1
|
Xing Y, Zhao J, Zhou M, Jing S, Zhao X, Mao P, Qian J, Huang C, Tian Z, Wang Q, Zeng X, Li M, Yang J. The LPS induced pyroptosis exacerbates BMPR2 signaling deficiency to potentiate SLE-PAH. FASEB J 2021; 35:e22044. [PMID: 34818449 DOI: 10.1096/fj.202100851rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a common and fatal complication of systemic lupus erythematosus (SLE). Whether the BMP receptor deficiency found in the genetic form of PAH is also involved in SLE-PAH patients remains to be identified. In this study, we employed patient-derived samples from SLE-associated PAH (SLE-PAH) and established comparable mouse models to clarify the role of BMP signaling in the pathobiology of SLE-PAH. Firstly, serum levels of LPS and autoantibodies (auto-Abs) directed at BMP receptors were significantly increased in patients with SLE-PAH compared with control subjects, measured by ELISA. Mass cytometry was applied to compare peripheral blood leukocyte phenotype in patients prior to and after treatment with steroids, which demonstrated inflammatory cells alteration in SLE-PAH. Furthermore, BMPR2 signaling and pyroptotic factors were examined in human pulmonary arterial endothelial cells (PAECs) in response to LPS stimulation. Interleukin-8 (IL-8) and E-selectin (SELE) expressions were up-regulated in autologous BMPR2+/R899X endothelial cells and siBMPR2-interfered PAECs. A SLE-PH model was established in mice induced with pristane and hypoxia. Moreover, the combination of endothelial specific BMPR2 knockout in SLE mice exacerbated pulmonary hypertension. Pyroptotic factors including gasdermin D (GSDMD) were elevated in the lungs of SLE-PH mice, and the pyroptotic effects of serum samples isolated from SLE-PAH patients on PAECs were analyzed. BMPR2 signaling upregulator (BUR1) showed anti-pyroptotic effects in SLE-PH mice and PAECs. Our results implied that deficiencies of BMPR2 signaling and proinflammatory factors together contribute to the development of PAH in SLE.
Collapse
Affiliation(s)
- Yanjiang Xing
- Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiuliang Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Meijun Zhou
- Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuliang Jing
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Zhao
- Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pei Mao
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyan Qian
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Can Huang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Qian Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jun Yang
- Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Sharma S, Aldred MA. DNA Damage and Repair in Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:genes11101224. [PMID: 33086628 PMCID: PMC7603366 DOI: 10.3390/genes11101224] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex multifactorial disease with both genetic and environmental dynamics contributing to disease progression. Over the last decade, several studies have demonstrated the presence of genomic instability and increased levels of DNA damage in PAH lung vascular cells, which contribute to their pathogenic apoptosis-resistant and proliferating characteristics. In addition, the dysregulated DNA damage response pathways have been indicated as causal factors for the presence of persistent DNA damage. To understand the significant implications of DNA damage and repair in PAH pathogenesis, the current review summarizes the recent advances made in this field. This includes an overview of the observed DNA damage in the nuclear and mitochondrial genome of PAH patients. Next, the irregularities observed in various DNA damage response pathways and their role in accumulating DNA damage, escaping apoptosis, and proliferation under a DNA damaging environment are discussed. Although the current literature establishes the pertinence of DNA damage in PAH, additional studies are required to understand the temporal sequence of the above-mentioned events. Further, an exploration of different types of DNA damage in conjunction with associated impaired DNA damage response in PAH will potentially stimulate early diagnosis of the disease and development of novel therapeutic strategies.
