1
|
Moustafa DA, Wu L, Ivey M, Fankhauser SC, Goldberg JB. Mutation of hmgA, encoding homogentisate 1,2-dioxygenase, is responsible for pyomelanin production but does not impact the virulence of Burkholderia cenocepacia in a chronic granulomatous disease mouse lung infection. Microbiol Spectr 2024; 12:e0041024. [PMID: 38809005 PMCID: PMC11218447 DOI: 10.1128/spectrum.00410-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis (CF) and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals; pigment production has been reported to enable Bcc strains to overcome the host cell oxidative burst. In this work, we investigated the role of pyomelanin in resistance to oxidative stress and virulence in strains J2315 and K56-2, two epidemic CF isolates belonging to the Burkholderia cenocepacia ET-12 lineage. We previously reported that a single amino acid change from glycine to arginine at residue 378 in homogentisate 1,2-dioxygenase (HmgA) affects the pigment production phenotype: pigmented J2315 has an arginine at position 378, while non-pigmented K56-2 has a glycine at this position. Herein, we performed allelic exchange to generate isogenic non-pigmented and pigmented strains of J2315 and K56-2, respectively, and tested these to determine whether pyomelanin contributes to the protection against oxidative stress in vitro as well as in a respiratory infection in CGD mice in vivo. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist oxidative stress with H2O2 and NO in vitro and did not change the virulence and infection outcome in CGD mice in vivo suggesting that other factors besides pyomelanin are contributing to the pathophysiology of these strains.IMPORTANCEThe Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria that are often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals and overcoming the host cell oxidative burst. We investigated the role of pyomelanin in Burkholderia cenocepacia strains J2315 (pigmented) and K56-2 (non-pigmented) and performed allelic exchange to generate isogenic non-pigmented and pigmented strains, respectively. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist H2O2 or NO in vitro and did not alter the outcome of a respiratory infection in CGD mice in vivo. These results suggest that pyomelanin may not always constitute a virulence factor and suggest that other features are contributing to the pathophysiology of these strains.
Collapse
Affiliation(s)
- Dina A Moustafa
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Linda Wu
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Melissa Ivey
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah C Fankhauser
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biology, Oxford College of Emory University, Oxford, Georgia, USA
| | - Joanna B Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Matos GR, Feliciano JR, Leitão JH. Non-coding regulatory sRNAs from bacteria of the Burkholderia cepacia complex. Appl Microbiol Biotechnol 2024; 108:280. [PMID: 38563885 PMCID: PMC10987360 DOI: 10.1007/s00253-024-13121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Small non-coding RNAs (sRNAs) are key regulators of post-transcriptional gene expression in bacteria. Hundreds of sRNAs have been found using in silico genome analysis and experimentally based approaches in bacteria of the Burkholderia cepacia complex (Bcc). However, and despite the hundreds of sRNAs identified so far, the number of functionally characterized sRNAs from these bacteria remains very limited. In this mini-review, we describe the general characteristics of sRNAs and the main mechanisms involved in their action as regulators of post-transcriptional gene expression, as well as the work done so far in the identification and characterization of sRNAs from Bcc. The number of functionally characterized sRNAs from Bcc is expected to increase and to add new knowledge on the biology of these bacteria, leading to novel therapeutic approaches to tackle the infections caused by these opportunistic pathogens, particularly severe among cystic fibrosis patients. KEY POINTS: •Hundreds of sRNAs have been identified in Burkholderia cepacia complex bacteria (Bcc). •A few sRNAs have been functionally characterized in Bcc. •Functionally characterized Bcc sRNAs play major roles in metabolism, biofilm formation, and virulence.
