We propose a transcriptional network model to account for all available findings. This model encompasses a complex network of proteins that control milk synthesis with a cross talk between milk fat, protein, and lactose regulation, with mTOR functioning as a central hub.
Collapse
Affiliation(s)
| | - Jayant Lohakare
- Oregon State University, Corvallis, Oregon; and
- Kangwon National University, Chuncheon, South Korea
| | | |
Collapse
|
17
|
Forger NG. Epigenetic mechanisms in sexual differentiation of the brain and behaviour. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150114. [PMID: 26833835 DOI: 10.1098/rstb.2015.0114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 11/12/2022] Open
Abstract
Circumstantial evidence alone argues that the establishment and maintenance of sex differences in the brain depend on epigenetic modifications of chromatin structure. More direct evidence has recently been obtained from two types of studies: those manipulating a particular epigenetic mechanism, and those examining the genome-wide distribution of specific epigenetic marks. The manipulation of histone acetylation or DNA methylation disrupts the development of several neural sex differences in rodents. Taken together, however, the evidence suggests there is unlikely to be a simple formula for masculine or feminine development of the brain and behaviour; instead, underlying epigenetic mechanisms may vary by brain region or even by dependent variable within a region. Whole-genome studies related to sex differences in the brain have only very recently been reported, but suggest that males and females may use different combinations of epigenetic modifications to control gene expression, even in cases where gene expression does not differ between the sexes. Finally, recent findings are discussed that are likely to direct future studies on the role of epigenetic mechanisms in sexual differentiation of the brain and behaviour.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30307, USA
| |
Collapse
|
18
|
Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol 2016; 40:67-86. [PMID: 26790970 PMCID: PMC4897775 DOI: 10.1016/j.yfrne.2016.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/31/2015] [Accepted: 01/09/2016] [Indexed: 01/16/2023]
Abstract
Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | - J Alex Strahan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | | |
Collapse
|
19
|
Maizels Y, Gerlitz G. Shaping of interphase chromosomes by the microtubule network. FEBS J 2015; 282:3500-24. [PMID: 26040675 DOI: 10.1111/febs.13334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
It is well established that microtubule dynamics play a major role in chromosome condensation and localization during mitosis. During interphase, however, it is assumed that the metazoan nuclear envelope presents a physical barrier, which inhibits interaction between the microtubules located in the cytoplasm and the chromatin fibers located in the nucleus. In recent years, it has become apparent that microtubule dynamics alter chromatin structure and function during interphase as well. Microtubule motor proteins transport several transcription factors and exogenous DNA (such as plasmid DNA) from the cytoplasm to the nucleus. Various soluble microtubule components are able to translocate into the nucleus, where they bind various chromatin elements leading to transcriptional alterations. In addition, microtubules may apply force on the nuclear envelope, which is transmitted into the nucleus, leading to changes in chromatin structure. Thus, microtubule dynamics during interphase may affect chromatin spatial organization, as well as transcription, replication and repair.
Collapse
Affiliation(s)
- Yael Maizels
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Israel
| |
Collapse
|
20
|
Colciago A, Casati L, Negri-Cesi P, Celotti F. Learning and memory: Steroids and epigenetics. J Steroid Biochem Mol Biol 2015; 150:64-85. [PMID: 25766520 DOI: 10.1016/j.jsbmb.2015.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - Paola Negri-Cesi
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
21
|
Fattori J, Indolfo NDC, Campos JCLDO, Videira NB, Bridi AV, Doratioto TR, Assis MAD, Figueira ACM. Investigation of Interactions between DNA and Nuclear Receptors: A Review of the Most Used Methods. NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Juliana Fattori
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| | - Nathalia de Carvalho Indolfo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| | | | - Natália Bernardi Videira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| | - Aline Villanova Bridi
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| | - Tábata Renée Doratioto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| | - Michelle Alexandrino de Assis
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| |
Collapse
|
22
|
Fortress AM, Frick KM. Epigenetic regulation of estrogen-dependent memory. Front Neuroendocrinol 2014; 35:530-49. [PMID: 24878494 PMCID: PMC4174980 DOI: 10.1016/j.yfrne.2014.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 02/09/2023]
Abstract
Hippocampal memory formation is highly regulated by post-translational histone modifications and DNA methylation. Accordingly, these epigenetic processes play a major role in the effects of modulatory factors, such as sex steroid hormones, on hippocampal memory. Our laboratory recently demonstrated that the ability of the potent estrogen 17β-estradiol (E2) to enhance hippocampal-dependent novel object recognition memory in ovariectomized female mice requires ERK-dependent histone H3 acetylation and DNA methylation in the dorsal hippocampus. Although these data provide valuable insight into the chromatin modifications that mediate the memory-enhancing effects of E2, epigenetic regulation of gene expression is enormously complex. Therefore, more research is needed to fully understand how E2 and other hormones employ epigenetic alterations to shape behavior. This review discusses the epigenetic alterations shown thus far to regulate hippocampal memory, briefly reviews the effects of E2 on hippocampal function, and describes in detail our work on epigenetic regulation of estrogenic memory enhancement.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
23
|
Shen EY, Ahern TH, Cheung I, Straubhaar J, Dincer A, Houston I, de Vries GJ, Akbarian S, Forger NG. Epigenetics and sex differences in the brain: A genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice. Exp Neurol 2014; 268:21-9. [PMID: 25131640 DOI: 10.1016/j.expneurol.2014.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
Many neurological and psychiatric disorders exhibit gender disparities, and sex differences in the brain likely explain some of these effects. Recent work in rodents points to a role for epigenetics in the development or maintenance of neural sex differences, although genome-wide studies have so far been lacking. Here we review the existing literature on epigenetics and brain sexual differentiation and present preliminary analyses on the genome-wide distribution of histone-3 lysine-4 trimethylation in a sexually dimorphic brain region in male and female mice. H3K4me3 is a histone mark primarily organized as 'peaks' surrounding the transcription start site of active genes. We microdissected the bed nucleus of the stria terminalis and preoptic area (BNST/POA) in adult male and female mice and used ChIP-Seq to compare the distribution of H3K4me3 throughout the genome. We found 248 genes and loci with a significant sex difference in H3K4me3. Of these, the majority (71%) had larger H3K4me3 peaks in females. Comparisons with existing databases indicate that genes and loci with increased H3K4me3 in females are associated with synaptic function and with expression atlases from related brain areas. Based on RT-PCR, only a minority of genes with a sex difference in H3K4me3 has detectable sex differences in expression at baseline conditions. Together with previous findings, our data suggest that there may be sex biases in the use of epigenetic marks. Such biases could underlie sex differences in vulnerabilities to drugs or diseases that disrupt specific epigenetic processes.
