1
|
Şahin A, Babayev H, Cirigliano L, Preto M, Falcone M, Altıntas E, Gül M. Unveiling the molecular Hallmarks of Peyronie's disease: a comprehensive narrative review. Int J Impot Res 2024; 36:801-808. [PMID: 38454161 DOI: 10.1038/s41443-024-00845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Peyronie's disease, a fibroinflammatory disorder, detrimentally impacts the sexual well-being of men and their partners. The manifestation of fibrotic plaques within penile tissue, attributed to dysregulated fibrogenesis, is pathognomonic for this condition. The onset of fibrosis hinges on the perturbation of the equilibrium between matrix metalloproteinases (MMPs), crucial enzymes governing the extracellular matrix, and tissue inhibitors of MMPs (TIMPs). In the context of Peyronie's disease, there is an elevation in TIMP levels coupled with a decline in MMP levels, culminating in fibrogenesis. Despite the scant molecular insights into fibrotic pathologies, particularly in the context of Peyronie's disease, a comprehensive literature search spanning 1995 to 2023, utilizing PubMed Library, was conducted to elucidate these mechanisms. The findings underscore the involvement of growth factors such as FGF and PDGF, and cytokines like IL-1 and IL-6, alongside PAI-1, PTX-3, HIF, and IgG4 in the fibrotic cascade. Given the tissue-specific modulation of fibrosis, comprehending the molecular underpinnings of penile fibrosis becomes imperative for the innovation of novel and efficacious therapies targeting Peyronie's disease. This review stands as a valuable resource for researchers and clinicians engaged in investigating the molecular basis of fibrotic diseases, offering guidance for advancements in understanding Peyronie's disease.
Collapse
Affiliation(s)
- Ali Şahin
- Selcuk University School of Medicine, 42250, Konya, Turkey
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265, Davos, Switzerland
| | - Lorenzo Cirigliano
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Mirko Preto
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Marco Falcone
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Emre Altıntas
- Department of Urology, Selcuk University School of Medicine, 42250, Konya, Turkey
| | - Murat Gül
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy.
- Department of Urology, Selcuk University School of Medicine, 42250, Konya, Turkey.
| |
Collapse
|
2
|
Saleem F, Ryerson CJ, Sarma N, Johannson K, Marcoux V, Fisher J, Assayag D, Manganas H, Khalil N, Morisset J, Glaspole IN, Goh N, Oldham JM, Cox G, Fell C, Gershon AS, Halayko A, Hambly N, Lok SD, Shapera S, To T, Wilcox PG, Wong AW, Kolb M, Khor YH. Predicting New-onset Exertional and Resting Hypoxemia in Fibrotic Interstitial Lung Disease. Ann Am Thorac Soc 2023; 20:1726-1734. [PMID: 37676933 DOI: 10.1513/annalsats.202303-208oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023] Open
Abstract
Rationale: Hypoxemia in fibrotic interstitial lung disease (ILD) indicates disease progression and is of prognostic significance. The onset of hypoxemia signifies disease progression and predicts mortality in fibrotic ILD. Accurately predicting new-onset exertional and resting hypoxemia prompts appropriate patient discussion and timely consideration of home oxygen. Objectives: We derived and externally validated a risk prediction tool for both new-onset exertional and new-onset resting hypoxemia. Methods: This study used ILD registries from Canada for the derivation cohort and from Australia and the United States for the validation cohort. New-onset exertional and resting hypoxemia were defined as nadir oxyhemoglobin saturation < 88% during 6-minute-walk tests, resting oxyhemoglobin saturation < 88%, or the initiation of ambulatory or continuous oxygen. Candidate predictors included patient demographics, ILD subtypes, and pulmonary function. Time-varying Cox regression was used to identify the top-performing prediction model according to Akaike information criterion and clinical usability. Model performance was assessed using Harrell's C-index and goodness-of-fit (GoF) likelihood ratio test. A categorized risk prediction tool was developed. Results: The best-performing prediction model for both new-onset exertional and new-onset resting hypoxemia included age, body mass index, a diagnosis of idiopathic pulmonary fibrosis, and percent predicted forced vital capacity and diffusing capacity of carbon monoxide. The risk prediction tool exhibited good performance for exertional hypoxemia (C-index, 0.70; GoF, P = 0.85) and resting hypoxemia (C-index, 0.77; GoF, P = 0.27) in the derivation cohort, with similar performance in the validation cohort except calibration for resting hypoxemia (GoF, P = 0.001). Conclusions: This clinically applicable risk prediction tool predicted new-onset exertional and resting hypoxemia at 6 months in the derivation cohort and a diverse validation cohort. Suboptimal GoF in the validation cohort likely reflected overestimation of hypoxemia risk and indicated that the model is not flawed because of underestimation of hypoxemia.
Collapse
Affiliation(s)
- Ferhan Saleem
- Department of Medicine and
- Department of Medicine, St. Martinus University, Willemstad, Curaçao, Netherlands Antilles
| | - Christopher J Ryerson
- Department of Medicine and
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nandini Sarma
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon
| | - Kerri Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Veronica Marcoux
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Deborah Assayag
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Helene Manganas
- Département de Médecine, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | - Julie Morisset
- Département de Médecine, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Ian N Glaspole
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Nicole Goh
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
| | - Justin M Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gerard Cox
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Charlene Fell
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrea S Gershon
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Halayko
- Departmentof Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nathan Hambly
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Stacey D Lok
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Teresa To
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Alyson W Wong
- Department of Medicine and
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Yet H Khor
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
- Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Victoria, Australia; and
- Institute for Breathing and Sleep, Heidelberg, Victoria, Australia
| |
Collapse
|
3
|
Young ON, Bourke JE, Widdop RE. Catch your breath: The protective role of the angiotensin AT 2 receptor for the treatment of idiopathic pulmonary fibrosis. Biochem Pharmacol 2023; 217:115839. [PMID: 37778444 DOI: 10.1016/j.bcp.2023.115839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease whereby excessive deposition of extracellular matrix proteins (ECM) ultimately leads to respiratory failure. While there have been advances in pharmacotherapies for pulmonary fibrosis, IPF remains an incurable and irreversible disease. There remains an unmet clinical need for treatments that reverse fibrosis, or at the very least have a more tolerable side effect profile than currently available treatments. Transforming growth factor β1(TGFβ1) is considered the main driver of fibrosis in IPF. However, as our understanding of the role of the pulmonary renin-angiotensin system (PRAS) in the pathogenesis of IPF increases, it is becoming clear that targeting angiotensin receptors represents a potential novel treatment strategy for IPF - in particular, via activation of the anti-fibrotic angiotensin type 2 receptor (AT2R). This review describes the current understanding of the pathophysiology of IPF and the mediators implicated in its pathogenesis; focusing on TGFβ1, angiotensin II and related peptides in the PRAS and their contribution to fibrotic processes in the lung. Preclinical and clinical assessment of currently available AT2R agonists and the development of novel, highly selective ligands for this receptor will also be described, with a focus on compound 21, currently in clinical trials for IPF. Collectively, this review provides evidence of the potential of AT2R as a novel therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivia N Young
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jane E Bourke
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|