Collapse
|
3
|
Simenauer A, Nozik-Grayck E, Cota-Gomez A. The DNA Damage Response and HIV-Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:ijms21093305. [PMID: 32392789 PMCID: PMC7246454 DOI: 10.3390/ijms21093305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
The HIV-infected population is at a dramatically increased risk of developing pulmonary arterial hypertension (PAH), a devastating and fatal cardiopulmonary disease that is rare amongst the general population. It is increasingly apparent that PAH is a disease with complex and heterogeneous cellular and molecular pathologies, and options for therapeutic intervention are limited, resulting in poor clinical outcomes for affected patients. A number of soluble HIV factors have been implicated in driving the cellular pathologies associated with PAH through perturbations of various signaling and regulatory networks of uninfected bystander cells in the pulmonary vasculature. While these mechanisms are likely numerous and multifaceted, the overlapping features of PAH cellular pathologies and the effects of viral factors on related cell types provide clues as to the potential mechanisms driving HIV-PAH etiology and progression. In this review, we discuss the link between the DNA damage response (DDR) signaling network, chronic HIV infection, and potential contributions to the development of pulmonary arterial hypertension in chronically HIV-infected individuals.
Collapse
Affiliation(s)
- Ari Simenauer
- Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Labs and Pediatric Critical Care Medicine, University of Colorado Denver, Pediatric Critical Care Medicine, Aurora, CO 80045, USA;
| | - Adela Cota-Gomez
- Department of Medicine Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-(303)-724-6085
| |
Collapse
|
4
|
Tofovic SP, Jackson EK. Estradiol Metabolism: Crossroads in Pulmonary Arterial Hypertension. Int J Mol Sci 2019; 21:ijms21010116. [PMID: 31877978 PMCID: PMC6982327 DOI: 10.3390/ijms21010116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a debilitating and progressive disease that predominantly develops in women. Over the past 15 years, cumulating evidence has pointed toward dysregulated metabolism of sex hormones in animal models and patients with PAH. 17β-estradiol (E2) is metabolized at positions C2, C4, and C16, which leads to the formation of metabolites with different biological/estrogenic activity. Since the first report that 2-methoxyestradiol, a major non-estrogenic metabolite of E2, attenuates the development and progression of experimental pulmonary hypertension (PH), it has become increasingly clear that E2, E2 precursors, and E2 metabolites exhibit both protective and detrimental effects in PH. Furthermore, both experimental and clinical data suggest that E2 has divergent effects in the pulmonary vasculature versus right ventricle (estrogen paradox in PAH). The estrogen paradox is of significant clinical relevance for understanding the development, progression, and prognosis of PAH. This review updates experimental and clinical findings and provides insights into: (1) the potential impacts that pathways of estradiol metabolism (EMet) may have in PAH; (2) the beneficial and adverse effects of estrogens and their precursors/metabolites in experimental PH and human PAH; (3) the co-morbidities and pathological conditions that may alter EMet and influence the development/progression of PAH; (4) the relevance of the intracrinology of sex hormones to vascular remodeling in PAH; and (5) the advantages/disadvantages of different approaches to modulate EMet in PAH. Finally, we propose the three-tier-estrogen effects in PAH concept, which may offer reconciliation of the opposing effects of E2 in PAH and may provide a better understanding of the complex mechanisms by which EMet affects the pulmonary circulation–right ventricular interaction in PAH.
