1
|
Krieger CC, Place RF, Bevilacqua C, Marcus-Samuels B, Abel BS, Skarulis MC, Kahaly GJ, Neumann S, Gershengorn MC. TSH/IGF-1 Receptor Cross Talk in Graves' Ophthalmopathy Pathogenesis. J Clin Endocrinol Metab 2016; 101:2340-7. [PMID: 27043163 PMCID: PMC4891793 DOI: 10.1210/jc.2016-1315] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CONTEXT The TSH receptor (TSHR) is considered the main target of stimulatory autoantibodies in the pathogenesis of Graves' ophthalmopathy (GO); however, it has been suggested that stimulatory IGF-1 receptor (IGF-1R) autoantibodies also play a role. OBJECTIVE We previously demonstrated that a monoclonal stimulatory TSHR antibody, M22, activates TSHR/IGF-1R cross talk in orbital fibroblasts/preadipocytes obtained from patients with GO (GO fibroblasts [GOFs]). We show that cross talk between TSHR and IGF-1R, not direct IGF-1R activation, is involved in the mediation of GO pathogenesis stimulated by Graves' autoantibodies. DESIGN/SETTING/PARTICIPANTS Immunoglobulins were purified from the sera of 57 GO patients (GO-Igs) and tested for their ability to activate TSHR and/or IGF-1R directly and TSHR/IGF-1R cross talk in primary cultures of GOFs. Cells were treated with M22 or GO-Igs with or without IGF-1R inhibitory antibodies or linsitinib, an IGF-1R kinase inhibitor. MAIN OUTCOME MEASURES Hyaluronan (hyaluronic acid [HA]) secretion was measured as a major biological response for GOF stimulation. IGF-1R autophosphorylation was used as a measure of direct IGF-1R activation. TSHR activation was determined through cAMP production. RESULTS A total of 42 out of 57 GO-Ig samples stimulated HA secretion. None of the GO-Ig samples exhibited evidence for IGF-1R autophosphorylation. Both anti-IGF-1R antibodies completely inhibited IGF-1 stimulation of HA secretion. By contrast, only 1 IGF-1R antibody partially blocked HA secretion stimulated by M22 or GO-Igs in a manner similar to linsitinib, whereas the other IGF-1R antibody had no effect on M22 or GO-Ig stimulation. These findings show that the IGF-1R is involved in GO-Igs stimulation of HA secretion without direct activation of IGF-1R. CONCLUSIONS IGF-1R activation by GO-Igs occurs via TSHR/IGF-1R cross talk rather than direct binding to IGF-1R, and this cross talk is important in the pathogenesis of GO.
Collapse
Affiliation(s)
- Christine C Krieger
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Robert F Place
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Carmine Bevilacqua
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Bernice Marcus-Samuels
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Brent S Abel
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Monica C Skarulis
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - George J Kahaly
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| |
Collapse
|
2
|
Giuliani C, Saji M, Bucci I, Napolitano G. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor-LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn. Front Endocrinol (Lausanne) 2016; 7:103. [PMID: 27504107 PMCID: PMC4958915 DOI: 10.3389/fendo.2016.00103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
Since the discovery 60 years ago of the "long-acting thyroid stimulator" by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves' disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves' disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves' disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory constructed human TSHR-rat luteinizing hormone/chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves' disease. This review also describes the main contributions made by other researchers in TSHR molecular biology and TRAbs assay, especially with the development of highly potent moAbs. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided.
Collapse
Affiliation(s)
- Cesidio Giuliani
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, Ce.S.I.-Me.T., University of Chieti–Pescara, Chieti, Italy
- *Correspondence: Cesidio Giuliani,
| | - Motoyasu Saji
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH, USA
| | - Ines Bucci
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, Ce.S.I.-Me.T., University of Chieti–Pescara, Chieti, Italy
| | - Giorgio Napolitano
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, Ce.S.I.-Me.T., University of Chieti–Pescara, Chieti, Italy
| |
Collapse
|