Collapse
Affiliation(s)
- Erica Y Shen
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Todd H Ahern
- Center for Behavioral Neuroscience, Department of Psychology, Quinnipiac University, Hamden, CT 06518, USA
| | - Iris Cheung
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Juerg Straubhaar
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Aslihan Dincer
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Science, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Isaac Houston
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Schahram Akbarian
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
24
|
Decherf S, Seugnet I, Becker N, Demeneix BA, Clerget-Froidevaux MS. Retinoic X receptor subtypes exert differential effects on the regulation of Trh transcription. Mol Cell Endocrinol 2013; 381:115-23. [PMID: 23896434 DOI: 10.1016/j.mce.2013.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 02/07/2023]
Abstract
How Retinoid X receptors (RXR) and thyroid hormone receptors (TR) interact on negative TREs and whether RXR subtype specificity is determinant in such regulations is unknown. In a set of functional studies, we analyzed RXR subtype effects in T3-dependent repression of hypothalamic thyrotropin-releasing hormone (Trh). Two-hybrid screening of a hypothalamic paraventricular nucleus cDNA bank revealed specific, T3-dependent interaction of TRs with RXRβ. In vivo chromatin immuno-precipitation showed recruitment of RXRs to the TRE-site 4 region of the Trh promoter in the absence of T3. In vivo overexpression of RXRα in the mouse hypothalamus heightened T3-independent Trh transcription, whereas RXRβ overexpression abrogated this activity. Loss of function of RXRα and β by shRNAs induced inverse regulations. Thus, RXRα and RXRβ display specific roles in modulating T3-dependent regulation of Trh. These results provide insight into the actions of these different TR heterodimerization partners within the context of a negatively regulated gene.
Collapse
Affiliation(s)
- Stéphanie Decherf
- CNRS UMR 7221-USM 501, «Evolution of Endocrine Regulations», «Regulations, Development and Molecular Diversity» Department, Muséum National d'Histoire Naturelle, 57 rue Cuvier, CP 32, 75231 Paris Cedex 5, France
| | | | | | | | | |
Collapse
|
25
|
Frick KM. Epigenetics, oestradiol and hippocampal memory consolidation. J Neuroendocrinol 2013; 25:1151-62. [PMID: 24028406 PMCID: PMC3943552 DOI: 10.1111/jne.12106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/13/2013] [Accepted: 09/05/2013] [Indexed: 02/02/2023]
Abstract
Epigenetic alterations of histone proteins and DNA are essential for hippocampal synaptic plasticity and cognitive function, and contribute to the aetiology of psychiatric disorders and neurodegenerative diseases. Hippocampal memory formation depends on histone alterations and DNA methylation, and increasing evidence suggests that the regulation of these epigenetic processes by modulatory factors, such as environmental enrichment, stress and hormones, substantially influences memory function. Recent work from our laboratory suggests that the ability of the sex-steroid hormone 17β-oestradiol (E2 ) to enhance novel object recognition memory consolidation in young adult female mice is dependent on histone H3 acetylation and DNA methylation in the dorsal hippocampus. Our data also suggest that enzymes mediating DNA methylation and histone acetylation work in concert to regulate the effects of E2 on memory consolidation. These findings shed light on the epigenetic mechanisms that influence hormonal modulation of cognitive function, and may have important implications for understanding how hormones influence cognition in adulthood and ageing. The present review provides a brief overview of the literature on epigenetics and memory, describes in detail our findings demonstrating that epigenetic alterations regulate E2 -induced memory enhancement in female mice, and discusses future directions for research on the epigenetic regulation of E2 -induced memory enhancement.
Collapse
Affiliation(s)
- Karyn M. Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
26
|
Bionaz M, Chen S, Khan MJ, Loor JJ. Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation. PPAR Res 2013; 2013:684159. [PMID: 23737762 PMCID: PMC3657398 DOI: 10.1155/2013/684159] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 12/31/2022] Open
Abstract
Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants. However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression. Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth. Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants. As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients. In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle.