Collapse
Affiliation(s)
- Stevan P. Tofovic
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST E1240, 200 Lothrop Street, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine, 100 Technology Drive, PA 15219, USA;
- Correspondence: ; Tel.: +1-412-648-3363
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine, 100 Technology Drive, PA 15219, USA;
| |
Collapse
|
5
|
Placzek M, Friede T. A conditional error function approach for adaptive enrichment designs with continuous endpoints. Stat Med 2019; 38:3105-3122. [PMID: 31066093 DOI: 10.1002/sim.8154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/22/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022]
Abstract
Adaptive enrichment designs offer an efficient and flexible way to demonstrate the efficacy of a treatment in a clinically defined full population or in, eg, biomarker-defined subpopulations while controlling the family-wise Type I error rate in the strong sense. Frequently used testing strategies in designs with two or more stages include the combination test and the conditional error function approach. Here, we focus on the latter and present some extensions. In contrast to previous work, we allow for multiple subgroups rather than one subgroup only. For nested as well as nonoverlapping subgroups with normally distributed endpoints, we explore the effect of estimating the variances in the subpopulations. Instead of using a normal approximation, we derive new t-distribution-based methods for two different scenarios. First, in the case of equal variances across the subpopulations, we present exact results using a multivariate t-distribution. Second, in the case of potentially varying variances across subgroups, we provide some improved approximations compared to the normal approximation. The performance of the proposed conditional error function approaches is assessed and compared to the combination test in a simulation study. The proposed methods are motivated by an example in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Marius Placzek
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Baertling F, Al-Murshedi F, Sánchez-Caballero L, Al-Senaidi K, Joshi NP, Venselaar H, van den Brand MAM, Nijtmans LGJ, Rodenburg RJT. Mutation in mitochondrial complex IV subunit COX5A causes pulmonary arterial hypertension, lactic acidemia, and failure to thrive. Hum Mutat 2017; 38:692-703. [DOI: 10.1002/humu.23210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/14/2017] [Accepted: 02/25/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Fabian Baertling
- Department of Pediatrics; Radboud Centre for Mitochondrial Medicine; Radboud University Medical Centre; Nijmegen The Netherlands
- Department of General Pediatrics, Neonatology and Pediatric Cardiology; University Children's Hospital Duesseldorf; Heinrich Heine University; Düsseldorf Germany
| | - Fathiya Al-Murshedi
- Genetic and Developmental Medicine Clinic; Department of Genetics; Sultan Qaboos University Hospital; Sultan Qaboos University; Muscat Oman
| | - Laura Sánchez-Caballero
- Department of Pediatrics; Radboud Centre for Mitochondrial Medicine; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Khalfan Al-Senaidi
- Pediatric Cardiology Unit; Department of Child Health; Sultan Qaboos University Hospital; Sultan Qaboos University; Muscat Oman
| | - Niranjan P Joshi
- Pediatric Cardiology Unit; Department of Child Health; Sultan Qaboos University Hospital; Sultan Qaboos University; Muscat Oman
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics; Radboud University; Nijmegen The Netherlands
| | - Mariël AM van den Brand
- Department of Pediatrics; Radboud Centre for Mitochondrial Medicine; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Leo GJ Nijtmans
- Department of Pediatrics; Radboud Centre for Mitochondrial Medicine; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Richard JT Rodenburg
- Department of Pediatrics; Radboud Centre for Mitochondrial Medicine; Radboud University Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
7
|
Kim JD, Lee A, Choi J, Park Y, Kang H, Chang W, Lee MS, Kim J. Epigenetic modulation as a therapeutic approach for pulmonary arterial hypertension. Exp Mol Med 2015; 47:e175. [PMID: 26228095 PMCID: PMC4525299 DOI: 10.1038/emm.2015.45] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but progressive and currently incurable disease, which is characterized by vascular remodeling in association with muscularization of the arterioles, medial thickening and plexiform lesion formation. Despite our advanced understanding of the pathogenesis of PAH and the recent therapeutic advances, PAH still remains a fatal disease. In addition, the susceptibility to PAH has not yet been adequately explained. Much evidence points to the involvement of epigenetic changes in the pathogenesis of a number of human diseases including cancer, peripheral hypertension and asthma. The knowledge gained from the epigenetic study of various human diseases can also be applied to PAH. Thus, the pursuit of novel therapeutic targets via understanding the epigenetic alterations involved in the pathogenesis of PAH, such as DNA methylation, histone modification and microRNA, might be an attractive therapeutic avenue for the development of a novel and more effective treatment. This review provides a general overview of the current advances in epigenetics associated with PAH, and discusses the potential for improved treatment through understanding the role of epigenetics in the development of PAH.
