1
|
Xu X, Xu X, Zhong K, Wu Z, Wang C, Ding Z, Chen S, Zhang J. Salecan ameliorates LPS-induced acute lung injury through regulating Keap1-Nrf2/HO-1 pathway in mice. Int Immunopharmacol 2024; 128:111512. [PMID: 38199195 DOI: 10.1016/j.intimp.2024.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Acute lung injury (ALI) is a severe clinical condition with high mortality, characterized by rapid onset and limited treatment options. The pathogenesis of ALI involves inflammation and oxidative stress. The polysaccharide salecan, a water-soluble β-(1,3)-D-glucan, has been found to possess numerous pharmaceutical effects, including anti-inflammatory properties, inhibition of oxidative stress, and anti-fatigue effects. This study aims to investigate the protective effect and underlying mechanism of salecan against LPS-induced ALI in mice. Using an in vivo LPS-induced ALI mouse model and an in vitro RAW264.7 cell system, we investigated the role of salecan in ALI with various experimental approaches, including histological staining, quantitative real-time PCR, flow cytometry, western blot analysis, and other relevant assays. Pre-treatment with salecan effectively attenuated LPS-induced ALI in vivo, reducing the severity of pulmonary edema, inflammation, and oxidative stress. NMR-based metabolomic profiling analysis revealed that salecan attenuated LPS-induced metabolic imbalances associated with ALI. Furthermore, salecan downregulated Keap1 and upregulated Nrf2 and HO-1 protein levels, indicating its modulation of the Keap1-Nrf2/HO-1 signaling pathway as a potential mechanism underlying its protective effects against ALI. In vitro studies on RAW264.7 cells revealed that salecan exhibited binding affinity towards macrophages, thereby alleviating LPS-induced apoptosis and inflammation, which underpin its therapeutic potential against ALI. Our study suggests that salecan can alleviate LPS-induced ALI by modulating oxidative stress, inflammatory response, and apoptosis through the activation of the Keap1-Nrf2/HO-1 pathway. These findings provide novel insights into the potential therapeutic use of salecan for the treatment of ALI.
Collapse
Affiliation(s)
- Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Kunxia Zhong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhuhui Wu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Chenchen Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Abrescia N. Preventing SARS-CoV-2 infection and its severe outcomes in HIV-infected people. AIDS 2023; 37:1473-1475. [PMID: 37395252 PMCID: PMC10328431 DOI: 10.1097/qad.0000000000003608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Nicola Abrescia
- AORN Ospedali dei Colli, Hospital for Infectious Diseases 'D. Cotugno', Naples, Italy
| |
Collapse
|
3
|
Dimic-Janjic S, Hoda MA, Milenkovic B, Kotur-Stevuljevic J, Stjepanovic M, Gompelmann D, Jankovic J, Miljkovic M, Milin-Lazovic J, Djurdjevic N, Maric D, Milivojevic I, Popevic S. The usefulness of MMP-9, TIMP-1 and MMP-9/TIMP-1 ratio for diagnosis and assessment of COPD severity. Eur J Med Res 2023; 28:127. [PMID: 36935521 PMCID: PMC10026402 DOI: 10.1186/s40001-023-01094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/10/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Inflammation, oxidative stress and an imbalance between proteases and protease inhibitors are recognized pathophysiological features of chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate serum levels of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in patients with COPD and to assess their relationship with lung function, symptom severity scores and recent acute exacerbations. METHODS In this observational cohort study, serum levels of MMP-9 and TIMP-1 and the MMP-9/TIMP-1 ratio in the peripheral blood of COPD patients with stable disease and healthy controls were determined, and their association with lung function (postbronchodilator spirometry, body plethysmography, single breath diffusion capacity for carbon monoxide), symptom severity scores (mMRC and CAT) and exacerbation history were assessed. RESULTS COPD patients (n = 98) had significantly higher levels of serum MMP-9 and TIMP-1 and a higher MMP-9/TIMP-1 ratio than healthy controls (n = 47) (p ≤ 0.001). The areas under the receiver operating characteristic curve for MMP-9, TIMP-1 and the MMP-9/TIMP-1 ratio for COPD diagnosis were 0.974, 0.961 and 0.910, respectively (all p < 0.05). MMP-9 and the MMP-9/TIMP-1 ratio were both negatively correlated with FVC, FEV1, FEV1/FVC, VC, and IC (all p < 0.05). For MMP-9, a positive correlation was found with RV/TLC% (p = 0.005), and a positive correlation was found for the MMP-9/TIMP-1 ratio with RV% and RV/TLC% (p = 0.013 and 0.002, respectively). Patients with COPD GOLD 3 and 4 presented greater MMP-9 levels and a greater MMP-9/TIMP-1 ratio compared to GOLD 1 and 2 patients (p ≤ 0.001). No correlation between diffusion capacity for carbon monoxide and number of acute exacerbations in the previous year was found. CONCLUSIONS COPD patients have elevated serum levels of MMP-9 and TIMP-1 and MMP-9/TIMP-1 ratio. COPD patients have an imbalance between MMP-9 and TIMP-1 in favor of a pro-proteolytic environment, which overall indicates the importance of the MMP-9/TIMP-1 ratio as a potential biomarker for COPD diagnosis and severity.
Collapse
Affiliation(s)
- Sanja Dimic-Janjic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia.
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Branislava Milenkovic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| | - Jelena Kotur-Stevuljevic
- Faculty of Pharmacy, Department for Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mihailo Stjepanovic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| | - Daniela Gompelmann
- Division of Pulmonology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jelena Jankovic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| | - Milica Miljkovic
- Faculty of Pharmacy, Department for Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Jelena Milin-Lazovic
- Faculty of Medicine, Institute for Medical Statistics and Informatics, University of Belgrade, Belgrade, Serbia
| | - Natasa Djurdjevic
- Clinic for Pulmonology, University Clinical Center of Serbia, Koste Todorovica 26, Belgrade, Serbia
| | - Dragana Maric
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| | - Ivan Milivojevic
- Clinic for Pulmonology, University Clinical Center of Serbia, Koste Todorovica 26, Belgrade, Serbia
| | - Spasoje Popevic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| |
Collapse
|
4
|
Satta E, Alfarone C, De Maio A, Gentile S, Romano C, Polverino M, Polverino F. Kidney and lung in pathology: mechanisms and clinical implications. Multidiscip Respir Med 2022; 17:819. [PMID: 35127080 PMCID: PMC8791019 DOI: 10.4081/mrm.2022.819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/04/2021] [Indexed: 11/23/2022] Open
Abstract
There is a close, physiological, relationship between kidney and lung that begin in the fetal age, and is aimed to keep homeostatic balance in the body. From a pathological point of view, the kidneys could be damaged by inflammatory mediators or by immune-mediated factors linked to a primary lung disease or, conversely, it could be the kidney disease that causes lung damage. Non-immunological mechanisms are frequently involved in renal and pulmonary diseases, as observed in chronic conditions. This crosstalk have clinical and therapeutic consequences. This review aims to describe the pulmonary-renal link in physiology and in pathological conditions.
Collapse
|
5
|
Wang X, Rojas-Quintero J, Zhang D, Nakajima T, Walker KH, Peh HY, Li Y, Fucci QA, Tesfaigzi Y, Owen CA. A disintegrin and metalloproteinase domain-15 deficiency leads to exaggerated cigarette smoke-induced chronic obstructive pulmonary disease (COPD)-like disease in mice. Mucosal Immunol 2021; 14:342-356. [PMID: 32690871 PMCID: PMC8422911 DOI: 10.1038/s41385-020-0325-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/21/2020] [Accepted: 07/06/2020] [Indexed: 02/04/2023]
Abstract
A disintegrin and metalloproteinase domain-15 (ADAM15) is expressed by cells implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), but its contributions to COPD are unknown. To address this gap, ADAM15 levels were measured in samples from cigarette smoke (CS)-versus air-exposed wild-type (WT) mice. CS-induced COPD-like disease was compared in CS-exposed WT, Adam15-/-, and Adam15 bone marrow chimeric mice. CS exposure increased Adam15 expression in lung macrophages and CD8+ T cells and to a lesser extent in airway epithelial cells in WT mice. CS-exposed Adam15-/- mice had greater emphysema, small airway fibrosis, and lung inflammation (macrophages and CD8+ T cells) than WT mice. Adam15 bone marrow chimera studies revealed that Adam15 deficiency in leukocytes led to exaggerated pulmonary inflammation and COPD-like disease in mice. Adam15 deficiency in CD8+ T cells was required for the exaggerated pulmonary inflammation and COPD-like disease in CS-exposed Adam15-/- mice (as assessed by genetically deleting CD8+ T cells in Adam15-/- mice). Adam15 deficiency increased pulmonary inflammation by rendering CD8+ T cells and macrophages resistant to CS-induced activation of the mitochondrial apoptosis pathway by preserving mTOR signaling and intracellular Mcl-1 levels in these cells. These results strongly link ADAM15 deficiency to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Duo Zhang
- Program in Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA, 30901, USA,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Takahiro Nakajima
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Katherine H. Walker
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Yuhong Li
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Quynh-Anh Fucci
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
McNulty MJ, Silberstein DZ, Kuhn BT, Padgett HS, Nandi S, McDonald KA, Cross CE. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radic Biol Med 2021; 163:10-30. [PMID: 33279618 DOI: 10.1016/j.freeradbiomed.2020.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Alpha-1 antitrypsin deficiency (A1ATD) is an autosomal recessive disease characterized by low plasma levels of A1AT, a serine protease inhibitor representing the most abundant circulating antiprotease normally present at plasma levels of 1-2 g/L. The dominant clinical manifestations include predispositions to early onset emphysema due to protease/antiprotease imbalance in distal lung parenchyma and liver disease largely due to unsecreted polymerized accumulations of misfolded mutant A1AT within the endoplasmic reticulum of hepatocytes. Since 1987, the only FDA licensed specific therapy for the emphysema component has been infusions of A1AT purified from pooled human plasma at the 2020 cost of up to US $200,000/year with the risk of intermittent shortages. In the past three decades various, potentially less expensive, recombinant forms of human A1AT have reached early stages of development, one of which is just reaching the stage of human clinical trials. The focus of this review is to update strategies for the treatment of the pulmonary component of A1ATD with some focus on perspectives for therapeutic production and regulatory approval of a recombinant product from plants. We review other competitive technologies for treating the lung disease manifestations of A1ATD, highlight strategies for the generation of data potentially helpful for securing FDA Investigational New Drug (IND) approval and present challenges in the selection of clinical trial strategies required for FDA licensing of a New Drug Approval (NDA) for this disease.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - David Z Silberstein
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Brooks T Kuhn
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Carroll E Cross
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
7
|
Sohrabi F, Dianat M, Badavi M, Radan M, Mard SA. Does gallic acid improve cardiac function by attenuation of oxidative stress and inflammation in an elastase-induced lung injury? IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1130-1138. [PMID: 32963734 PMCID: PMC7491503 DOI: 10.22038/ijbms.2020.46427.10721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective(s): Cardiovascular disease has an important role in mortality caused by lung injury. Emphysema is associated with impaired pulmonary gas exchange efficiency and airflow limitation associated with small airway inflammation. The aim was to evaluate the interactions between lung injury, inflammation, and cardiovascular disease. Since gallic acid has antioxidant and anti-inflammatory effects, we hypothesized that gallic acid protects the lung and the related heart dysfunction in elastase-induced lung injury. Materials and Methods: Forty-eight Sprague-Dawley male rats were randomly divided into six groups: Control, Porcine pancreatic elastase (PPE) , PPE+GA, and 3 groups for different doses of gallic acid (GA 7.5, GA 15, GA 30 mg/kg). PPE was injected intra-tracheally on days 1 and 10 of the test. In each group, electrocardiography, hemodynamic parameters, oxidative stress, and bronchoalveolar lavage fluid were examined. Results: PPE administration showed a decrease in HR and QRS voltage of electrocardiogram parameters, as well as in hemodynamic parameters (P<0.05, P<0.01, and P<0.001) and superoxide dismutase (SOD) (P<0.05). Tumor Necrosis Factor α (TNF-α) (P<0.001), interleukin 6 (IL-6) (P<0.001), interleukin 6 (MDA) (P<0.001), and the total number of white blood cells (P<0.001) showed an increase in PPE groups. Gallic acid preserved the values of hemodynamic properties, oxidative stress, inflammation, and electrocardiogram parameters in comparison to the PPE group. Conclusion: Briefly, this study showed the valuable effect of gallic acid in cardiac dysfunction related to elastase-induced lung injury. These findings suggested that gallic acid, as a natural antioxidant, has a potential therapeutic effect on preventing oxidative stress, inflammation, and subsequent cardiovascular disease.
