1
|
Yin Y, Xu J, Ilyas I, Xu S. Bioactive Flavonoids in Protecting Against Endothelial Dysfunction and Atherosclerosis. Handb Exp Pharmacol 2024. [PMID: 38755351 DOI: 10.1007/164_2024_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Atherosclerosis is a common cardiovascular disease closely associated with factors such as hyperlipidaemia and chronic inflammation. Among them, endothelial dysfunction serves as a major predisposing factor. Vascular endothelial dysfunction is manifested by impaired endothelium-dependent vasodilation, enhanced oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, endothelial senescence, and endothelial-mesenchymal transition (EndoMT). Flavonoids are known for their antioxidant activity, eliminating oxidative stress induced by reactive oxygen species (ROS), thereby preventing the oxidation of low-density lipoprotein (LDL) cholesterol, reducing platelet aggregation, alleviating ischemic damage, and improving vascular function. Flavonoids have also been shown to possess anti-inflammatory activity and to protect the cardiovascular system. This review focuses on the protective effects of these naturally-occuring bioactive flavonoids against the initiation and progression of atherosclerosis through their effects on endothelial cells including, but not limited to, their antioxidant, anti-inflammatory, anti-thrombotic, and lipid-lowering properties. However, more clinical evidences are still needed to determine the exact role and optimal dosage of these compounds in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yanjun Yin
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Jingjing Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Park YJ, Kim HY, Gil TY, Kim HJ, Jin JS, Cha YY, An HJ. Magnolia officinalis Rehder & E. Wilson ameliorates white adipogenesis by upregulating AMPK and SIRT1 in vitro and in vivo. Heliyon 2024; 10:e27600. [PMID: 38515723 PMCID: PMC10955265 DOI: 10.1016/j.heliyon.2024.e27600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Although there is an established link between Magnolia Cortex (MO) and lipid metabolism in previous research, its exploration within the context of obesity has been limited. Therefore, the present study investigated the therapeutic effects of MO on obesity and its mechanism of action in vitro and in vivo. Our chromatography analysis revealed that Honokiol and Magnolol are contained in MO extract. In vitro experiments showed that lipid droplets, adipogenic, and lipogenic genes were notably diminished by increasing sirtuin 1 (SIRT1) and AMP-activated kinase (AMPK) protein expression in MO-treated 3T3-L1 adipocytes. In vivo experiments exhibited that MO administration significantly recovered the adipogenesis, lipogenesis, and fatty acid oxidation genes by increasing the SIRT1 and AMPK expression in white adipose tissue. Furthermore, hepatic steatosis by HFD feeding was ameliorated in MO-administered obese mice. We conclude that MO could be important manager for treating obesity through AMPK and SIRT1 regulation.
Collapse
Affiliation(s)
- Yea-Jin Park
- Department of Rehabilitative Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hee-Young Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Tae-Young Gil
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyo-Jung Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Yun-Yeop Cha
- Department of Rehabilitative Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
3
|
Khatoon F, Ali S, Kumar V, Elasbali AM, Alhassan HH, Alharethi SH, Islam A, Hassan MI. Pharmacological features, health benefits and clinical implications of honokiol. J Biomol Struct Dyn 2023; 41:7511-7533. [PMID: 36093963 DOI: 10.1080/07391102.2022.2120541] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Honokiol (HNK) is a natural polyphenolic compound extracted from the bark and leaves of Magnolia grandiflora. It has been traditionally used as a medicinal compound to treat inflammatory diseases. HNK possesses numerous health benefits with a minimal level of toxicity. It can cross the blood-brain barrier and blood-cerebrospinal fluid, thus having significant bioavailability in the neurological tissues. HNK is a promising bioactive compound possesses neuroprotective, antimicrobial, anti-tumorigenic, anti-spasmodic, antidepressant, analgesic, and antithrombotic features . HNK can prevent the growth of several cancer types and haematological malignancies. Recent studies suggested its role in COVID-19 therapy. It binds effectively with several molecular targets, including apoptotic factors, chemokines, transcription factors, cell surface adhesion molecules, and kinases. HNK has excellent pharmacological features and a wide range of chemotherapeutic effects, and thus, researchers have increased interest in improving the therapeutic implications of HNK to the clinic as a novel agent. This review focused on the therapeutic implications of HNK, highlighting clinical and pharmacological features and the underlying mechanism of action.