Collapse
Affiliation(s)
- Jun-Dae Kim
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Aram Lee
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Jihea Choi
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Youngsook Park
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Hyesoo Kang
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, Korea
| | - Myeong-Sok Lee
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
8
|
John A, Kizhakkedath P, Al-Gazali L, Ali BR. Defective cellular trafficking of the bone morphogenetic protein receptor type II by mutations underlying familial pulmonary arterial hypertension. Gene 2015; 561:148-56. [PMID: 25688877 DOI: 10.1016/j.gene.2015.02.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/26/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023]
Abstract
Familial pulmonary arterial hypertension (FPAH) is a relatively rare but fatal disorder characterized by elevated arterial pressure caused by abnormal proliferation of endothelial cells of the arteries, which eventually leads to heart failure and death. FPAH is inherited as an autosomal dominant trait and is caused by heterozygous mutations in the BMPR2 gene encoding the bone morphogenetic protein type II receptor (BMPR2). BMPR2 belongs to the TGF β/BMP super-family of receptors involved in a signal transduction cascade via the SMAD signaling pathway. The BMPR2 polypeptide is composed of 1038 amino acids and consists of a ligand binding domain, a kinase domain and a cytoplasmic tail. To investigate the cellular and functional consequence of BMPR2 mutations, C-terminally FLAG-tagged constructs of eighteen pathogenic BMPR2 missense mutants were generated by site directed mutagenesis and expressed in HeLa and HEK-293T cell lines. The subcellular localizations of the mutant proteins were investigated using immunostaining and confocal microscopy. Post-translational modifications of the proteins were analyzed by Endoglycosidase H deglycosylation assay. Our results indicated that mutations in the ligand binding domain affecting highly conserved cysteine residues resulted in retention of the mutant proteins in the endoplasmic reticulum (ER), as evident from their co-localization with the ER resident protein calnexin. The kinase domain mutants showed both ER and plasma membrane (PM) distributions, while the cytoplasmic tail domain variants were localized exclusively to the PM. The subcellular localizations of the mutants were further confirmed by their characteristic glycosylation profiles. In conclusion, our results indicate that ER quality control (ERQC) is involved in the pathological mechanism of several BMPR2 receptor missense mutations causing FPAH, which can be explored as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Anne John
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Praseetha Kizhakkedath
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
9
|
de Jesus Perez VA, Yuan K, Lyuksyutova MA, Dewey F, Orcholski ME, Shuffle EM, Mathur M, Yancy L, Rojas V, Li CG, Cao A, Alastalo TP, Khazeni N, Cimprich KA, Butte AJ, Ashley E, Zamanian RT. Whole-exome sequencing reveals TopBP1 as a novel gene in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2014; 189:1260-72. [PMID: 24702692 DOI: 10.1164/rccm.201310-1749oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disorder characterized by progressive loss of pulmonary microvessels. Although mutations in the bone morphogenetic receptor 2 (BMPR2) are found in 80% of heritable and ∼15% of patients with IPAH, their low penetrance (∼20%) suggests that other unidentified genetic modifiers are required for manifestation of the disease phenotype. Use of whole-exome sequencing (WES) has recently led to the discovery of novel susceptibility genes in heritable PAH, but whether WES can also accelerate gene discovery in IPAH remains unknown. OBJECTIVES To determine whether WES can help identify novel gene modifiers in patients with IPAH. METHODS Exome capture and sequencing was performed on genomic DNA isolated from 12 unrelated patients with IPAH lacking BMPR2 mutations. Observed genetic variants were prioritized according to their pathogenic potential using ANNOVAR. MEASUREMENTS AND MAIN RESULTS A total of nine genes were identified as high-priority candidates. Our top hit was topoisomerase DNA binding II binding protein 1 (TopBP1), a gene involved in the response to DNA damage and replication stress. We found that TopBP1 expression was reduced in vascular lesions and pulmonary endothelial cells isolated from patients with IPAH. Although TopBP1 deficiency made endothelial cells susceptible to DNA damage and apoptosis in response to hydroxyurea, its restoration resulted in less DNA damage and improved cell survival. CONCLUSIONS WES led to the discovery of TopBP1, a gene whose deficiency may increase susceptibility to small vessel loss in IPAH. We predict that use of WES will help identify gene modifiers that influence an individual's risk of developing IPAH.