Collapse
Affiliation(s)
- Farzaneh Sohrabi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Radan
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Boytard L, Hadi T, Silvestro M, Qu H, Kumpfbeck A, Sleiman R, Fils KH, Alebrahim D, Boccalatte F, Kugler M, Corsica A, Gelb BE, Jacobowitz G, Miller G, Bellini C, Oakes J, Silvestre JS, Zangi L, Ramkhelawon B. Lung-derived HMGB1 is detrimental for vascular remodeling of metabolically imbalanced arterial macrophages. Nat Commun 2020; 11:4311. [PMID: 32855420 PMCID: PMC7453029 DOI: 10.1038/s41467-020-18088-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary disease increases the risk of developing abdominal aortic aneurysms (AAA). However, the mechanism underlying the pathological dialogue between the lungs and aorta is undefined. Here, we find that inflicting acute lung injury (ALI) to mice doubles their incidence of AAA and accelerates macrophage-driven proteolytic damage of the aortic wall. ALI-induced HMGB1 leaks and is captured by arterial macrophages thereby altering their mitochondrial metabolism through RIPK3. RIPK3 promotes mitochondrial fission leading to elevated oxidative stress via DRP1. This triggers MMP12 to lyse arterial matrix, thereby stimulating AAA. Administration of recombinant HMGB1 to WT, but not Ripk3-/- mice, recapitulates ALI-induced proteolytic collapse of arterial architecture. Deletion of RIPK3 in myeloid cells, DRP1 or MMP12 suppression in ALI-inflicted mice repress arterial stress and brake MMP12 release by transmural macrophages thereby maintaining a strengthened arterial framework refractory to AAA. Our results establish an inter-organ circuitry that alerts arterial macrophages to regulate vascular remodeling.
Collapse
Affiliation(s)
- Ludovic Boytard
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Tarik Hadi
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Michele Silvestro
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Hengdong Qu
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Andrew Kumpfbeck
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Rayan Sleiman
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Kissinger Hyppolite Fils
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Dornazsadat Alebrahim
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA
| | | | - Matthias Kugler
- Department of Cell Biology, New York University Langone Health, New York, NY, USA
| | - Annanina Corsica
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Bruce E Gelb
- Transplant Institute, Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Glenn Jacobowitz
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA
| | - George Miller
- Department of Cell Biology, New York University Langone Health, New York, NY, USA.,S. Arthur Localio Laboratory, Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jessica Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | - Lior Zangi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bhama Ramkhelawon
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA. .,Department of Cell Biology, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
9
|
Janciauskiene S. The Beneficial Effects of Antioxidants in Health And Diseases. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:182-202. [PMID: 32558487 DOI: 10.15326/jcopdf.7.3.2019.0152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen and nitrogen species can be generated endogenously (by mitochondria, peroxisomes, and phagocytic cells) and exogenously (by pollutions, UV exposure, xenobiotic compounds, and cigarette smoke). The negative effects of free radicals are neutralized by antioxidant molecules synthesized in our body, like glutathione, uric acid, or ubiquinone, and those obtained from the diet, such as vitamins C, E, and A, and flavonoids. Different microelements like selenium and zinc have no antioxidant action themselves but are required for the activity of many antioxidant enzymes. Furthermore, circulating blood proteins are suggested to account for more than 50% of the combined antioxidant effects of urate, ascorbate, and vitamin E. Antioxidants together constitute a mutually supportive defense against reactive oxygen and nitrogen species to maintain the oxidant/antioxidant balance. This article outlines the oxidative and anti-oxidative molecules involved in the pathogenesis of chronic obstructive lung disease. The role of albumin and alpha-1 antitrypsin in antioxidant defense is also discussed.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Member of German Centre for Lung Research (DZL), Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
10
|
Wang X, Rojas-Quintero J, Owen CA. To Bet or Not to Bet on T-bet As a Therapeutic Target in Emphysema? Am J Respir Cell Mol Biol 2019; 61:414-416. [PMID: 30986358 PMCID: PMC6775955 DOI: 10.1165/rcmb.2019-0118ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xiaoyun Wang
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBoston, Massachusettsand
- Harvard Medical SchoolBoston, Massachusetts
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBoston, Massachusettsand
- Harvard Medical SchoolBoston, Massachusetts
| | - Caroline A Owen
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBoston, Massachusettsand
- Harvard Medical SchoolBoston, Massachusetts
| |
Collapse
|
11
|
The role of elastin-derived peptides in human physiology and diseases. Matrix Biol 2019; 84:81-96. [PMID: 31295577 DOI: 10.1016/j.matbio.2019.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
Once considered as inert, the extracellular matrix recently revealed to be biologically active. Elastin is one of the most important components of the extracellular matrix. Many vital organs including arteries, lungs and skin contain high amounts of elastin to assure their correct function. Physiologically, the organism contains a determined quantity of elastin from the early development which may remain physiologically constant due to its very long half-life and very low turnover. Taking into consideration the continuously ongoing challenges during life, there is a physiological degradation of elastin into elastin-derived peptides which is accentuated in several disease states such as obstructive pulmonary diseases, atherosclerosis and aortic aneurysm. These elastin-derived peptides have been shown to have various biological effects mediated through their interaction with their cognate receptor called elastin receptor complex eliciting several signal transduction pathways. In this review, we will describe the production and the biological effects of elastin-derived peptides in physiology and pathology.
Collapse
|
12
|
Wang X, Rojas-Quintero J, Wilder J, Tesfaigzi Y, Zhang D, Owen CA. Tissue Inhibitor of Metalloproteinase-1 Promotes Polymorphonuclear Neutrophil (PMN) Pericellular Proteolysis by Anchoring Matrix Metalloproteinase-8 and -9 to PMN Surfaces. THE JOURNAL OF IMMUNOLOGY 2019; 202:3267-3281. [PMID: 31019060 DOI: 10.4049/jimmunol.1801466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/20/2019] [Indexed: 01/02/2023]
Abstract
Matrix metalloproteinase (MMP)-8 and -9 released by degranulating polymorphonuclear cells (PMNs) promote pericellular proteolysis by binding to PMN surfaces in a catalytically active tissue inhibitor of metalloproteinases (TIMP)-resistant forms. The PMN receptor(s) to which MMP-8 and MMP-9 bind(s) is not known. Competitive binding experiments showed that Mmp-8 and Mmp-9 share binding sites on murine PMN surfaces. A novel form of TIMP-1 (an inhibitor of soluble MMPs) is rapidly expressed on PMN surfaces when human PMNs are activated. Membrane-bound TIMP-1 is the PMN receptor for pro- and active MMP-8 and -9 as shown by the following: 1) TIMP-1 is strikingly colocalized with MMP-8 and -9 on activated human PMN surfaces and in PMN extracellular traps; 2) minimal immunoreactive and active Mmp-8 or Mmp-9 are detected on the surface of activated Timp-1-/- murine PMNs; and 3) binding of exogenous Timp-1 (but not Timp-2) to Timp-1-/- murine PMNs reconstitutes the binding of exogenous pro-Mmp-8 and pro-Mmp-9 to the surface of Timp-1-/- PMNs. Unlike full-length pro-Mmp-8 and pro-Mmp-9, mutant pro-Mmp proteins lacking the COOH-terminal hemopexin domain fail to bind to Mmp-8-/-x Mmp-9-/- murine PMNs. Soluble hemopexin inhibits the binding of pro-Mmp-8 and pro-Mmp-9 to Mmp-8-/-x Mmp-9-/- murine PMNs. Thus, the COOH-terminal hemopexin domains of pro-Mmp-8 and pro-Mmp-9 are required for their binding to membrane-bound Timp-1 on murine PMNs. Exposing nonhuman primates to cigarette smoke upregulates colocalized expression of TIMP-1 with MMP-8 and MMP-9 on peripheral blood PMN surfaces. By anchoring MMP-8 and MMP-9 to PMN surfaces, membrane-bound TIMP-1 plays a counterintuitive role in promoting PMN pericellular proteolysis occurring in chronic obstructive pulmonary disease and other diseases.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Julie Wilder
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108; and
| | | | - Duo Zhang
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
13
|
Prasad K. AGE-RAGE Stress in the Pathophysiology of Pulmonary Hypertension and its Treatment. Int J Angiol 2019; 28:71-79. [PMID: 31384104 DOI: 10.1055/s-0039-1687818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pulmonary hypertension (PH) is a rare and fatal disease characterized by elevation of pulmonary artery pressure ≥ 25 mm Hg. There are five groups of PH: (1) pulmonary artery (PA) hypertension (PAH), (2) PH due to heart diseases, (3) PH associated with lung diseases/hypoxia, (4) PH associated with chronic obstruction of PA, and (5) PH due to unclear and/or multifactorial mechanisms. The pathophysiologic mechanisms of group 1 have been studied in detail; however, those for groups 2 to 5 are not that well known. PH pathology is characterized by smooth muscle cells (SMC) proliferation, muscularization of peripheral PA, accumulation of extracellular matrix (ECM), plexiform lesions, thromboembolism, and recanalization of thrombi. Advanced glycation end products (AGE) and its receptor (RAGE) and soluble RAGE (sRAGE) appear to be involved in the pathogenesis of PH. AGE and its interaction with RAGE induce vascular hypertrophy through proliferation of vascular SMC, accumulation of ECM, and suppression of apoptosis. Reactive oxygen species (ROS) generated by interaction of AGE and RAGE modulates SMC proliferation, attenuate apoptosis, and constricts PA. Increased stiffness in the artery due to vascular hypertrophy, and vasoconstriction due to ROS resulted in PH. The data also suggest that reduction in consumption and formation of AGE, suppression of RAGE expression, blockage of RAGE ligand binding, elevation of sRAGE levels, and antioxidants may be novel therapeutic targets for prevention, regression, and slowing of progression of PH. In conclusion, AGE-RAGE stress may be involved in the pathogenesis of PH and the therapeutic targets should be the AGE-RAGE axis.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
14
|
Pierre A, Lemaire F, Meghraoui-Kheddar A, Audonnet S, Héry-Huynh S, Le Naour R. Impact of aging on inflammatory and immune responses during elastin peptide-induced murine emphysema. Am J Physiol Lung Cell Mol Physiol 2019; 316:L608-L620. [PMID: 30675803 DOI: 10.1152/ajplung.00402.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deterioration of lung functions and degradation of elastin fibers with age are accelerated during chronic obstructive pulmonary disease (COPD). Excessive genesis of soluble elastin peptides (EP) is a key factor in the pathophysiology of COPD. We have previously demonstrated that 6-wk-old mice exhibited emphysematous structural changes associated with proinflammatory immune response after EP instillation. In this study, we investigated the consequences of aging on inflammatory, immune, and histological criteria associated with murine emphysema progression after EP exposure. Young (6 wk old) and elderly (15 mo old) C57BL/6J mice were endotracheally instilled with EP, and, at various time points after treatment, the inflammatory cell profiles from bronchoalveolar lavage fluids (BALF) and the T-lymphocyte phenotypes, at local and systemic levels, were analyzed by flow cytometry. Lungs were also prepared to allow morphological and histological analysis by confocal microscopy. Elderly mice exhibited an earlier development of pulmonary emphysema, characterized by an increase of the inflammatory and lymphocytic infiltrates, extracellular matrix breakdown, and airspace enlargement compared with young mice. This age-dependent parenchymal tissue remodeling was associated with an increase of the matrix metalloproteinase expressions and desmosine levels in BALF and/or sera of EP-treated mice. In addition, both the proportion of CD4+CD28- and CD8+CD28- T cells in the tissues of EP-treated mice and the interferon-γ levels in the EP-specific memory T-cell clones were significantly higher in elderly versus younger mice. This study demonstrates that aging accelerates emphysema development and that this effect is linked to increased EP production and their effects on inflammatory and immune response.