Collapse
Affiliation(s)
- Massimo Bionaz
- Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Shuowen Chen
- Animal and Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Muhammad J. Khan
- Animal and Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Juan J. Loor
- Animal and Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Imai Y, Youn MY, Inoue K, Takada I, Kouzmenko A, Kato S. Nuclear receptors in bone physiology and diseases. Physiol Rev 2013; 93:481-523. [PMID: 23589826 PMCID: PMC3768103 DOI: 10.1152/physrev.00008.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During the last decade, our view on the skeleton as a mere solid physical support structure has been transformed, as bone emerged as a dynamic, constantly remodeling tissue with systemic regulatory functions including those of an endocrine organ. Reflecting this remarkable functional complexity, distinct classes of humoral and intracellular regulatory factors have been shown to control vital processes in the bone. Among these regulators, nuclear receptors (NRs) play fundamental roles in bone development, growth, and maintenance. NRs are DNA-binding transcription factors that act as intracellular transducers of the respective ligand signaling pathways through modulation of expression of specific sets of cognate target genes. Aberrant NR signaling caused by receptor or ligand deficiency may profoundly affect bone health and compromise skeletal functions. Ligand dependency of NR action underlies a major strategy of therapeutic intervention to correct aberrant NR signaling, and significant efforts have been made to design novel synthetic NR ligands with enhanced beneficial properties and reduced potential negative side effects. As an example, estrogen deficiency causes bone loss and leads to development of osteoporosis, the most prevalent skeletal disorder in postmenopausal women. Since administration of natural estrogens for the treatment of osteoporosis often associates with undesirable side effects, several synthetic estrogen receptor ligands have been developed with higher therapeutic efficacy and specificity. This review presents current progress in our understanding of the roles of various nuclear receptor-mediated signaling pathways in bone physiology and disease, and in development of advanced NR ligands for treatment of common skeletal disorders.
Collapse
Affiliation(s)
- Yuuki Imai
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Matsumoto T, Sakari M, Okada M, Yokoyama A, Takahashi S, Kouzmenko A, Kato S. The androgen receptor in health and disease. Annu Rev Physiol 2012; 75:201-24. [PMID: 23157556 DOI: 10.1146/annurev-physiol-030212-183656] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Androgens play pivotal roles in the regulation of male development and physiological processes, particularly in the male reproductive system. Most biological effects of androgens are mediated by the action of nuclear androgen receptor (AR). AR acts as a master regulator of downstream androgen-dependent signaling pathway networks. This ligand-dependent transcriptional factor modulates gene expression through the recruitment of various coregulator complexes, the induction of chromatin reorganization, and epigenetic histone modifications at target genomic loci. Dysregulation of androgen/AR signaling perturbs normal reproductive development and accounts for a wide range of pathological conditions such as androgen-insensitive syndrome, prostate cancer, and spinal bulbar muscular atrophy. In this review we summarize recent advances in understanding of the epigenetic mechanisms of AR action as well as newly recognized aspects of AR-mediated androgen signaling in both men and women. In addition, we offer a perspective on the use of animal genetic model systems aimed at eventually developing novel therapeutic AR ligands.
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Listeria monocytogenes is a foodborne pathogen that crosses the intestinal barrier and disseminates within the host. Here, we report a unique comprehensive analysis of the impact of two Lactobacillus species, Lactobacillus paracasei CNCM I-3689 and Lactobacillus casei BL23, on L. monocytogenes and orally acquired listeriosis in a gnotobiotic humanized mouse model. We first assessed the effect of treatment with each Lactobacillus on L. monocytogenes counts in host tissues and showed that each decreases L. monocytogenes systemic dissemination in orally inoculated mice. A whole genome intestinal transcriptomic analysis revealed that each Lactobacillus changes expression of a specific subset of genes during infection, with IFN-stimulated genes (ISGs) being the most affected by both lactobacilli. We also examined microRNA (miR) expression and showed that three miRs (miR-192, miR-200b, and miR-215) are repressed during L. monocytogenes infection. Treatment with each Lactobacillus increased miR-192 expression, whereas only L. casei association increased miR-200b and miR-215 expression. Finally, we showed that treatment with each Lactobacillus significantly reshaped the L. monocytogenes transcriptome and up-regulated transcription of L. monocytogenes genes encoding enzymes allowing utilization of intestinal carbon and nitrogen sources in particular genes involved in propanediol and ethanolamine catabolism and cobalamin biosynthesis. Altogether, these data reveal that the modulation of L. monocytogenes infection by treatment with lactobacilli correlates with a decrease in host gene expression, in particular ISGs, miR regulation, and a dramatic reshaping of L. monocytogenes transcriptome.
Collapse
|
30
|
Abstract
The selective estrogen receptor downregulator (SERD) fulvestrant can be used as second-line treatment for patients relapsing after treatment with tamoxifen, a selective estrogen receptor modulator (SERM). Unlike tamoxifen, SERDs are devoid of partial agonist activity. While the full antiestrogenicity of SERDs may result in part from their capacity to downregulate levels of estrogen receptor alpha (ERα) through proteasome-mediated degradation, SERDs are also fully antiestrogenic in the absence of increased receptor turnover in HepG2 cells. Here we report that SERDs induce the rapid and strong SUMOylation of ERα in ERα-positive and -negative cell lines, including HepG2 cells. Four sites of SUMOylation were identified by mass spectrometry analysis. In derivatives of the SERD ICI164,384, SUMOylation was dependent on the length of the side chain and correlated with full antiestrogenicity. Preventing SUMOylation by the overexpression of a SUMO-specific protease (SENP) deSUMOylase partially derepressed transcription in the presence of full antiestrogens in HepG2 cells without a corresponding increase in activity in the presence of agonists or of the SERM tamoxifen. Mutations increasing transcriptional activity in the presence of full antiestrogens reduced SUMOylation levels and suppressed stimulation by SENP1. Our results indicate that ERα SUMOylation contributes to full antiestrogenicity in the absence of accelerated receptor turnover.
Collapse
|
31
|
Caiozzi G, Wong BS, Ricketts ML. Dietary modification of metabolic pathways via nuclear hormone receptors. Cell Biochem Funct 2012; 30:531-51. [PMID: 23027406 DOI: 10.1002/cbf.2842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/07/2012] [Accepted: 05/09/2012] [Indexed: 12/17/2022]
Abstract
Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail.