Collapse
Affiliation(s)
- Gonçalo R Matos
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Joana R Feliciano
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Jorge H Leitão
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
3
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Orababa OQ, Adesida SA, Peters RF, AbdulGanniyu Z, Olakojo O, Abioye A. Showing the limitations of available phenotypic assays to detect Burkholderia pseudomallei from clinical specimens in Nigeria. Access Microbiol 2023; 5:000604.v5. [PMID: 37970086 PMCID: PMC10634492 DOI: 10.1099/acmi.0.000604.v5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023] Open
Abstract
The genus Burkholderia comprises Gram-negative bacteria that are metabolically complex and versatile, often thriving in hostile settings. Burkholderia pseudomallei , the causative agent of melioidosis, is a prominent member of the genus and a clinical pathogen in tropical and sub-tropical regions. This pathogen is well known for its multidrug resistance and possible bioweapon potential. There is currently no report of the pathogen from clinical specimens in Nigeria, which might be due to misdiagnosis with phenotypic assays. This study aims to explore the accuracy of the use of phenotypic assays to diagnose B. pseudomallei in Nigeria. Two hundred and seventeen clinical samples and 28 Gram-negative clinical isolates were collected and analysed using Ashdown's selective agar and monoclonal antibody-based latex agglutination. Species-level identification was achieved using the analytical profile index (API) 20NE system. The susceptibility of the isolates to nine different antimicrobial agents was determined using the disc diffusion method. A total of seventy-four culture-positive isolates were obtained using Ashdown's selective agar. Twenty-two of these isolates were believed to be B. pseudomallei through the monoclonal antibody-based latex agglutination test and the API 20NE system subsequently identified 14 isolates as Burkholderia . The predominant Burkholderia species was B. cepacia with an isolation rate of 30.8 % (8/26). No isolate was distinctively identified as B. pseudomallei but five isolates were strongly suspected to be B. pseudomallei with similarity indices ranging from 81.9-91.3 %. Other bacterial species with definitive identity include Aeromonas sp., Sphingomonas sp. and Pseudomonas aeruginosa . The antibiotic susceptibility results revealed an overall resistance to amoxicillin-clavullanic acid of 71.4 %, to cefepime of 33.3 %, to trimethoprim-sulfamethoxazole of 38.1 %, to piperacillin-tazobactam of 33.3 %, to imipenem of 66.7 %, to doxycycline of 57.1% and to ceftazidime of 66.7 %. The highest intermediate resistance was observed for cefepime and piperacillin-tazobactam with a value of 66.7 % each, while there was no intermediate resistance for gentamicin, colistin and imipenem. Our findings, therefore, show that phenotypic assays alone are not sufficient in the diagnosis of melioidosis. Additionally, they provide robust support for present and future decisions to expand diagnostic capability for melioidosis beyond phenotypic assays in low-resource settings.
Collapse
Affiliation(s)
- Oluwatosin Qawiyy Orababa
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Nigeria
- Present address: School of Life Sciences, Gibbet Hill campus, University of Warwick, Coventry, UK
| | - Solayide A. Adesida
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Nigeria
| | - Rebecca F. Peters
- Department of Medical Microbiology and Parasitology, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
| | - Zainab AbdulGanniyu
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Nigeria
| | - Olawale Olakojo
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Nigeria
| | - Adefunke Abioye
- Lagos State Biobank, Mainland Hospital, Yaba, Lagos, Nigeria
| |
Collapse
|
5
|
Hubert L, Barton TE, Leighton HJ, Richards B. Preclinical testing of antimicrobials for cystic fibrosis lung infections: current needs and future priorities. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001361. [PMID: 37428539 PMCID: PMC10433426 DOI: 10.1099/mic.0.001361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
A workshop was held by the PIPE-CF strategic research centre to consider preclinical testing of antimicrobials for cystic fibrosis (CF). The workshop brought together groups of people from the CF community to discuss current challenges and identify priorities when developing CF therapeutics. This paper summarizes the key points from the workshop from the different sessions, including talks given by presenters on the day and round table discussions. Currently, it is felt that there is a large disconnect throughout the community, with communication between patients, clinicians and researchers being the main issue. This leads to little consideration being given to factors such as treatment regimes, routes of administration and side effects when developing new therapies, that could alter the day-to-day lifestyles of people living with CF. Translation of numerical data that are obtained in the laboratory to successful outcomes of clinical trials is also a key challenge facing researchers today. Laboratory assays in preclinical testing involve basing results on bacterial clearance and decrease in viable cells, when these are not factors that are considered when determining the success of a treatment in the clinic. However, there are several models currently in development that seek to tackle some of these issues, such as the organ-on-a-chip technology and adaptation of a hollow-fibre model, as well as the development of media that aim to mimic the niche environments of a CF respiratory tract. It is hoped that by summarizing these opinions and discussing current research, the communication gap between groups can begin to close.