Collapse
Affiliation(s)
- Alexandre Pierre
- EA 4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne , Reims , France
| | - Flora Lemaire
- EA 4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne , Reims , France
| | | | - Sandra Audonnet
- Plateau Technique de Cytométrie en Flux URCACyt, Plateforme Santé, Université de Reims Champagne-Ardenne , Reims , France
| | | | - Richard Le Naour
- EA 4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne , Reims , France.,Plateau Technique de Cytométrie en Flux URCACyt, Plateforme Santé, Université de Reims Champagne-Ardenne , Reims , France
| |
Collapse
|
15
|
Polverino F, Rojas-Quintero J, Wang X, Petersen H, Zhang L, Gai X, Higham A, Zhang D, Gupta K, Rout A, Yambayev I, Pinto-Plata V, Sholl LM, Cunoosamy D, Celli BR, Goldring J, Singh D, Tesfaigzi Y, Wedzicha J, Olsson H, Owen CA. A Disintegrin and Metalloproteinase Domain-8: A Novel Protective Proteinase in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2018; 198:1254-1267. [PMID: 29750543 PMCID: PMC6290938 DOI: 10.1164/rccm.201707-1331oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 05/11/2018] [Indexed: 11/16/2022] Open
Abstract
RATIONALE ADAM8 (a disintegrin and metalloproteinase domain-8) is expressed by leukocytes and epithelial cells in health, but its contribution to the pathogenesis of chronic obstructive pulmonary disease (COPD) is unknown. OBJECTIVES To determine whether the expression of ADAM8 is increased in the lungs of patients with COPD and cigarette smoke (CS)-exposed mice, and whether ADAM8 promotes the development of COPD. METHODS ADAM8 levels were measured in lung, sputum, plasma, and/or BAL fluid samples from patients with COPD, smokers, and nonsmokers, and wild-type (WT) mice exposed to CS versus air. COPD-like lung pathologies were compared in CS-exposed WT versus Adam8-/- mice. MEASUREMENTS AND MAIN RESULTS ADAM8 immunostaining was reduced in macrophages, and alveolar and bronchial epithelial cells in the lungs of patients with COPD versus control subjects, and CS- versus air-exposed WT mice. ADAM8 levels were similar in plasma, sputum, and BAL fluid samples from patients with COPD and control subjects. CS-exposed Adam8-/- mice had greater airspace enlargement and airway mucus cell metaplasia than WT mice, but similar small airway fibrosis. CS-exposed Adam8-/- mice had higher lung macrophage counts, oxidative stress levels, and alveolar septal cell death rates, but lower alveolar septal cell proliferation rates and soluble epidermal growth factor receptor BAL fluid levels than WT mice. Adam8 deficiency increased lung inflammation by reducing CS-induced activation of the intrinsic apoptosis pathway in macrophages. Human ADAM8 proteolytically shed the epidermal growth factor receptor from bronchial epithelial cells to reduce mucin expression in vitro. Adam8 bone marrow chimera studies revealed that Adam8 deficiency in leukocytes and lung parenchymal cells contributed to the exaggerated COPD-like disease in Adam8-/- mice. CONCLUSIONS Adam8 deficiency increases CS-induced lung inflammation, emphysema, and airway mucus cell metaplasia. Strategies that increase or prolong ADAM8's expression in the lung may have therapeutic efficacy in COPD.
Collapse
Affiliation(s)
- Francesca Polverino
- Division of Pulmonary and Critical Care Medicine and
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine and
| | - Hans Petersen
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Li Zhang
- Division of Pulmonary and Critical Care Medicine and
| | - Xiaoyan Gai
- Division of Pulmonary and Critical Care Medicine and
| | - Andrew Higham
- Medicines Evaluation Unit, University of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Duo Zhang
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | | | - Amit Rout
- Division of Pulmonary and Critical Care Medicine and
| | | | | | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Danen Cunoosamy
- Respiratory, Inflammation and Autoimmunity Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Bartolomé R. Celli
- Division of Pulmonary and Critical Care Medicine and
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Dave Singh
- Medicines Evaluation Unit, University of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | | | - Jadwiga Wedzicha
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Henric Olsson
- Respiratory, Inflammation and Autoimmunity Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine and
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
16
|
Laucho‐Contreras ME, Polverino F, Rojas‐Quintero J, Wang X, Owen CA. Club cell protein 16 (Cc16) deficiency increases inflamm-aging in the lungs of mice. Physiol Rep 2018; 6:e13797. [PMID: 30084231 PMCID: PMC6079172 DOI: 10.14814/phy2.13797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022] Open
Abstract
Low serum CC16 levels are associated with accelerated lung function decline in human population studies, but it is not known whether low serum CC16 levels contribute to lung function decline, or are an epiphenomenon. We tested the hypothesis that unchallenged Cc16-/- mice develop accelerated rates of pulmonary function test abnormalities and pulmonary pathologies over time compared with unchallenged WT mice. Respiratory mechanics, airspace enlargement, and small airway fibrosis were measured in unchallenged wild-type (WT) versus Cc16-/- mice over 6-18 months of age. Lung leukocyte counts and lung levels of metalloproteinases (Mmps), cytokines, oxidative stress, cellular senescence markers (p19 and p21), and lung cell apoptosis, and serum C-reactive protein (CRP) levels were measured in age-matched WT versus Cc16-/- mice. Unchallenged Cc16-/- mice developed greater increases in lung compliance, airspace enlargement, and small airway fibrosis than age-matched WT mice over 6-18 months of age. Cc16-/- mice had greater: (1) lung leukocyte counts; (2) lung levels of Ccl2, Ccl-5, interleukin-10, Mmp-2, and Mmp-9; (3) pulmonary oxidative stress levels, (4) alveolar septal cell apoptosis and staining for p16 and p21; and (5) serum CRP levels. Unchallenged Cc16-/- mice had greater nuclear factor-κB (NF-κB) activation in their lungs than age-matched WT mice, but similar lung levels of secretory phospholipase-A2 activity. Cc16 deficiency in mice leads spontaneously to an accelerated lung aging phenotype with exaggerated pulmonary inflammation and COPD-like lung pathologies associated with increased activation of NF- κB in the lung. CC16 augmentation strategies may reduce lung aging in CC16-deficient individuals.
Collapse
Affiliation(s)
- Maria E. Laucho‐Contreras
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Francesca Polverino
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
- The Lovelace Respiratory Research InstituteAlbuquerqueNew Mexico
| | - Joselyn Rojas‐Quintero
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Xiaoyun Wang
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
- The Lovelace Respiratory Research InstituteAlbuquerqueNew Mexico
| |
Collapse
|
17
|
Glutathionylation: a regulatory role of glutathione in physiological processes. Arh Hig Rada Toksikol 2018; 69:1-24. [DOI: 10.2478/aiht-2018-69-2966] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/01/2018] [Indexed: 12/18/2022] Open
Abstract
Abstract
Glutathione (γ-glutamyl-cysteinyl-glycine) is an intracellular thiol molecule and a potent antioxidant that participates in the toxic metabolism phase II biotransformation of xenobiotics. It can bind to a variety of proteins in a process known as glutathionylation. Protein glutathionylation is now recognised as one of important posttranslational regulatory mechanisms in cell and tissue physiology. Direct and indirect regulatory roles in physiological processes include glutathionylation of major transcriptional factors, eicosanoids, cytokines, and nitric oxide (NO). This review looks into these regulatory mechanisms through examples of glutathione regulation in apoptosis, vascularisation, metabolic processes, mitochondrial integrity, immune system, and neural physiology. The focus is on the physiological roles of glutathione beyond biotransformational metabolism.