Collapse
Affiliation(s)
- Gianella Caiozzi
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada Reno, Reno, NV 89557, USA
| | | | | |
Collapse
|
32
|
Rahman S, Quann K, Pandya D, Singh S, Khan ZK, Jain P. HTLV-1 Tax mediated downregulation of miRNAs associated with chromatin remodeling factors in T cells with stably integrated viral promoter. PLoS One 2012; 7:e34490. [PMID: 22496815 PMCID: PMC3319589 DOI: 10.1371/journal.pone.0034490] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/01/2012] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) is a natural cellular mechanism to silence gene expression and is predominantly mediated by microRNAs (miRNAs) that target messenger RNA. Viruses can manipulate the cellular processes necessary for their replication by targeting the host RNAi machinery. This study explores the effect of human T-cell leukemia virus type 1 (HTLV-1) transactivating protein Tax on the RNAi pathway in the context of a chromosomally integrated viral long terminal repeat (LTR) using a CD4+ T-cell line, Jurkat. Transcription factor profiling of the HTLV-1 LTR stably integrated T-cell clone transfected with Tax demonstrates increased activation of substrates and factors associated with chromatin remodeling complexes. Using a miRNA microarray and bioinformatics experimental approach, Tax was also shown to downregulate the expression of miRNAs associated with the translational regulation of factors required for chromatin remodeling. These observations were validated with selected miRNAs and an HTLV-1 infected T cells line, MT-2. miR-149 and miR-873 were found to be capable of directly targeting p300 and p/CAF, chromatin remodeling factors known to play critical role in HTLV-1 pathogenesis. Overall, these results are first in line establishing HTLV-1/Tax-miRNA-chromatin concept and open new avenues toward understanding retroviral latency and/or replication in a given cell type.
Collapse
Affiliation(s)
| | | | | | | | | | - Pooja Jain
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Chai SY, Smith R, Zakar T, Mitchell C, Madsen G. Term myometrium is characterized by increased activating epigenetic modifications at the progesterone receptor-A promoter. Mol Hum Reprod 2012; 18:401-9. [PMID: 22369759 DOI: 10.1093/molehr/gas012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Term human myometrial expression of progesterone receptor (PR)-A is increased relative to PR-B, and as PR-A is a repressor of progesterone action mediated through PR-B, this increase may mediate the withdrawal of progesterone action and precipitate the onset of labour. PR-A and PR-B expression is regulated by two separate promoters of the PR gene. We hypothesized that epigenetic histone modifications at the two promoters contribute to the labour-associated regulation of PR-A and PR-B expression in term myometrium. PR total, PR-B and PR-A mRNA levels were determined using quantitative real-time PCR, and chromatin immunoprecipitation was used to determine the levels of activating and repressive histone modifications at the PR-A and PR-B promoters in human myometrial samples not in labour (n = 4) and in labour (n = 4). Chromatin extracts were immunoprecipitated with antibodies against activating (histone H3 and H4 acetylation and histone H3 lysine 4 trimethylation), and repressive (histone H3 lysine 9 trimethylation, histone H3 lysine 27 trimethylation and asymmetrical histone H3 arginine 2 dimethylation) histone modifications. PR-A mRNA levels increased during labour, while PR-B mRNA levels remained constant resulting in an increase of PR-A/PR-B mRNA ratio, as expected. Regardless of labour status, significantly higher levels of the activating histone modifications were found at the PR-A promoter compared with the PR-B promoter (P <0.001). H3K4me3 increased significantly at both promoters with labour onset (P =0.001). Low levels of the repressive histone modifications were also present at both promoters, with no labour-associated changes observed. Our data indicate that the PR-A promoter is epigenetically marked for activation in term myometrium more extensively than the PR-B promoter, and that labour is associated with an increase in H3K4me3 activating modification, consistent with the previously described increase in PR protein at this time.
Collapse
Affiliation(s)
- S Y Chai
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2310, Australia
| | | | | | | | | |
Collapse
|
34
|
Windshügel B, Poso A. Constitutive activity and ligand-dependent activation of the nuclear receptor CAR-insights from molecular dynamics simulations. J Mol Recognit 2012; 24:875-82. [PMID: 21812062 DOI: 10.1002/jmr.1132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The constitutive androstane receptor (CAR) possesses, unlike most other nuclear receptors, a pronounced basal activity in vitro whose structural basis is still not fully understood. Using comparative molecular dynamics simulations of CAR X-ray crystal structures, we evaluated the molecular basis for constitutive activity and ligand-dependent receptor activation. Our results suggest that a combination of van der Waals interactions and hydrogen bonds is required to maintain the activation helix in the active conformation also in absence of a ligand. Furthermore, we identified conformational rearrangements within the ligand-binding pocket upon agonist binding and an influence of CAR inducers pregnanedione and CITCO on the helical conformation of the activation helix. Based on the results a model for ligand-dependent CAR activation is suggested.
Collapse
Affiliation(s)
- Björn Windshügel
- Faculty of Health Sciences/School of Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio 70211, Finland.