Collapse
Affiliation(s)
- Lucile Hubert
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff, UK
| | - Thomas E. Barton
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
| | - Hollie J. Leighton
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
| | - Brogan Richards
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Thornton CS, Parkins MD. Microbial Epidemiology of the Cystic Fibrosis Airways: Past, Present, and Future. Semin Respir Crit Care Med 2023; 44:269-286. [PMID: 36623820 DOI: 10.1055/s-0042-1758732] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Progressive obstructive lung disease secondary to chronic airway infection, coupled with impaired host immunity, is the leading cause of morbidity and mortality in cystic fibrosis (CF). Classical pathogens found in the airways of persons with CF (pwCF) include Pseudomonas aeruginosa, Staphylococcus aureus, the Burkholderia cepacia complex, Achromobacter species, and Haemophilus influenzae. While traditional respiratory-tract surveillance culturing has focused on this limited range of pathogens, the use of both comprehensive culture and culture-independent molecular approaches have demonstrated complex highly personalized microbial communities. Loss of bacterial community diversity and richness, counteracted with relative increases in dominant taxa by traditional CF pathogens such as Burkholderia or Pseudomonas, have long been considered the hallmark of disease progression. Acquisition of these classic pathogens is viewed as a harbinger of advanced disease and postulated to be driven in part by recurrent and frequent antibiotic exposure driven by frequent acute pulmonary exacerbations. Recently, CF transmembrane conductance regulator (CFTR) modulators, small molecules designed to potentiate or restore diminished protein levels/function, have been successfully developed and have profoundly influenced disease course. Despite the multitude of clinical benefits, structural lung damage and consequent chronic airway infection persist in pwCF. In this article, we review the microbial epidemiology of pwCF, focus on our evolving understanding of these infections in the era of modulators, and identify future challenges in infection surveillance and clinical management.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
7
|
Do T, Thokkadam A, Leach R, Link AJ. Phenotype-Guided Comparative Genomics Identifies the Complete Transport Pathway of the Antimicrobial Lasso Peptide Ubonodin in Burkholderia. ACS Chem Biol 2022; 17:2332-2343. [PMID: 35802499 PMCID: PMC9454059 DOI: 10.1021/acschembio.2c00420] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New antibiotics are needed as bacterial infections continue to be a leading cause of death, but efforts to develop compounds with promising antibacterial activity are hindered by a poor understanding of─and limited strategies for elucidating─their modes of action. We recently discovered a novel lasso peptide, ubonodin, that is active against opportunistic human lung pathogens from the Burkholderia cepacia complex (Bcc). Ubonodin inhibits RNA polymerase, but only select strains were susceptible, indicating that having a conserved cellular target does not guarantee activity. Given the cytoplasmic target, we hypothesized that cellular uptake of ubonodin determines susceptibility. Although Bcc strains harbor numerous nutrient uptake systems, these organisms lack close homologues of the single known lasso peptide membrane receptor, FhuA. Thus, a straightforward homology-driven approach failed to uncover the identity of the ubonodin transporter(s). Here, we used phenotype-guided comparative genomics to identify genes uniquely associated with ubonodin-susceptible Bcc strains, leading to the identification of PupB as the ubonodin outer membrane (OM) receptor in Burkholderia. The loss of PupB renders B. cepacia resistant to ubonodin, whereas expressing PupB sensitizes a resistant strain. We also examine how a conserved iron-regulated transcriptional pathway controls PupB to further tune ubonodin susceptibility. PupB is only the second lasso peptide OM receptor to be uncovered and the first outside of enterobacteria. Finally, we elucidate the full transport pathway for ubonodin by identifying its inner membrane receptor YddA in Burkholderia. Our work provides a complete picture of the mode of action of ubonodin and establishes a general framework for deciphering the transport pathways of other natural products with cytoplasmic targets.