Collapse
|
18
|
Polverino F, Celli BR, Owen CA. COPD as an endothelial disorder: endothelial injury linking lesions in the lungs and other organs? (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018758528. [PMID: 29468936 PMCID: PMC5826015 DOI: 10.1177/2045894018758528] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/21/2018] [Indexed: 12/27/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic expiratory airflow obstruction that is not fully reversible. COPD patients develop varying degrees of emphysema, small and large airway disease, and various co-morbidities. It has not been clear whether these co-morbidities share common underlying pathogenic processes with the pulmonary lesions. Early research into the pathogenesis of COPD focused on the contributions of injury to the extracellular matrix and pulmonary epithelial cells. More recently, cigarette smoke-induced endothelial dysfunction/injury have been linked to the pulmonary lesions in COPD (especially emphysema) and systemic co-morbidities including atherosclerosis, pulmonary hypertension, and chronic renal injury. Herein, we review the evidence linking endothelial injury to COPD, and the pathways underlying endothelial injury and the "vascular COPD phenotype" including: (1) direct toxic effects of cigarette smoke on endothelial cells; (2) generation of auto-antibodies directed against endothelial cells; (3) vascular inflammation; (4) increased oxidative stress levels in vessels inducing increases in lipid peroxidation and increased activation of the receptor for advanced glycation end-products (RAGE); (5) reduced activation of the anti-oxidant pathways in endothelial cells; (6) increased endothelial cell release of mediators with vasoconstrictor, pro-inflammatory, and remodeling activities (endothelin-1) and reduced endothelial cell expression of mediators that promote vasodilation and homeostasis of endothelial cells (nitric oxide synthase and prostacyclin); and (7) increased endoplasmic reticular stress and the unfolded protein response in endothelial cells. We also review the literature on studies of drugs that inhibit RAGE signaling in other diseases (angiotensin-converting enzyme inhibitors and angiotensin receptor blockers), or vasodilators developed for idiopathic pulmonary arterial hypertension that have been tested on cell culture systems, animal models of COPD, and/or smokers and COPD patients.
Collapse
Affiliation(s)
- Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Bartolome R. Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
19
|
The administration of surfactant decreased oxidative stress in lungs of mice exposed to cigarette smoke. Int Immunopharmacol 2017; 54:275-279. [PMID: 29174925 DOI: 10.1016/j.intimp.2017.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 01/13/2023]
Abstract
The alveolar surfactant, which composition consists of a unique and complex mixture of lipids and proteins, has immunomodulatory action. This study aimed to evaluate the effects of exogenous surfactant on pulmonary inflammatory response in mice exposed to cigarette smoke (CS). Twenty-four mice C57BL/6 were divided into four groups: control group exposed to ambient air (CG); surfactant treated group (SG); CS exposed group (CSG) and CS exposed group treated with surfactant (CSSG). For five days, CSG and CSSG were exposed to 12 commercial cigarettes/day and SG and CSSG received the surfactant by intranasal instillation. At the end of the experiment, the animals were euthanatized for the collection of bronchoalveolar lavage fluid (BALF) and lungs. The total number of leukocytes in BALF increased in CSG compared to CG, however, there was a decrease in CSSG compared to CSG. There was an increase in lipid peroxidation in SG and CSG compared to CG while there was a decrease in CSSG compared to CSG. Regarding the antioxidant enzymes, the catalase (CAT) activity increased in all groups compared to CG and the superoxide dismutase (SOD) activity decreased in CSG compared to the CG and SG. There was an increase in TNF in SG, CSG and CSSG compared to CG. There was an increase in IL-17 in CSSG compared to CG. There was an increase in CCL5 in SG and CSSG compared to CG. Therefore, our results demonstrated that the administration of exogenous surfactant was able to decrease the oxidative processes in the lungs of mice induced by short-term exposure to CS.
Collapse
|
20
|
Meghraoui-Kheddar A, Pierre A, Sellami M, Audonnet S, Lemaire F, Le Naour R. Elastin receptor (S-gal) occupancy by elastin peptides modulates T-cell response during murine emphysema. Am J Physiol Lung Cell Mol Physiol 2017; 313:L534-L547. [DOI: 10.1152/ajplung.00465.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/04/2017] [Accepted: 05/27/2017] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease and emphysema are associated with increased elastin peptides (EP) production because of excessive breakdown of lung connective tissue. We recently reported that exposure of mice to EP elicited hallmark features of emphysema. EP effects are largely mediated through a receptor complex that includes the elastin-binding protein spliced-galactosidase (S-gal). In previous studies, we established a correlation between cytokine production and S-gal protein expression in EP-treated immune cells. In this study, we investigated the S-gal-dependent EP effects on T-helper (Th) and T-cytotoxic (Tc) responses during murine EP-triggered pulmonary inflammation. C57BL/6J mice were endotracheally instilled with the valine-glycine-valine-alanine-proline-glycine (VGVAPG) elastin peptide, and, 21 days after treatment, local and systemic T-lymphocyte phenotypes were analyzed at cytokine and transcription factor expression levels by multicolor flow cytometry. Exposure of mice to the VGVAPG peptide resulted in a significant increase in the proportion of the CD4+ and CD8+ T cells expressing the cytokines IFN-γ or IL-17a and the transcription factors T-box expressed in T cells or retinoic acid-related orphan receptor-γt (RORγt) without effects on IL-4 and Gata-binding protein 3 to DNA sequence [A/T]GATA[A/G] expression. These effects were maximized when each T-cell subpopulation was challenged ex vivo with EP, and they were inhibited in vivo when an analogous peptide antagonizing the EP/S-gal interactions was instilled together with the VGVAPG peptide. This study demonstrates that, during murine emphysema, EP-S-gal interactions contribute to a Th-1 and Th-17 proinflammatory T-cell response combined with a Tc-1 response. Our study also highlights the S-gal receptor as a putative pharmacological target to modulate such an immune response.
Collapse
Affiliation(s)
| | - Alexandre Pierre
- EA4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France; and
| | - Mehdi Sellami
- EA4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France; and
| | - Sandra Audonnet
- Plateau Technique de Cytométrie en Flux, Plateforme Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Flora Lemaire
- EA4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France; and
| | - Richard Le Naour
- EA4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France; and
| |
Collapse
|
21
|
Kulkarni T, O'Reilly P, Antony VB, Gaggar A, Thannickal VJ. Matrix Remodeling in Pulmonary Fibrosis and Emphysema. Am J Respir Cell Mol Biol 2017; 54:751-60. [PMID: 26741177 DOI: 10.1165/rcmb.2015-0166ps] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema.
Collapse
Affiliation(s)
- Tejaswini Kulkarni
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,2 Program in Protease and Matrix Biology Center, Birmingham, Alabama; and
| | - Philip O'Reilly
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,2 Program in Protease and Matrix Biology Center, Birmingham, Alabama; and
| | - Veena B Antony
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,2 Program in Protease and Matrix Biology Center, Birmingham, Alabama; and
| | - Amit Gaggar
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,2 Program in Protease and Matrix Biology Center, Birmingham, Alabama; and.,3 Birmingham VA Medical Center, Birmingham, Alabama
| | - Victor J Thannickal
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,2 Program in Protease and Matrix Biology Center, Birmingham, Alabama; and.,3 Birmingham VA Medical Center, Birmingham, Alabama
| |
Collapse
|
22
|
Lao T, Jiang Z, Yun J, Qiu W, Guo F, Huang C, Mancini JD, Gupta K, Laucho-Contreras ME, Naing ZZC, Zhang L, Perrella MA, Owen CA, Silverman EK, Zhou X. Hhip haploinsufficiency sensitizes mice to age-related emphysema. Proc Natl Acad Sci U S A 2016; 113:E4681-7. [PMID: 27444019 PMCID: PMC4987811 DOI: 10.1073/pnas.1602342113] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip.
Collapse
Affiliation(s)
- Taotao Lao
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Zhiqiang Jiang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Jeong Yun
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Chunfang Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - John Dominic Mancini
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Kushagra Gupta
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Maria E Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; Chronic Obstructive Pulmonary Disease Program, The Lovelace Respiratory Research Institute, Albuquerque, NM 87108
| | - Zun Zar Chi Naing
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Li Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; Chronic Obstructive Pulmonary Disease Program, The Lovelace Respiratory Research Institute, Albuquerque, NM 87108
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
23
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent chronic lung condition, affecting ∼10% of adults over the age of 40 years in the western world. Research over the past 10 years has shown that COPD is more than just a lung disorder; it affects other end-organs including the cardiovascular and the musculoskeletal systems, making it a multi-component, multi-system disease. COPD increases the risk for ischemic heart disease, stroke, osteoporosis, cachexia, and muscle weakness by two to threefold, independent of other factors such as smoking and age. The mechanisms by which COPD affects these end-organs, however, are unclear. In this paper, we review some of the common and serious extra-pulmonary manifestations of COPD and the potential mechanisms by which they can be linked with COPD.
Collapse
Affiliation(s)
- Ján Tkáč
- The University of British Columbia (Respiratory Division), Vancouver, BC
| | - S. F. Paul Man
- The University of British Columbia (Respiratory Division), Vancouver, BC
| | - Don D. Sin
- The University of British Columbia (Respiratory Division), Vancouver, BC,
| |
Collapse
|
24
|
Gupta I, Ganguly S, Rozanas CR, Stuehr DJ, Panda K. Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and Rtp801-triggered lung protein modification and proteolysis. Proc Natl Acad Sci U S A 2016; 113:E4208-17. [PMID: 27382160 PMCID: PMC4961122 DOI: 10.1073/pnas.1600056113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage.