| | | |
Collapse
|
35
|
Kachaylo EM, Pustylnyak VO, Lyakhovich VV, Gulyaeva LF. Constitutive androstane receptor (CAR) is a xenosensor and target for therapy. BIOCHEMISTRY (MOSCOW) 2011; 76:1087-97. [DOI: 10.1134/s0006297911100026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
36
|
Murray EK, Varnum MM, Fernandez JL, de Vries GJ, Forger NG. Effects of neonatal treatment with valproic acid on vasopressin immunoreactivity and olfactory behaviour in mice. J Neuroendocrinol 2011; 23:906-14. [PMID: 21793947 PMCID: PMC3183375 DOI: 10.1111/j.1365-2826.2011.02196.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent findings demonstrate that epigenetic modifications are required for the sexual differentiation of the brain. For example, neonatal administration of the histone deacetylase inhibitor, valproic acid, blocks masculinisation of cell number in the principal nucleus of the bed nucleus of the stria terminalis (BNST). In the present study, we examined the effects of valproic acid on neurochemistry and behaviour, focusing on traits that are sexually dimorphic and linked to the BNST. Newborn mice were treated with saline or valproic acid and the effect on vasopressin immunoreactivity and olfactory preference behaviour was examined in adulthood. As expected, males had more vasopressin immunoreactive fibres than females in the lateral septum and medial dorsal thalamus, which are two projection sites of BNST vasopressin neurones. Neonatal valproic acid increased vasopressin fibre density specifically in females in the lateral septum, thereby reducing the sex difference, and increased vasopressin fibres in both sexes in the medial dorsal thalamus. The effects were not specific to BNST vasopressin projections, however, because valproic acid also significantly increased vasopressin immunoreactivity in the anterior hypothalamic area in both sexes. Subtle sex-specific effects of neonatal valproic acid treatment were observed on olfactory behaviour. As predicted, males showed a preference for investigating female-soiled bedding, whereas females showed a preference for male-soiled bedding. Valproic acid did not significantly alter olfactory preference, per se, although it increased the number of visits females made to female-soiled bedding and the overall time females spent investigating soiled versus clean bedding. Taken together, these results suggest that a transient disruption of histone deacetylation at birth does not have generalised effects on sexual differentiation, although it does produce lasting effects on brain neurochemistry and behaviour.
Collapse
Affiliation(s)
- E K Murray
- Neuroscience and Behavior Program, Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
37
|
PPAR-gamma Signaling Crosstalk in Mesenchymal Stem Cells. PPAR Res 2010; 2010. [PMID: 20706670 PMCID: PMC2913631 DOI: 10.1155/2010/341671] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/25/2010] [Indexed: 11/27/2022] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-γ) is a member of the nuclear receptor (NR) superfamily of ligand-activated transcriptional factors. Among other functions, PPAR-γ acts as a key regulator of the adipogenesis. Since several cytokines (IL-1, TNF-α, TGF-β) had been known to inhibit adipocyte differentiation in mesenchymal stem cells (MSCs), we examined the effect of these cytokines on the transactivation function of PPAR-γ. We found that the TNF-α/IL-1-activated TAK1/TAB1/NIK (NFκB-inducible kinase) signaling cascade inhibited both the adipogenesis and Tro-induced transactivation by PPAR-γ by blocking the receptor binding to the cognate DNA response elements. Furthermore, it has been shown that the noncanonical Wnts are expressed in MSCs and that Wnt-5a was capable to inhibit transactivation by PPAR-γ. Treatment with Wnt5a-activated NLK (nemo-like kinase) induced physical association of the endogenous NLK and H3K9 histone methyltransferase (SETDB1) protein complexes with PPAR-γ. This resulted in histoneH3K9 tri-methylation at PPAR-γ target gene promoters. Overall, our data show that cytokines and noncanonical Wnts play a crucial role in modulation of PPAR-γ regulatory function in its target cells and tissues.
Collapse
|
38
|
Matsuyama R, Takada I, Yokoyama A, Fujiyma-Nakamura S, Tsuji N, Kitagawa H, Fujiki R, Kim M, Kouzu-Fujita M, Yano T, Kato S. Double PHD fingers protein DPF2 recognizes acetylated histones and suppresses the function of estrogen-related receptor alpha through histone deacetylase 1. J Biol Chem 2010; 285:18166-76. [PMID: 20400511 PMCID: PMC2881740 DOI: 10.1074/jbc.m109.077024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 04/12/2010] [Indexed: 11/06/2022] Open
Abstract
Estrogen-related receptor alpha (ERRalpha) is a member of the nuclear receptor superfamily and regulates many physiological functions, including mitochondrial biogenesis and lipid metabolism. ERRalpha enhances the transactivation function without endogenous ligand by associating with coactivators such as peroxisome proliferator-activated receptor gamma coactivator 1 alpha and beta (PGC-1alpha and -beta) and members of the steroid receptor coactivator family. However, the molecular mechanism by which the transactivation function of ERRalpha is converted from a repressive state to an active state is poorly understood. Here we used biochemical purification techniques to identify ERRalpha-associated proteins in HeLa cells stably expressing ERRalpha. Interestingly, we found that double PHD fingers protein DPF2/BAF45d suppressed PGC-1alpha-dependent transactivation of ERRalpha by recognizing acetylated histone H3 and associating with HDAC1. DPF2 directly bound to ERRalpha and suppressed the transactivation function of nuclear receptors such as androgen receptor. DPF2 was recruited to ERR target gene promoters in myoblast cells, and knockdown of DPF2 derepressed the level of mRNA expressed by target genes of ERRalpha. These results show that DPF2 acts as a nuclear receptor-selective co-repressor for ERRalpha by associating with both acetylated histone H3 and HDAC1.