Collapse
Affiliation(s)
- Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Alina Thokkadam
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Robert Leach
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
8
|
Potential opportunities and challenges for infection prevention and control for cystic fibrosis in the modern era. Curr Opin Infect Dis 2022; 35:346-352. [PMID: 35849525 DOI: 10.1097/qco.0000000000000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW We describe recent changes in care for people with cystic fibrosis (PwCF) that could impact infection prevention and control (IP&C) practices. RECENT FINDINGS Current IP&C guidelines primarily aim to prevent acquisition and transmission of pathogens in PwCF utilizing evidence-based recommendations for healthcare settings. Currently, highly effective modulator therapy (HEMT) is dramatically improving the clinical manifestations of cystic fibrosis and reducing pulmonary exacerbations and hospitalizations. Thus, it is feasible that long-term, sustained improvements in pulmonary manifestations of cystic fibrosis could favorably alter cystic fibrosis microbiology. The COVID-19 pandemic increased the use of virtual care, enabling PwCF to spend less time in healthcare settings and potentially reduce the risk of acquiring cystic fibrosis pathogens. The increasing use of whole genome sequencing (WGS) shows great promise in elucidating sources of cystic fibrosis pathogens, shared strains, and epidemic strains and ultimately could allow the cystic fibrosis community to monitor the safety of changed IP&C practices, if deemed appropriate. Finally, given the nonhealthcare environmental reservoirs for cystic fibrosis pathogens, practical guidance can inform PwCF and their families about potential risks and mitigation strategies. SUMMARY New developments in the treatment of PwCF, a shift toward virtual care delivery of care, and use of WGS could change future IP&C practices.
Collapse
|
9
|
Grund ME, Choi Soo J, Cote CK, Berisio R, Lukomski S. Thinking Outside the Bug: Targeting Outer Membrane Proteins for Burkholderia Vaccines. Cells 2021; 10:cells10030495. [PMID: 33668922 PMCID: PMC7996558 DOI: 10.3390/cells10030495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Increasing antimicrobial resistance due to misuse and overuse of antimicrobials, as well as a lack of new and innovative antibiotics in development has become an alarming global threat. Preventative therapeutics, like vaccines, are combative measures that aim to stop infections at the source, thereby decreasing the overall use of antibiotics. Infections due to Gram-negative pathogens pose a significant treatment challenge because of substantial multidrug resistance that is acquired and spread throughout the bacterial population. Burkholderia spp. are Gram-negative intrinsically resistant bacteria that are responsible for environmental and nosocomial infections. The Burkholderia cepacia complex are respiratory pathogens that primarily infect immunocompromised and cystic fibrosis patients, and are acquired through contaminated products and equipment, or via patient-to-patient transmission. The Burkholderia pseudomallei complex causes percutaneous wound, cardiovascular, and respiratory infections. Transmission occurs through direct exposure to contaminated water, water-vapors, or soil, leading to the human disease melioidosis, or the equine disease glanders. Currently there is no licensed vaccine against any Burkholderia pathogen. This review will discuss Burkholderia vaccine candidates derived from outer membrane proteins, OmpA, OmpW, Omp85, and Bucl8, encompassing their structures, conservation, and vaccine formulation.
Collapse
Affiliation(s)
- Megan E. Grund
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
| | - Jeon Choi Soo
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
| | - Christopher K. Cote
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA;
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council (CNR-IBB), 80145 Naples, Italy;
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
- Correspondence: ; Tel.: +1-304-293-6405
| |
Collapse
|