Collapse
Affiliation(s)
- Indranil Gupta
- Department of Biotechnology and Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, India
| | - Souradipta Ganguly
- Department of Biotechnology and Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, India
| | - Christine R Rozanas
- Proteomics Applications Laboratory, GE Healthcare Life Sciences, Piscataway, NJ 08854
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Koustubh Panda
- Department of Biotechnology and Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, India;
| |
Collapse
|
25
|
Jiang Z, Lao T, Qiu W, Polverino F, Gupta K, Guo F, Mancini JD, Naing ZZC, Cho MH, Castaldi PJ, Sun Y, Yu J, Laucho-Contreras ME, Kobzik L, Raby BA, Choi AMK, Perrella MA, Owen CA, Silverman EK, Zhou X. A Chronic Obstructive Pulmonary Disease Susceptibility Gene, FAM13A, Regulates Protein Stability of β-Catenin. Am J Respir Crit Care Med 2016; 194:185-97. [PMID: 26862784 PMCID: PMC5003213 DOI: 10.1164/rccm.201505-0999oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 01/21/2016] [Indexed: 12/28/2022] Open
Abstract
RATIONALE A genetic locus within the FAM13A gene has been consistently associated with chronic obstructive pulmonary disease (COPD) in genome-wide association studies. However, the mechanisms by which FAM13A contributes to COPD susceptibility are unknown. OBJECTIVES To determine the biologic function of FAM13A in human COPD and murine COPD models and discover the molecular mechanism by which FAM13A influences COPD susceptibility. METHODS Fam13a null mice (Fam13a(-/-)) were generated and exposed to cigarette smoke. The lung inflammatory response and airspace size were assessed in Fam13a(-/-) and Fam13a(+/+) littermate control mice. Cellular localization of FAM13A protein and mRNA levels of FAM13A in COPD lungs were assessed using immunofluorescence, Western blotting, and reverse transcriptase-polymerase chain reaction, respectively. Immunoprecipitation followed by mass spectrometry identified cellular proteins that interact with FAM13A to reveal insights on FAM13A's function. MEASUREMENTS AND MAIN RESULTS In murine and human lungs, FAM13A is expressed in airway and alveolar type II epithelial cells and macrophages. Fam13a null mice (Fam13a(-/-)) were resistant to chronic cigarette smoke-induced emphysema compared with Fam13a(+/+) mice. In vitro, FAM13A interacts with protein phosphatase 2A and recruits protein phosphatase 2A with glycogen synthase kinase 3β and β-catenin, inducing β-catenin degradation. Fam13a(-/-) mice were also resistant to elastase-induced emphysema, and this resistance was reversed by coadministration of a β-catenin inhibitor, suggesting that FAM13A could increase the susceptibility of mice to emphysema development by inhibiting β-catenin signaling. Moreover, human COPD lungs had decreased protein levels of β-catenin and increased protein levels of FAM13A. CONCLUSIONS We show that FAM13A may influence COPD susceptibility by promoting β-catenin degradation.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Channing Division of Network Medicine, Department of Medicine
| | - Taotao Lao
- Channing Division of Network Medicine, Department of Medicine
| | - Weiliang Qiu
- Channing Division of Network Medicine, Department of Medicine
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Kushagra Gupta
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Feng Guo
- Channing Division of Network Medicine, Department of Medicine
| | - John D. Mancini
- Channing Division of Network Medicine, Department of Medicine
| | | | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Peter J. Castaldi
- Channing Division of Network Medicine, Department of Medicine
- Division of General Internal Medicine, Department of Medicine, and
| | - Yang Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Jane Yu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Lester Kobzik
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Mark A. Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Pediatric Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| |
Collapse
|
26
|
Wendt CH, Nelsestuen G, Harvey S, Gulcev M, Stone M, Reilly C. Peptides in Bronchoalveolar Lavage in Chronic Obstructive Pulmonary Disease. PLoS One 2016; 11:e0155724. [PMID: 27227774 PMCID: PMC4881978 DOI: 10.1371/journal.pone.0155724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/03/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease with a significant public health burden. Currently there is no biomarker that identifies those at risk of developing COPD, progression of disease or disease phenotypes. We performed metabolomic profiling of bronchoalveolar lavage fluid (BALF) from COPD patients to determine if metabolites correlated with clinical measurements such as lung function, functional status and degree of emphysema. METHODS Metabolomic components of BALF from 59 subjects with COPD and 20 healthy controls were separated by reversed-phase UPLC and analyzed by ESI-ToF mass spectrometry. We used univariate analysis and multiple regression models to investigate associations between metabolomic features and various clinical variables, such as lung function, functional status as measured by the St. George Respiratory Quotient Score and emphysema as measured by the CT density mask score. RESULTS We identified over 3900 features by mass spectrometry, many consistent with peptides. Subjects with severe COPD had increased concentration of peptides compared to controls (p < 9.526e-05). The peptide concentration correlated with spirometry, specifically pulmonary function tests associated with airflow obstruction. There was no correlation with CT density, i.e. emphysema, or functional status. CONCLUSIONS Metabolomic profiling of BALF in COPD patients demonstrated a significant increase in peptides compared to healthy controls that associated strongly to lung function, but not emphysema or functional status.
Collapse
Affiliation(s)
- Chris H. Wendt
- Department of Medicine, VA Medical Center, Minneapolis, MN, 55417, United States of America
- Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, United States of America
| | - Gary Nelsestuen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, United States of America
| | - Stephen Harvey
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, United States of America
| | - Makedonka Gulcev
- Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, United States of America
| | - Matthew Stone
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, United States of America
| | - Cavan Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, United States of America
| |
Collapse
|
27
|
Polverino F, Laucho-Contreras M, Rojas Quintero J, Divo M, Pinto-Plata V, Sholl L, de-Torres JP, Celli BR, Owen CA. Increased expression of A Proliferation-inducing Ligand (APRIL) in lung leukocytes and alveolar epithelial cells in COPD patients with non small cell lung cancer: a possible link between COPD and lung cancer? Multidiscip Respir Med 2016; 11:17. [PMID: 27047662 PMCID: PMC4819280 DOI: 10.1186/s40248-016-0051-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/17/2016] [Indexed: 11/26/2022] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) is characterized by an excessive activation of the adaptive immune system and, in particular, uncontrolled expansion of the B-cell pool. One of the key promoters of B cell expansion is A PRoliferation-Inducing Ligand (APRIL). APRIL has been strongly linked to non small cell lung cancer (NSCLC) onset and progression previously. However, little is known about the expression of APRIL in the lungs of COPD patients. Methods Using immuno-fluorescence staining, the expression of APRIL was assessed in sections of lungs from 4 subjects with primary diagnosis of COPD (FEV1 33 ± 20 % predicted), 4 subjects with primary diagnosis of NSCLC, 4 subjects diagnosed with both COPD and NSCLC, smokers without COPD or NSCLC and 3 healthy never-smokers. The percentage of B cells, alveolar macrophages (AMs) and polymorphonuclear neutrophils (PMNs) in the lung and alveolar epithelial cells (AECs) that stained positively for APRIL was quantified using epi-fluorescence microscopy and image analysis software. Results The percentage of APRIL-expressing B cells, AMs, PMNs and alveolar epithelial cells (AECs) was higher in patients having both COPD and NSCLC than in patients with either COPD or NSCLC alone, SC or NSC (p < 0.03 for all comparisons). The percentage of APRIL-expressing AMs and AECs (but not in B cells) was higher in patients with NSCLC alone than in patients with COPD alone. The percentage of APRIL-expressing AECs (but not B cells or AMs) was higher in COPD patients than in SC and NSC (p < 0.05 for all comparisons). The percentage of APRIL-expressing B cells, AMs and AECs cells was similar in NSC and SC. Conclusion The percentage of APRIL-expressing B cells, AMs and AECs is higher in the lungs of patients with both COPD and NSCLC than in patients with COPD or NSCLC alone or control subjects. These findings suggest that APRIL may contribute to the pathogenesis of both COPD and NSCLC, and possibly to the development of NSCLC in patients with established COPD.
Collapse
Affiliation(s)
- Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Room 855B, Harvard Institutes of Medicine Building, 77 Avenue Louis Pasteur, Boston, MA 02115 USA.,Lovelace Respiratory Research Institute, Albuquerque, NM USA.,University of Parma, Parma, Italy
| | - Maria Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Room 855B, Harvard Institutes of Medicine Building, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
| | - Joselyn Rojas Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Room 855B, Harvard Institutes of Medicine Building, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
| | - Miguel Divo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Room 855B, Harvard Institutes of Medicine Building, 77 Avenue Louis Pasteur, Boston, MA 02115 USA.,Lovelace Respiratory Research Institute, Albuquerque, NM USA
| | - Victor Pinto-Plata
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Room 855B, Harvard Institutes of Medicine Building, 77 Avenue Louis Pasteur, Boston, MA 02115 USA.,Lovelace Respiratory Research Institute, Albuquerque, NM USA
| | - Lynette Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA
| | | | - Bartolome R Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Room 855B, Harvard Institutes of Medicine Building, 77 Avenue Louis Pasteur, Boston, MA 02115 USA.,Lovelace Respiratory Research Institute, Albuquerque, NM USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Room 855B, Harvard Institutes of Medicine Building, 77 Avenue Louis Pasteur, Boston, MA 02115 USA.,Lovelace Respiratory Research Institute, Albuquerque, NM USA
| |
Collapse
|
28
|
Sellami M, Meghraoui-Kheddar A, Terryn C, Fichel C, Bouland N, Diebold MD, Guenounou M, Héry-Huynh S, Le Naour R. Induction and regulation of murine emphysema by elastin peptides. Am J Physiol Lung Cell Mol Physiol 2015; 310:L8-23. [PMID: 26519205 DOI: 10.1152/ajplung.00068.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/29/2015] [Indexed: 11/22/2022] Open
Abstract
Emphysema is the major component of chronic obstructive pulmonary disease (COPD). During emphysema, elastin breakdown in the lung tissue originates from the release of large amounts of elastase by inflammatory cells. Elevated levels of elastin-derived peptides (EP) reflect massive pulmonary elastin breakdown in COPD patients. Only the EP containing the GXXPG conformational motif with a type VIII β-turn are elastin receptor ligands inducing biological activities. In addition, the COOH-terminal glycine residue of the GXXPG motif seems a prerequisite to the biological activity. In this study, we endotracheally instilled C57BL/6J mice with GXXPG EP and/or COOH-terminal glycine deleted-EP whose sequences were designed by molecular dynamics and docking simulations. We investigated their effect on all criteria associated with the progression of murine emphysema. Bronchoalveolar lavages were recovered to analyze cell profiles by flow cytometry and lungs were prepared to allow morphological and histological analysis by immunostaining and confocal microscopy. We observed that exposure of mice to EP elicited hallmark features of emphysema with inflammatory cell accumulation associated with increased matrix metalloproteinases and desmosine expression and of remodeling of parenchymal tissue. We also identified an inactive COOH-terminal glycine deleted-EP that retains its binding-activity to EBP and that is able to inhibit the in vitro and in vivo activities of emphysema-inducing EP. This study demonstrates that EP are key actors in the development of emphysema and that they represent pharmacological targets for an alternative treatment of emphysema based on the identification of EP analogous antagonists by molecular modeling studies.