Collapse
Affiliation(s)
- Reiko Matsuyama
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
- the Department of Obstetrics and Gynecology, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan, and
| | - Ichiro Takada
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Atsushi Yokoyama
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
- ERATO, Japan Science and Technology, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Sally Fujiyma-Nakamura
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
- ERATO, Japan Science and Technology, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Naoya Tsuji
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hirochika Kitagawa
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryoji Fujiki
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Misun Kim
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Madoka Kouzu-Fujita
- the Department of Obstetrics and Gynecology, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan, and
| | - Tetsu Yano
- the Department of Obstetrics and Gynecology, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan, and
| | - Shigeaki Kato
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
- ERATO, Japan Science and Technology, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
39
|
Saigou Y, Kamimura Y, Inoue M, Kondoh H, Uchikawa M. Regulation of Sox2 in the pre-placodal cephalic ectoderm and central nervous system by enhancer N-4. Dev Growth Differ 2010; 52:397-408. [DOI: 10.1111/j.1440-169x.2010.01180.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Rijnkels M, Kabotyanski E, Montazer-Torbati MB, Hue Beauvais C, Vassetzky Y, Rosen JM, Devinoy E. The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia 2010; 15:85-100. [PMID: 20157770 PMCID: PMC3006238 DOI: 10.1007/s10911-010-9170-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/21/2010] [Indexed: 12/16/2022] Open
Abstract
Most of the development and functional differentiation in the mammary gland occur after birth. Epigenetics is defined as the stable alterations in gene expression potential that arise during development and proliferation. Epigenetic changes are mediated at the biochemical level by the chromatin conformation initiated by DNA methylation, histone variants, post-translational modifications of histones, non-histone chromatin proteins, and non-coding RNAs. Epigenetics plays a key role in development. However, very little is known about its role in the developing mammary gland or how it might integrate the many signalling pathways involved in mammary gland development and function that have been discovered during the past few decades. An inverse relationship between marks of closed (DNA methylation) or open chromatin (DnaseI hypersensitivity, certain histone modifications) and milk protein gene expression has been documented. Recent studies have shown that during development and functional differentiation, both global and local chromatin changes occur. Locally, chromatin at distal regulatory elements and promoters of milk protein genes gains a more open conformation. Furthermore, changes occur both in looping between regulatory elements and attachment to nuclear matrix. These changes are induced by developmental signals and environmental conditions. Additionally, distinct epigenetic patterns have been identified in mammary gland stem and progenitor cell sub-populations. Together, these findings suggest that epigenetics plays a role in mammary development and function. With the new tools for epigenomics developed in recent years, we now can begin to establish a framework for the role of epigenetics in mammary gland development and disease.
Collapse
Affiliation(s)
- Monique Rijnkels
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Lee SW, Cho YS, Na JM, Park UH, Kang M, Kim EJ, Um SJ. ASXL1 represses retinoic acid receptor-mediated transcription through associating with HP1 and LSD1. J Biol Chem 2009; 285:18-29. [PMID: 19880879 DOI: 10.1074/jbc.m109.065862] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We previously suggested that ASXL1 (additional sex comb-like 1) functions as either a coactivator or corepressor for the retinoid receptors retinoic acid receptor (RAR) and retinoid X receptor in a cell type-specific manner. Here, we provide clues toward the mechanism underlying ASXL1-mediated repression. Transfection assays in HEK293 or H1299 cells indicated that ASXL1 alone possessing autonomous transcriptional repression activity significantly represses RAR- or retinoid X receptor-dependent transcriptional activation, and the N-terminal portion of ASXL1 is responsible for the repression. Amino acid sequence analysis identified a consensus HP1 (heterochromatin protein 1)-binding site (HP1 box, PXVXL) in that region. Systematic in vitro and in vivo assays revealed that the HP1 box in ASXL1 is critical for the interaction with the chromoshadow domain of HP1. Transcription assays with HP1 box deletion or HP1alpha knockdown indicated that HP1alpha is required for ASXL1-mediated repression. Furthermore, we found a direct interaction of ASXL1 with histone H3 demethylase LSD1 through the N-terminal region nearby the HP1-binding site. ASXL1 binding to LSD1 was greatly increased by HP1alpha, resulting in the formation of a ternary complex. LSD1 cooperates with ASXL1 in transcriptional repression, presumably by removing H3K4 methylation, an active histone mark, but not H3K9 methylation, a repressive histone mark recognized by HP1. This possibility was supported by chromatin immunoprecipitation assays followed by ASXL1 overexpression or knockdown. Overall, this study provides the first evidence that ASXL1 cooperates with HP1 to modulate LSD1 activity, leading to a change in histone H3 methylation and thereby RAR repression.
Collapse
Affiliation(s)
- Sang-Wang Lee
- Department of Bioscience and Biotechnology, Sejong University, Kwangjin-gu, Seoul 143-747, Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Epigenetic changes in the nervous system are emerging as a critical component of enduring effects induced by early life experience, hormonal exposure, trauma and injury, or learning and memory. Sex differences in the brain are largely determined by steroid hormone exposure during a perinatal sensitive period that alters subsequent hormonal and nonhormonal responses throughout the lifespan. Steroid receptors are members of a nuclear receptor transcription factor superfamily and recruit multiple proteins that possess enzymatic activity relevant to epigenetic changes such as acetylation and methylation. Thus steroid hormones are uniquely poised to exert epigenetic effects on the developing nervous system to dictate adult sex differences in brain and behavior. Sex differences in the methylation pattern in the promoter of estrogen and progesterone receptor genes are evident in newborns and persist in adults but with a different pattern. Changes in response to injury and in methyl-binding proteins and steroid receptor coregulatory proteins are also reported. Many steroid-induced epigenetic changes are opportunistic and restricted to a single lifespan, but new evidence suggests endocrine-disrupting compounds can exert multigenerational effects. Similarly, maternal diet also induces transgenerational effects, but the impact is sex specific. The study of epigenetics of sex differences is in its earliest stages, with needed advances in understanding of the hormonal regulation of enzymes controlling acetylation and methylation, coregulatory proteins, transient versus stable DNA methylation patterns, and sex differences across the epigenome to fully understand sex differences in brain and behavior.