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudia Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Hong SH, Park C, Hwangbo H, Bang E, Kim SO, Shim JH, Park SH, Lee H, Leem SH, Kim GY, Choi YH. Activation of Heme Oxygenase-1 is Involved in the Preventive Effect of Honokiol against Oxidative Damage in Human Retinal Pigment Epithelial Cells. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Mohd Nor NA, Budin SB, Zainalabidin S, Jalil J, Sapian S, Jubaidi FF, Mohamad Anuar NN. The Role of Polyphenol in Modulating Associated Genes in Diabetes-Induced Vascular Disorders. Int J Mol Sci 2022; 23:6396. [PMID: 35742837 PMCID: PMC9223817 DOI: 10.3390/ijms23126396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 01/05/2023] Open
Abstract
Diabetes-induced vascular disorder is considered one of the deadly risk factors among diabetic patients that are caused by persistent hyperglycemia that eventually leads to cardiovascular diseases. Elevated reactive oxygen species (ROS) due to high blood glucose levels activate signaling pathways such as AGE/RAGE, PKC, polyol, and hexosamine pathways. The activated signaling pathway triggers oxidative stress, inflammation, and apoptosis which later lead to vascular dysfunction induced by diabetes. Polyphenol is a bioactive compound that can be found abundantly in plants such as vegetables, fruits, whole grains, and nuts. This compound exerts therapeutic effects in alleviating diabetes-induced vascular disorder, mainly due to its potential as an anti-oxidative, anti-inflammatory, and anti-apoptotic agent. In this review, we sought to summarize the recent discovery of polyphenol treatments in modulating associated genes involved in the progression of diabetes-induced vascular disorder.
Collapse
Affiliation(s)
- Nor Anizah Mohd Nor
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
- PICOMS International University College, Taman Batu Muda, Batu Caves, Kuala Lumpur 68100, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Juriyati Jalil
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Syaifuzah Sapian
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
| | - Fatin Farhana Jubaidi
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
| | - Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
6
|
Figarola-Centurión I, Escoto-Delgadillo M, González-Enríquez GV, Gutiérrez-Sevilla JE, Vázquez-Valls E, Torres-Mendoza BM. Sirtuins Modulation: A Promising Strategy for HIV-Associated Neurocognitive Impairments. Int J Mol Sci 2022; 23:643. [PMID: 35054829 PMCID: PMC8775450 DOI: 10.3390/ijms23020643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 02/01/2023] Open
Abstract
HIV-Associated neurocognitive disorder (HAND) is one of the major concerns since it persists in 40% of this population. Nowadays, HAND neuropathogenesis is considered to be caused by the infected cells that cross the brain-blood barrier and produce viral proteins that can be secreted and internalized into neurons leading to disruption of cellular processes. The evidence points to viral proteins such as Tat as the causal agent for neuronal alteration and thus HAND. The hallmarks in Tat-induced neurodegeneration are endoplasmic reticulum stress and mitochondrial dysfunction. Sirtuins (SIRTs) are NAD+-dependent deacetylases involved in mitochondria biogenesis, unfolded protein response, and intrinsic apoptosis pathway. Tat interaction with these deacetylases causes inhibition of SIRT1 and SIRT3. Studies revealed that SIRTs activation promotes neuroprotection in neurodegenerative diseases such Alzheimer's and Parkinson's disease. Therefore, this review focuses on Tat-induced neurotoxicity mechanisms that involve SIRTs as key regulators and their modulation as a therapeutic strategy for tackling HAND and thereby improving the quality of life of people living with HIV.
Collapse
Affiliation(s)
- Izchel Figarola-Centurión
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
| | - Martha Escoto-Delgadillo
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara 44600, Mexico
| | - Gracia Viviana González-Enríquez
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Juan Ernesto Gutiérrez-Sevilla
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
- Microbiología Médica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Eduardo Vázquez-Valls
- Generación de Recursos Profesionales, Investigación y Desarrollo, Secretaria de Salud, Jalisco, Guadalajara 44100, Mexico;
| | - Blanca Miriam Torres-Mendoza
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.-D.); (J.E.G.-S.)
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| |
Collapse
|