Collapse
Affiliation(s)
- Mehdi Sellami
- EA4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Christine Terryn
- Plateforme d'Imagerie Cellulaire et Tissulaire, SFR CAP-Santé, URCA, Reims, France; and
| | - Caroline Fichel
- Laboratoire d'Anatomie et de Cytologie Pathologiques, CHU R. Debré, Reims, France
| | - Nicole Bouland
- Laboratoire d'Anatomie et de Cytologie Pathologiques, CHU R. Debré, Reims, France
| | | | - Moncef Guenounou
- EA4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Richard Le Naour
- EA4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France;
| |
Collapse
|
29
|
Lecaille F, Lalmanach G, Andrault PM. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases. Biochimie 2015; 122:151-68. [PMID: 26341472 DOI: 10.1016/j.biochi.2015.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Lung antimicrobial proteins and peptides (AMPs) are major sentinels of innate immunity by preventing microbial colonization and infection. Nevertheless bactericidal activity of AMPs against Gram-positive and Gram-negative bacteria is compromised in patients with chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) and asthma. Evidence is accumulating that expression of harmful human serine proteases, matrix metalloproteases and cysteine cathepsins is markedely increased in these chronic lung diseases. The local imbalance between proteases and protease inhibitors compromises lung tissue integrity and function, by not only degrading extracellular matrix components, but also non-matrix proteins. Despite the fact that AMPs are somewhat resistant to proteolytic degradation, some human proteases cleave them efficiently and impair their antimicrobial potency. By contrast, certain AMPs may be effective as antiproteases. Host proteases participate in concert with bacterial proteases in the degradation of key innate immunity peptides/proteins and thus may play immunomodulatory activities during chronic lung diseases. In this context, the present review highlights the current knowledge and recent discoveries on the ability of host enzymes to interact with AMPs, providing a better understanding of the role of human proteases in innate host defense.
Collapse
Affiliation(s)
- Fabien Lecaille
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France.
| | - Gilles Lalmanach
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| | - Pierre-Marie Andrault
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| |
Collapse
|
30
|
Polverino F, Doyle-Eisele M, McDonald J, Wilder JA, Royer C, Laucho-Contreras M, Kelly EM, Divo M, Pinto-Plata V, Mauderly J, Celli BR, Tesfaigzi Y, Owen CA. A novel nonhuman primate model of cigarette smoke-induced airway disease. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:741-55. [PMID: 25542772 DOI: 10.1016/j.ajpath.2014.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/08/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022]
Abstract
Small animal models of chronic obstructive pulmonary disease (COPD) have several limitations for identifying new therapeutic targets and biomarkers for human COPD. These include a pulmonary anatomy that differs from humans, the limited airway pathologies and lymphoid aggregates that develop in smoke-exposed mice, and the challenges associated with serial biological sampling. Thus, we assessed the utility of cigarette smoke (CS)-exposed cynomolgus macaque as a nonhuman primate (NHP) large animal model of COPD. Twenty-eight NHPs were exposed to air or CS 5 days per week for up to 12 weeks. Bronchoalveolar lavage and pulmonary function tests were performed at intervals. After 12 weeks, we measured airway pathologies, pulmonary inflammation, and airspace enlargement. CS-exposed NHPs developed robust mucus metaplasia, submucosal gland hypertrophy and hyperplasia, airway inflammation, peribronchial fibrosis, and increases in bronchial lymphoid aggregates. Although CS-exposed NHPs did not develop emphysema over the study time, they exhibited pathologies that precede emphysema development, including increases in the following: i) matrix metalloproteinase-9 and proinflammatory mediator levels in bronchoalveolar lavage fluid, ii) lung parenchymal leukocyte counts and lymphoid aggregates, iii) lung oxidative stress levels, and iv) alveolar septal cell apoptosis. CS-exposed NHPs can be used as a model of airway disease occurring in COPD patients. Unlike rodents, NHPs can safely undergo longitudinal sampling, which could be useful for assessing novel biomarkers or therapeutics for COPD.
Collapse
Affiliation(s)
- Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico; Pulmonary Department, University of Parma, Parma, Italy
| | | | - Jacob McDonald
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Julie A Wilder
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Christopher Royer
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Maria Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Emer M Kelly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Miguel Divo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Victor Pinto-Plata
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Joe Mauderly
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Bartolome R Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico.
| |
Collapse
|
31
|
Superiority of pulmonary administration of mepenzolate bromide over other routes as treatment for chronic obstructive pulmonary disease. Sci Rep 2014; 4:4510. [PMID: 24676126 PMCID: PMC3968453 DOI: 10.1038/srep04510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/12/2014] [Indexed: 02/08/2023] Open
Abstract
We recently proposed that mepenzolate bromide (mepenzolate) would be therapeutically effective against chronic obstructive pulmonary disease (COPD) due to its both anti-inflammatory and bronchodilatory activities. In this study, we examined the benefits and adverse effects associated with different routes of mepenzolate administration in mice. Oral administration of mepenzolate caused not only bronchodilation but also decreased the severity of elastase-induced pulmonary emphysema; however, compared with the intratracheal route of administration, about 5000 times higher dose was required to achieve this effect. Intravenously or intrarectally administered mepenzolate also showed these pharmacological effects. The intratracheal route of mepenzolate administration, but not other routes, resulted in protective effects against elastase-induced pulmonary damage and bronchodilation at a much lower dose than that which affected defecation and heart rate. These results suggest that the pulmonary route of mepenzolate administration may be superior to other routes (oral, intravenous or intrarectal) to treat COPD patients.
Collapse
|
32
|
Mepenzolate bromide displays beneficial effects in a mouse model of chronic obstructive pulmonary disease. Nat Commun 2013; 4:2686. [DOI: 10.1038/ncomms3686] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/30/2013] [Indexed: 02/08/2023] Open
|
33
|
Biomarkers in Exhaled Breath Condensate and Serum of Chronic Obstructive Pulmonary Disease and Non-Small-Cell Lung Cancer. Int J Chronic Dis 2013; 2013:578613. [PMID: 26464846 PMCID: PMC4590922 DOI: 10.1155/2013/578613] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are leading causes of deaths worldwide which are associated with chronic inflammation and oxidative stress. Lung cancer, in particular, has a very high mortality rate due to the characteristically late diagnosis. As such, identification of novel biomarkers which allow for early diagnosis of these diseases could improve outcome and survival rate. Markers of oxidative stress in exhaled breath condensate (EBC) are examples of potential diagnostic markers for both COPD and non-small-cell lung cancer (NSCLC). They may even be useful in monitoring treatment response. In the serum, S100A8, S100A9, and S100A12 of the S100 proteins are proinflammatory markers. They have been indicated in several inflammatory diseases and cancers including secondary metastasis into the lung. It is highly likely that they not only have the potential to be diagnostic biomarkers for NSCLC but also prognostic indicators and therapeutic targets.
Collapse
|
34
|
Campos KKD, Manso RG, Gonçalves EG, Silva ME, de Lima WG, Menezes CAS, Bezerra FS. Temporal analysis of oxidative effects on the pulmonary inflammatory response in mice exposed to cigarette smoke. Cell Immunol 2013; 284:29-36. [PMID: 23921078 DOI: 10.1016/j.cellimm.2013.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 06/17/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
Abstract
The most common factor related to the chronic obstructive pulmonary disease (COPD) development is the chronic smoking habit. Our study describes the temporal kinesis of pulmonary cellular influx through BALF analyses of mice acutely exposed to cigarette smoke (CS), the oxidative damage and antioxidative enzyme activities. Thirty-six mice (C57BL/6, 8weeks old, male) were divided in 6 groups: the control group (CG), exposed to ambient air, and the other 30 mice were exposed to CS. Mice exposed to CS presented, especially after the third day of exposure, different cellular subpopulations in BALF. The oxidative damage was significantly higher in CS exposed groups compared to CG. Our data showed that the evaluated inflammatory cells, observed after three days of CS exposure, indicate that this time point could be relevant to studies focusing on these cellular subpopulation activities and confirm the oxidative stress even in a short term CS exposure.
Collapse
Affiliation(s)
- Keila Karine Duarte Campos
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Cabrales P, Friedman JM. HBOC vasoactivity: interplay between nitric oxide scavenging and capacity to generate bioactive nitric oxide species. Antioxid Redox Signal 2013; 18:2284-97. [PMID: 23249305 PMCID: PMC3638560 DOI: 10.1089/ars.2012.5099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
SIGNIFICANCE Despite many advances in blood substitute research, the development of materials that are effective in maintaining blood volume and oxygen delivery remains a priority for emergency care and trauma. Clinical trials on hemoglobin (Hb)-based oxygen carriers (HBOCs) have not provided information on the mechanism of toxicity, although all commercial formulations have safety concerns. Specifically, it is important to reconcile the different hypotheses of Hb toxicity, such as nitric oxide (NO) depletion and oxidative reactions, to provide a coherent molecular basis for designing a safe HBOC. RECENT ADVANCES HBOCs with different sizes often exhibit differences in the degree of HBOC-induced vasoactivity. This has been attributed to differences in the degree of NO scavenging and in the extent of Hb extravasation. Additionally, it is appears that Hb can undergo reactions that compensate for NO scavenging by generating bioactive forms of NO. CRITICAL ISSUES Engineering modifications to enhance bioactive NO production can result in diminished oxygen delivery by virtue of increased oxygen affinity. This strategy can prevent the HBOC from fulfilling the intended goal on preserving oxygenation; however, the NO production effects will increase perfusion and oxygen transport. FUTURE DIRECTIONS Hb modifications influence NO scavenging and the capacity of certain HBOCs to compensate for NO scavenging through nitrite-mediated reactions that generate bioactive NO. Based on the current understanding of these NO-related factors, possible synthetic strategies are presented that address how HBOC formulations can be prepared that: (i) effectively deliver oxygen, (ii) maintain tissue perfusion, and (iii) limit/reverse underlying inflammation within the vasculature.
Collapse
Affiliation(s)
- Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, CA, USA.
| | | |
Collapse
|
36
|
Pandey R, Singh M, Singhal U, Gupta KB, Aggarwal SK. Oxidative/Nitrosative stress and the pathobiology of chronic obstructive pulmonary disease. J Clin Diagn Res 2013; 7:580-8. [PMID: 23634430 PMCID: PMC3616590 DOI: 10.7860/jcdr/2013/4360.2832] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 11/23/2012] [Indexed: 11/24/2022]
Abstract
The understanding of the pathobiology of Chronic Obstructive Pulmonary Disease (COPD) has undergone a major change in the past three decades. The classical 'protease-antiprotease' hypothesis still holds true, nevertheless, the sequence of the biochemical events which lead to the protease/antiprotease imbalance have been unraveled. For instance, tobacco smoke, a primary risk factor for COPD, contains a plethora of reactive Oxygen/Nitrogen Species (ROS/RNS) that serve to initiate the oxidant/antioxidant imbalance in the respiratory tract of chronic smokers, a phenomenon that is amplified if certain other risk factors co-exist (e.g. a genetic deficiency of the major antiproteases, a suboptimal antioxidant defense system, airway hyper responsiveness etc.). The inflammatory response that ensues as a result of the initial occult exogenous oxidative/ nitrosative stress becomes a secondary endogenous source of ROS/RNS. This perpetuates the ongoing lung damage, even though the primary insult may no longer be present (abstinence). Depletion of the pulmonary antioxidants, damage to the local antiprotease protective screen, a decreased immune response, hypersecretion of mucus, superadded infections, oxygen therapy-induced oxidant production, etc. are some of the critical factors which account for the oxidative/ nitrosative stress-mediated pulmonary as well as extrapulmonary features of COPD. In the light of the recent developments, remarkable efforts are being made, either to develop novel therapeutic strategies or to improve the existing ones, which are aimed at treating different aspects of the disease. Thus, it is reasonable to recommend antioxidants as a useful adjunct to the more conventional treatment options, keeping in view the 'oxidant/antioxidant' hypothesis as a unifying theme for the 'protease/antiprotease' theory of COPD.