Collapse
|
44
|
Oya H, Yokoyama A, Yamaoka I, Fujiki R, Yonezawa M, Youn MY, Takada I, Kato S, Kitagawa H. Phosphorylation of Williams syndrome transcription factor by MAPK induces a switching between two distinct chromatin remodeling complexes. J Biol Chem 2009; 284:32472-82. [PMID: 19776015 DOI: 10.1074/jbc.m109.009738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Changes in the environment of a cell precipitate extracellular signals and sequential cascades of protein modification and elicit nuclear transcriptional responses. However, the functional links between intracellular signaling-dependent gene regulation and epigenetic regulation by chromatin-modifying proteins within the nucleus are largely unknown. Here, we describe novel epigenetic regulation by MAPK cascades that modulate formation of an ATP-dependent chromatin remodeling complex, WINAC (WSTF Including Nucleosome Assembly Complex), an SWI/SNF-type complex containing Williams syndrome transcription factor (WSTF). WSTF, a specific component of two chromatin remodeling complexes (SWI/SNF-type WINAC and ISWI-type WICH), was phosphorylated by the stimulation of MAPK cascades in vitro and in vivo. Ser-158 residue in the WAC (WSTF/Acf1/cbpq46) domain, located close to the N terminus of WSTF, was identified as a major phosphorylation target. Using biochemical analysis of a WSTF mutant (WSTF-S158A) stably expressing cell line, the phosphorylation of this residue (Ser-158) was found to be essential for maintaining the association between WSTF and core BAF complex components, thereby maintaining the ATPase activity of WINAC. WINAC-dependent transcriptional regulation of vitamin D receptor was consequently impaired by this WSTF mutation, but the recovery from DNA damage mediated by WICH was not impaired. Our results suggest that WSTF serves as a nuclear sensor of the extracellular signals to fine-tune the chromatin remodeling activity of WINAC. WINAC mediates a previously unknown MAPK-dependent step in epigenetic regulation, and this MAPK-dependent switching mechanism between the two functionally distinct WSTF-containing complexes might underlie the diverse functions of WSTF in various nuclear events.
Collapse
Affiliation(s)
- Hiroyuki Oya
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Murray EK, Hien A, de Vries GJ, Forger NG. Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology 2009; 150:4241-7. [PMID: 19497973 PMCID: PMC2736071 DOI: 10.1210/en.2009-0458] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The principal nucleus of the bed nucleus of the stria terminalis (BNSTp) is larger in volume and contains more cells in male than female mice. These sex differences depend on testosterone and arise from a higher rate of cell death during early postnatal life in females. There is a delay of several days between the testosterone surge at birth and sexually dimorphic cell death in the BNSTp, suggesting that epigenetic mechanisms may be involved. We tested the hypothesis that chromatin remodeling plays a role in sexual differentiation of the BNSTp by manipulating the balance between histone acetylation and deacetylation using a histone deacetylase inhibitor. In the first experiment, a single injection of valproic acid (VPA) on the day of birth increased acetylation of histone H3 in the brain 24 h later. Next, males, females, and females treated neonatally with testosterone were administered VPA or saline on postnatal d 1 and 2 and killed at 21 d of age. VPA treatment did not influence volume or cell number of the BNSTp in control females but significantly reduced both parameters in males and testosterone-treated females. As a result, the sex differences were eliminated. VPA did not affect volume or cell number in the suprachiasmatic nucleus or the anterodorsal nucleus of the thalamus, which also did not differ between males and females. These findings suggest that a disruption in histone deacetylation may lead to long-term alterations in gene expression that block the masculinizing actions of testosterone in the BNSTp.
Collapse
Affiliation(s)
- Elaine K Murray
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | |
Collapse
|
46
|
Li W, Ma L, Zhao J, Liu X, Li Z, Zhang Y. Expression profile of MTA1 in adult mouse tissues. Tissue Cell 2009; 41:390-9. [PMID: 19524276 DOI: 10.1016/j.tice.2009.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 04/03/2009] [Accepted: 04/10/2009] [Indexed: 01/08/2023]
Abstract
MTA1, as a constituent of the nucleosome-remodeling and -deacetylation complex (NuRD), is thought to modulate transcription by influencing the status of chromatin remodeling. Despite its strong correlation with the metastatic potential of several cancer cell lines and tissues, MTA1 can also regulate divergent cellular pathways by modifying the acetylation status of crucial target genes. However, its fundamental physiological functions have not been characterized. To further address the possible physiological role of this protein in mammals, the authors examined the expression pattern of mouse MTA1 in a variety of adult mouse tissues by a combination of techniques, including semi-quantitative RT-PCR, Western blotting and immunohistochemistry. Positive signals were observed on variety of tissues/cells in multiple systems including nervous, cardiovascular, respiratory, digestive, immune, endocrine, urinary, reproductive and sensory organ systems. MTA1 was localized in both the cytoplasm and the nuclei, and was accumulated in the nuclei. In mature mice, MTA1 expression was seen in cell types that constantly undergo proliferation or self-renewal, such as testis and cell types not constantly engaged in proliferation or self-renewal, such as brain, liver and kidney. This differential expression suggests that this protein serves distinct functions in murine organs.
Collapse
Affiliation(s)
- Wei Li
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Shaanxi Province, Xi'an, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Ghoshal P, Nganga AJ, Moran-Giuati J, Szafranek A, Johnson TR, Bigelow AJ, Houde CM, Avet-Loiseau H, Smiraglia DJ, Ersing N, Chanan-Khan AA, Coignet LJ. Loss of the SMRT/NCoR2 corepressor correlates with JAG2 overexpression in multiple myeloma. Cancer Res 2009; 69:4380-7. [PMID: 19417136 DOI: 10.1158/0008-5472.can-08-3467] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple myeloma (MM) is a clonal B-cell neoplasm that accounts for 10% of all malignant hematologic neoplasms and that affects terminally differentiated B cells (i.e., plasma cells). It is now well recognized that the cytokine interleukin-6 (IL-6) is a major cytokine that promotes the proliferation of malignant plasma cells in MM. The IL-6 gene can be regulated by the NOTCH genes products. We have previously shown that the NOTCH ligand, JAG2, is overexpressed in MM. To investigate the mechanism(s) leading to JAG2 overexpression in MM, we assessed potential epigenetic modifications of the JAG2 promoter. We showed that the JAG2 promoter region is aberrantly acetylated in MM cell lines and patient samples. The acetylation state of histones is regulated by the recruitment of histone deacetylases (HDAC). HDACs are typically recruited to promoter regions through interaction with nuclear corepressors such as SMRT. SMRT levels were therefore investigated. Interestingly, MM cell lines and patient samples presented significantly reduced SMRT levels. The experiments suggest a correlation between constitutive acetylation of the JAG2 core promoter in the MM cell lines and reduced levels of the SMRT corepressor that recruits HDAC to promoter regions. Finally, SMRT function restoration induced JAG2 down-regulation as well as MM cell apoptosis.