Collapse
Affiliation(s)
- Rajesh Pandey
- Associate Professor, Department of Biochemistry, MM Institute of Medical Sciences and Research, Mullana, Ambala Haryana, India
| | - Mamta Singh
- Senior Lecturer, Department of Biochemistry, PDM Dental College and Research Institute, Bahadurgarh Haryana, India
| | - Udita Singhal
- Senior Lecturer, Department of Pathology, PDM Dental College and Research Institute, Bahadurgarh Haryana, India
| | - Krishna Bihari Gupta
- Senior Professor & Head, Department of Chest & Respiratory Medicine, PGIMS, Rohtak Haryana & Dean Academics, Pt. B D Sharma University of Health sciences, Rohtak Haryana, India
| | - Surendra Kumar Aggarwal
- Professor and Head, Department of Biochemistry, M.M. Medical College and Hospital, M.M. University, Kumarhatti, Solan H.P. , India
| |
Collapse
|
37
|
de Matos Cavalcante AG, de Bruin PFC, de Bruin VMS, Nunes DM, Pereira EDB, Cavalcante MM, Andrade GM. Melatonin reduces lung oxidative stress in patients with chronic obstructive pulmonary disease: a randomized, double-blind, placebo-controlled study. J Pineal Res 2012; 53:238-44. [PMID: 22507631 DOI: 10.1111/j.1600-079x.2012.00992.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD), a major cause of death and disability, is attributed to an abnormal inflammatory response by the lungs to noxious substances, primarily from cigarette smoke. Although oxidative stress is regarded as central to the pathogenesis of COPD, very few studies have examined the effects of antioxidants in this condition. This was a randomized, double-blind, placebo-controlled study on the effects of melatonin in COPD. Thirty-six consecutive patients with clinically stable moderate to very severe COPD (30 men; mean±S.D.=66.6±7.8yr) were randomized to receive 3mg melatonin (N=18) or placebo for 3 months. Oxidative stress was evaluated by 8-isoprostane levels in exhaled breath condensate at baseline (T0) and after one (T1), two (T2), and three months (T3) of treatment. Additionally, exhaled breath condensate levels of IL-8, dyspnea severity (Medical Research Council scale), lung function (spirometry), and functional exercise capacity (six min walk test) were compared at baseline and after treatment. Patients receiving melatonin showed a decrease in 8-isoprostane (T0: mean±S.E.M.=20.41±2.92pg/mL; T1: 18.56±2.68pg/mL; T2: 12.68±2.04pg/mL; T3: 12.70±2.18pg/mL; P=0.04; repeated measures ANOVA) with significant differences from baseline after 2 (P=0.03) and 3months (P=0.01). Dyspnea was improved by melatonin (P=0.01), despite no significant changes in lung function or exercise capacity. Placebo-treated patients, but not those who were given melatonin, showed an increase in IL-8 (P=0.03). In summary, melatonin administration reduced oxidative stress and improved dyspnea in COPD. Further studies are necessary to determine the potential role for melatonin in the long-term management of these patients.
Collapse
|
38
|
Sakkiah S, Thangapandian S, Lee KW. Ligand-Based Virtual Screening and Molecular Docking Studies to Identify the Critical Chemical Features of Potent Cathepsin D Inhibitors. Chem Biol Drug Des 2012; 80:64-79. [DOI: 10.1111/j.1747-0285.2012.01339.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
39
|
|
40
|
Valença SS, Rueff-Barroso CR, Pimenta WA, Melo AC, Nesi RT, Silva MAS, Porto LC. L-NAME and L-arginine differentially ameliorate cigarette smoke-induced emphysema in mice. Pulm Pharmacol Ther 2011; 24:587-94. [PMID: 21624489 DOI: 10.1016/j.pupt.2011.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 04/25/2011] [Accepted: 05/14/2011] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) represents one of the most important intra- and extracellular mediators and takes part in both biologic and pathologic processes. This study aimed to verify the treatment with an NO inhibitor and an NO substrate in pulmonary emphysema induced by cigarette smoke (CS) in a murine model. We compared N-acetylcysteine (NAC), a precursor of glutathione, to G-nitro-L-arginine-methyl ester or L-NAME (LN), which is an NO inhibitor, and to l-arginine (LA), which is a substrate for NO formation. Mice were divided into several groups: control, CS, CS + LN, CS + LA, and CS + NAC. Control and CS groups were treated daily with a vehicle, while CS + LN, CS + LA, and CS + NAC groups were treated daily with LN (60 mg/kg), LA (120 mg/kg) and NAC (200 mg/kg), respectively. The bronchoalveolar lavage was analyzed and the lungs were removed for histological and biochemical analysis. CS increases neutrophil number. Neutrophil number was lowest in CS + LN, followed by CS + LA. The lungs of CS + LN, CS + LA and CS + NAC mice were protected compared to the lungs of CS mice, but not equal to the quality of lungs in control mice. The CS group also exhibited increased oxidative stress, which was also present in the CS + LN group and to a lesser extent in the CS + LA group. Tissue inhibitor of metalloproteinase 1 and 2 increased in the CS + LN group and to a lesser extent in the CS + LA group relative to the control group. These results suggest that LN and LA treatment protected the mouse lung from CS. However, NAC treatment was more than LN and LA. We suggest that the protection conferred by LN treatment requires a balance between proteases and antiproteases, and that protection conferred by LA treatment involves the balance between oxidants and antioxidants.
Collapse
|
41
|
Naudin C, Joulin-Giet A, Couetdic G, Plésiat P, Szymanska A, Gorna E, Gauthier F, Kasprzykowski F, Lecaille F, Lalmanach G. Human cysteine cathepsins are not reliable markers of infection by Pseudomonas aeruginosa in cystic fibrosis. PLoS One 2011; 6:e25577. [PMID: 21980493 PMCID: PMC3182231 DOI: 10.1371/journal.pone.0025577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/07/2011] [Indexed: 01/08/2023] Open
Abstract
Cysteine cathepsins have emerged as new players in inflammatory lung disorders. Their activities are dramatically increased in the sputum of cystic fibrosis (CF) patients, suggesting that they are involved in the pathophysiology of CF. We have characterized the cathepsins in CF expectorations and evaluated their use as markers of colonization by Pseudomonas aeruginosa. The concentrations of active cathepsins B, H, K, L and S were the same in P. aeruginosa-positive (19 Ps+) and P. aeruginosa-negative (6 Ps−) samples, unlike those of human neutrophil elastase. Also the cathepsin inhibitory potential and the cathepsins/cathepsin inhibitors imbalance remained unchanged and similar (∼2-fold) in the Ps+ and Ps− groups (p<0.001), which correlated with the breakdown of their circulating cystatin-like inhibitors (kininogens). Procathepsins, which may be activated autocatalytically, are a potential proteolytic reservoir. Immunoblotting and active-site labeling identified the double-chain cathepsin B, the major cathepsin in CF sputum, as the main molecular form in both Ps+ and Ps− samples, despite the possible release of the ∼31 kDa single-chain form from procathepsin B by sputum elastase. Thus, the hydrolytic activity of cysteine cathepsins was not correlated with bacterial colonization, indicating that cathepsins, unlike human neutrophil elastase, are not suitable markers of P. aeruginosa infection.
Collapse
Affiliation(s)
- Clément Naudin
- Inserm U618, Université François Rabelais, Protéases et Vectorisation Pulmonaires, Tours, France
| | - Alix Joulin-Giet
- Inserm U618, Université François Rabelais, Protéases et Vectorisation Pulmonaires, Tours, France
| | - Gérard Couetdic
- Laboratoire de Bactériologie, CHU Jean Minjoz, Besançon, France
| | - Patrick Plésiat
- Laboratoire de Bactériologie, CHU Jean Minjoz, Besançon, France
| | - Aneta Szymanska
- Faculty of Chemistry, Department of Medicinal Chemistry, University of Gdansk, Sobieskiego, Gdansk, Poland
| | - Emilia Gorna
- Faculty of Chemistry, Department of Medicinal Chemistry, University of Gdansk, Sobieskiego, Gdansk, Poland
| | - Francis Gauthier
- Inserm U618, Université François Rabelais, Protéases et Vectorisation Pulmonaires, Tours, France
| | - Franciszek Kasprzykowski
- Faculty of Chemistry, Department of Medicinal Chemistry, University of Gdansk, Sobieskiego, Gdansk, Poland
| | - Fabien Lecaille
- Inserm U618, Université François Rabelais, Protéases et Vectorisation Pulmonaires, Tours, France
| | - Gilles Lalmanach
- Inserm U618, Université François Rabelais, Protéases et Vectorisation Pulmonaires, Tours, France
- * E-mail:
| |
Collapse
|
42
|
Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis 2011; 6:413-21. [PMID: 21857781 PMCID: PMC3157944 DOI: 10.2147/copd.s10770] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Indexed: 01/07/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) exhibit dominant features of chronic bronchitis, emphysema, and/or asthma, with a common phenotype of airflow obstruction. COPD pulmonary physiology reflects the sum of pathological changes in COPD, which can occur in large central airways, small peripheral airways, and the lung parenchyma. Quantitative or high-resolution computed tomography is used as a surrogate measure for assessment of disease progression. Different biological or molecular markers have been reported that reflect the mechanistic or pathogenic triad of inflammation, proteases, and oxidants and correspond to the different aspects of COPD histopathology. Similar to the pathogenic triad markers, genetic variations or polymorphisms have also been linked to COPD-associated inflammation, protease–antiprotease imbalance, and oxidative stress. Furthermore, in recent years, there have been reports identifying aging-associated mechanistic markers as downstream consequences of the pathogenic triad in the lungs from COPD patients. For this review, the authors have limited their discussion to a review of mechanistic markers and genetic variations and their association with COPD histopathology and disease status.
Collapse
Affiliation(s)
- Bernard M Fischer
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
43
|
Tanaka KI, Tanaka Y, Miyazaki Y, Namba T, Sato K, Aoshiba K, Azuma A, Mizushima T. Therapeutic effect of lecithinized superoxide dismutase on pulmonary emphysema. J Pharmacol Exp Ther 2011; 338:810-8. [PMID: 21665943 DOI: 10.1124/jpet.111.179051] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
No medication exists that clearly improves the mortality of chronic obstructive pulmonary disease (COPD). Oxidative molecules, in particular superoxide anions, play important roles in the COPD-associated abnormal inflammatory response and pulmonary emphysema, which arises because of an imbalance in proteases and antiproteases and increased apoptosis. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide anions. Lecithinized human Cu/Zn- SOD (PC-SOD) has overcome a number of the clinical limitations of SOD, including low tissue affinity and low stability in plasma. In this study, we examine the effect of PC-SOD on elastase-induced pulmonary emphysema, an animal model of COPD. The severity of the pulmonary inflammatory response and emphysema in mice was assessed by various criteria, such as the number of leukocytes in the bronchoalveolar lavage fluid and the enlargement of airspace. Not only intravenous administration but also inhalation of PC-SOD suppressed elastase-induced pulmonary inflammation, emphysema, and dysfunction. Inhalation of PC-SOD suppressed the elastase-induced increase in the pulmonary level of superoxide anions and apoptosis. Inhalation of PC-SOD also suppressed elastase-induced activation of proteases and decreased in the level of antiproteases and expression of proinflammatory cytokines and chemokines. We also found that inhalation of PC-SOD suppressed cigarette smoke-induced pulmonary inflammation. The results suggest that PC-SOD protects against pulmonary emphysema by decreasing the pulmonary level of superoxide anions, resulting in the inhibition of inflammation and apoptosis and amelioration of the protease/antiprotease imbalance. We propose that inhalation of PC-SOD would be therapeutically beneficial for COPD.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Graduated School of Medical and Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kasabova M, Saidi A, Naudin C, Sage J, Lecaille F, Lalmanach G. Cysteine Cathepsins: Markers and Therapy Targets in Lung Disorders. Clin Rev Bone Miner Metab 2011. [DOI: 10.1007/s12018-011-9094-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
45
|
Pudney J, Anderson D. Innate and acquired immunity in the human penile urethra. J Reprod Immunol 2011; 88:219-27. [PMID: 21353311 DOI: 10.1016/j.jri.2011.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/21/2010] [Accepted: 01/16/2011] [Indexed: 12/24/2022]
Abstract
In men, the penile urethra is a primary infection site for sexually transmitted pathogens. Research on the immunology of this mucosal site has been limited in part due to sampling challenges, but available evidence indicates that the urethra contains a rich contingent of immunological mediators that can mount vigorous innate and adaptive immune responses against infectious organisms. Further research is needed to define approaches to stimulate immunity at this mucosal site to prevent the transmission of HIV-1 and other sexually transmitted pathogens.
Collapse
Affiliation(s)
- Jeffrey Pudney
- Department of Obstetrics and Gynecology, Boston University, School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
46
|
El-Eshmawy MM, El-Adawy EH, Mousa AA, Zeidan AE, El-Baiomy AA, Abdel-Samie ER, Saleh OM. Elevated serum neutrophil elastase is related to prehypertension and airflow limitation in obese women. BMC WOMENS HEALTH 2011; 11:1. [PMID: 21247478 PMCID: PMC3031240 DOI: 10.1186/1472-6874-11-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 01/19/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND Neutrophil elastase level/activity is elevated in a variety of diseases such as atherosclerosis, systolic hypertension and obstructive pulmonary disease. It is unknown whether obese individuals with prehypertension also have elevated neutrophil elastase, and if so, whether it has a deleterious effect on pulmonary function. OBJECTIVES To determine neutrophil elastase levels in obese prehypertensive women and investigate correlations with pulmonary function tests. METHODS Thirty obese prehypertensive women were compared with 30 obese normotensive subjects and 30 healthy controls. The study groups were matched for age. MEASUREMENTS The following were determined: body mass index, waist circumference, blood pressure, lipid profile, high sensitivity C-reactive protein, serum neutrophil elastase, and pulmonary function tests including forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and FEV1/FVC ratio. RESULTS Serum neutrophil elastase concentration was significantly higher in both prehypertensive (405.8 ± 111.6 ng/ml) and normotensive (336.5 ± 81.5 ng/ml) obese women than in control non-obese women (243.9 ± 23.9 ng/ml); the level was significantly higher in the prehypertensive than the normotensive obese women. FEV1, FVC and FEV1/FVC ratio in both prehypertensive and normotensive obese women were significantly lower than in normal controls, but there was no statistically significant difference between the prehypertensive and normotensive obese women. In prehypertensive obese women, there were significant positive correlations between neutrophil elastase and body mass index, waist circumference, systolic blood pressure, diastolic blood pressure, total cholesterol, triglyceride, low density lipoprotein cholesterol, high sensitivity C-reactive protein and negative correlations with high density lipoprotein cholesterol, FEV1, FVC and FEV1/FVC. CONCLUSION Neutrophil elastase concentration is elevated in obese prehypertensive women along with an increase in high sensitivity C-reactive protein which may account for dyslipidemia and airflow dysfunction in the present study population.
Collapse
Affiliation(s)
- Mervat M El-Eshmawy
- Internal Medicine Department, Specialized Medical Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | | | | | | | | |
Collapse
|
47
|
Cavalcante AGDM, Bruin PFCD. O papel do estresse oxidativo na DPOC: conceitos atuais e perspectivas. J Bras Pneumol 2009; 35:1227-37. [DOI: 10.1590/s1806-37132009001200011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 08/18/2009] [Indexed: 12/12/2022] Open
Abstract
A DPOC é uma causa importante de morbidade e mortalidade em escala global. As manifestações clínicas e funcionais da DPOC resultam de danos pulmonares provocados por um conjunto de mecanismos, incluindo o estresse oxidativo, a inflamação, o desequilíbrio do sistema protease-antiprotease e a apoptose. O estresse oxidativo é central na gênese da DPOC, pois além de provocar dano direto às estruturas pulmonares, amplifica os demais mecanismos. Os eventos celulares e moleculares responsáveis pelo dano pulmonar antecedem em muito a expressão clínica e funcional da DPOC. Os broncodilatadores, principais drogas empregadas atualmente no tratamento da DPOC, não são eficazes em reduzir a progressão da doença. Avanços na compreensão da patogênese da DPOC aliados a esforços renovados na pesquisa básica e clínica deverão permitir sua detecção na fase pré-clínica e possibilitar um monitoramento mais adequado de sua atividade, além de permitir a introdução de novas modalidades de agentes terapêuticos capazes de impedir eficazmente sua progressão.
Collapse
|
48
|
Le A, Zielinski R, He C, Crow MT, Biswal S, Tuder RM, Becker PM. Pulmonary epithelial neuropilin-1 deletion enhances development of cigarette smoke-induced emphysema. Am J Respir Crit Care Med 2009; 180:396-406. [PMID: 19520907 PMCID: PMC2742758 DOI: 10.1164/rccm.200809-1483oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 06/09/2009] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Cigarette smoke (CS) exposure is an important risk factor for chronic obstructive pulmonary disease; however, not all smokers develop disease, suggesting that other factors influence disease development. OBJECTIVES We sought to determine whether neuropilin-1 (Nrp1), an integral component of receptor complexes mediating alveolar septation and vascular development, was involved in maintenance of normal alveolar structure, and/or altered susceptibility to the effects of CS. METHODS Transgenic mice were generated to achieve inducible lung-specific deletion of epithelial Nrp1. We determined whether conditional Nrp1 deletion altered airspace size, then compared the effects of chronic CS or filtered air exposure on airspace size, inflammation, and the balance between cell death and proliferation in conditionally Nrp1-deficient adult mice and littermate controls. Finally, we evaluated the effects of Nrp1 silencing on cell death after acute exposure of A549 cells to cigarette smoke extract or short chain ceramides. MEASUREMENTS AND MAIN RESULTS Genetic deletion of epithelial Nrp1 in either postnatal or adult lungs resulted in a small increase in airspace size. More notably, both airspace enlargement and apoptosis of type I and type II alveolar epithelial cells were significantly enhanced following chronic CS exposure in conditionally Nrp1-deficient adult mice. Silencing of Nrp1 in A549 cells did not alter cell survival after vehicle treatment but significantly augmented apoptosis after exposure to cigarette smoke extract or ceramide. CONCLUSIONS These data support a role for epithelial Nrp1 in the maintenance of normal alveolar structure and suggest that dysregulation of Nrp1 expression may promote epithelial cell death in response to CS exposure, thereby enhancing emphysema development.
Collapse
Affiliation(s)
- Anne Le
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Onizawa S, Aoshiba K, Kajita M, Miyamoto Y, Nagai A. Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm Pharmacol Ther 2009; 22:340-9. [PMID: 19166956 DOI: 10.1016/j.pupt.2008.12.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 09/30/2008] [Accepted: 12/19/2008] [Indexed: 02/02/2023]
Abstract
Recent evidence implicates increased oxidative stress as an important mechanism of the pulmonary inflammation that occurs in cigarette smokers. Since cigarette smoke (CS) contains and generates a large amount of reactive oxygen species (ROS) that elicit pulmonary inflammation, antioxidants may become effective therapeutic agents for CS-related inflammatory lung diseases, such as chronic obstructive pulmonary disease. Platinum nanoparticles stabilized with polyacrylate to form a stable colloid solution (PAA-Pt) are a new class of antioxidants that has been shown to efficiently quench ROS. In the present study we investigated the therapeutic effects of PAA-Pt on pulmonary inflammation in smoking mice. PAA-Pt or saline was administered intranasally to DBA/2 mice, which were then exposed to CS or control air daily for 3 days. Mice were sacrificed 4h after their final exposure to CS or control air. CS exposure caused depletion of antioxidant capacity, NFkappaB activation, and neutrophilic inflammation in the lungs of mice, and intranasal administration of PAA-Pt prior to CS exposure was found to inhibit these changes. Intranasal administration of PAA-Pt alone did not elicit pulmonary inflammation or toxicity. In in vitro experiments, treatment of alveolar-type-II-like A549 cells with PAA-Pt inhibited cell death after exposure to a CS extract. These results suggest that platinum nanoparticles act as antioxidants that inhibit pulmonary inflammation induced by acute cigarette smoking.
Collapse
Affiliation(s)
- Shigemitsu Onizawa
- First Department of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
50
|
Snell NJC. HOST DEFENSES AGAINST RESPIRATORY TRACT INFECTION—IMPLICATIONS FOR ANTI-INFLAMMATORY DRUG DEVELOPMENT AND TREATMENT. Exp Lung Res 2009; 33:529-36. [DOI: 10.1080/01902140701756661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|