Collapse
Affiliation(s)
- Pushpankur Ghoshal
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mezaki Y, Yamaguchi N, Yoshikawa K, Miura M, Imai K, Itoh H, Senoo H. Insoluble, speckled cytosolic distribution of retinoic acid receptor alpha protein as a marker of hepatic stellate cell activation in vitro. J Histochem Cytochem 2009; 57:687-99. [PMID: 19332432 DOI: 10.1369/jhc.2009.953208] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatic stellate cells (HSCs) are the major site of retinoid storage, and their activation is a key process in liver fibrogenesis. We have previously shown that expression of the retinoic acid receptor alpha (RARalpha) is upregulated in activated rat HSCs at a posttranscriptional level and that these RARalpha proteins showed a speckled distribution in the cytosol, despite their possession of a nuclear localization signal (NLS). In this report, we further characterize these cytosolic RARalpha proteins by using exogenously expressed RARalpha protein fragments or mutants tagged with a green fluorescent protein. Substitution of four amino acids, 161-164 from lysine to alanine, abolished the NLS. Exogenously expressed RARalpha protein fragments containing an NLS were localized exclusively in the nuclei of activated rat HSCs and never colocalized with the endogenous RARalpha proteins in the cytosol, suggesting that the NLS of endogenous RARalpha proteins is masked. Biochemical analysis showed that 65% of RARalpha proteins in activated HSCs were insoluble in a mixture of detergents. The insolubility of RARalpha proteins makes it difficult to identify RARalpha proteins in activated HSCs. Therefore, we propose that insoluble, speckled cytosolic distribution of RARalpha proteins represents a new marker of HSC activation.
Collapse
Affiliation(s)
- Yoshihiro Mezaki
- Department of Cell Biology and Histology, School of Medicine, Akita University, Akita 010-8543, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The hormonal control of cell death is currently the best-established mechanism for creating sex differences in cell number in the brain and spinal cord. For example, males have more cells than do females in the principal nucleus of the bed nucleus of the stria terminalis (BNSTp) and spinal nucleus of the bulbocavernosus (SNB), whereas females have a cell number advantage in the anteroventral periventricular nucleus (AVPV). In each case, the difference in cell number in adulthood correlates with a sex difference in the number of dying cells at some point in development. Mice with over- or under-expression of cell death genes have been used to test more directly the contribution of cell death to neural sex differences, to identify molecular mechanisms involved, and to determine the behavioural consequences of suppressing developmental cell death. Bax is a pro-death gene of the Bcl-2 family that is singularly important for apoptosis in neural development. In mice lacking bax, the number of cells in the BNSTp, SNB and AVPV are significantly increased, and sex differences in total cell number in each of these regions are eliminated. Cells rescued by bax gene deletion in the BNSTp express markers of differentiated neurones and the androgen receptor. On the other hand, sex differences in other phenotypically identified populations, such as vasopressin-expressing neurones in the BNSTp or dopaminergic neurones in AVPV, are not affected by either bax deletion or bcl-2 over-expression. Possible mechanisms by which testosterone may regulate cell death in the nervous system are discussed, as are the behavioural effects of eliminating sex differences in neuronal cell number.
Collapse
Affiliation(s)
- N G Forger
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
50
|
Varga F, Rumpler M, Spitzer S, Karlic H, Klaushofer K. Osteocalcin attenuates T3- and increases vitamin D3-induced expression of MMP-13 in mouse osteoblasts. Endocr J 2009; 56:441-50. [PMID: 19225217 DOI: 10.1507/endocrj.k08e-192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Osteocalcin (OCN), the most abundant non-collagenous protein of the bone matrix, whose function is not fully understood, was recently suggested to act as endocrine factor regulating energy metabolism. Besides OCN, osteoblasts also express MMP-13, a matrix metallo-proteinase important for bone development and remodeling. Although differentially, both genes are regulated by 1,25-dihydroxy vitamin D3 (1,25D3) and T3, important hormones for bone metabolism. In mouse osteoblasts with a distinct differentiation status, T3 increases the expression of both proteins. By contrast, 1,25D3 stimulates the expression of MMP-13 but inhibits the expression of OCN in these cells. In humans, however, 1,25D3 upregulates both genes while T3 inhibits the OCN expression. Using northern blot hybridization we studied gene expression in the mouse osteoblastic cell line MC3T3-E1. We show that MMP-13 expression was strongly increased by T3 when the stimulation of OCN was low and, inversely, that the MMP-13 increase was low when T3 strongly stimulated the OCN expression. These findings suggest an interrelationship between OCN and MMP-13 expression. In fact, we observed that externally added OCN attenuated the T3 induced MMP-13 expression dose dependently and, furthermore, increased the 1,25D3 stimulated MMP-13 expression. Using a protein kinase A inhibitor we were able to show that this inhibitor mimics the effect of OCN suggesting a PKA dependent pathway to be involved in this regulatory process. We therefore hypothesize that OCN is a modulator of the hormonally regulated MMP-13 expression.
Collapse
Affiliation(s)
- Franz Varga
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling. 4th Medical Department, Hanusch Hospital, Vienna, Austria
| | | | | | | | | |
Collapse
|