Collapse
|
10
|
Pasha Q. Saudi Guidelines on the Diagnosis and Treatment of Pulmonary Hypertension: Genetics of pulmonary hypertension. Ann Thorac Med 2014; 9:S16-20. [PMID: 25076992 PMCID: PMC4114274 DOI: 10.4103/1817-1737.134009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 04/05/2014] [Indexed: 12/19/2022] Open
Abstract
Pulmonary hypertension (PH) is a phenotype characterized by functional and structural changes in the pulmonary vasculature, leading to increased vascular resistance.[12] The World Health Organization has classified PH into five different types: arterial, venous, hypoxic, thromboembolic or miscellaneous; details are available in the main guidelines. Group I of this classification, designated as pulmonary arterial hypertension (PAH), will remain the main focus here. The pathophysiology involves signaling, endothelial dysfunction, activation of fibroblasts and smooth muscle cells, interaction between cells within the vascular wall, and the circulating cells; as a consequence plexiform lesions are formed, which is common to both idiopathic and heritable PAH but are also seen in other forms of PAH.[234] As the pathology of PAH in the lung is well known, this article focuses on the genetic aspects associated with the disease and is a gist of several available articles in literature.
Collapse
Affiliation(s)
- Qadar Pasha
- Department of Genetics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
11
|
Young LR, Deutsch GH, Bokulic RE, Brody AS, Nogee LM. A mutation in TTF1/NKX2.1 is associated with familial neuroendocrine cell hyperplasia of infancy. Chest 2014; 144:1199-1206. [PMID: 23787483 DOI: 10.1378/chest.13-0811] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Neuroendocrine cell hyperplasia of infancy (NEHI) is a childhood diffuse lung disease of unknown etiology. We investigated the mechanism for lung disease in a subject whose clinical, imaging, and lung biopsy specimen findings were consistent with NEHI; the subject's extended family and eight other unrelated patients with NEHI were also investigated. METHODS The proband's lung biopsy specimen (at age 7 months) and serial CT scans were diagnostic of NEHI. Her mother, an aunt, an uncle, and two first cousins had failure to thrive in infancy and chronic respiratory symptoms that improved with age. Genes associated with autosomal-dominant forms of childhood interstitial lung disease were sequenced. RESULTS A heterozygous NKX2.1 mutation was identified in the proband and the four other adult family members with histories of childhood lung disease. The mutation results in a nonconservative amino acid substitution in the homeodomain in a codon extensively conserved through evolution. None of these individuals have thyroid disease or movement disorders. NKX2.1 mutations were not identified by sequence analysis in eight other unrelated subjects with NEHI. CONCLUSIONS The nature of the mutation and its segregation with disease support that it is disease-causing. Previously reported NKX2.1 mutations have been associated with "brain-thyroid-lung" syndrome and a spectrum of more severe pulmonary phenotypes. We conclude that genetic mechanisms may cause NEHI and that NKX2.1 mutations may result in, but are not the predominant cause of, this phenotype. We speculate that altered expression of NKX2.1 target genes other than those in the surfactant system may be responsible for the pulmonary pathophysiology of NEHI.
Collapse
Affiliation(s)
- Lisa R Young
- Division of Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN; Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Gail H Deutsch
- Department of Pathology, Seattle Children's Hospital and University of Washington, Seattle, WA
| | - Ronald E Bokulic
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | - Alan S Brody
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | - Lawrence M Nogee
- Eudowood Neonatal Pulmonary Division, Department of Pediatrics, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
12
|
Frump AL, Lowery JW, Hamid R, Austin ED, de Caestecker M. Abnormal trafficking of endogenously expressed BMPR2 mutant allelic products in patients with heritable pulmonary arterial hypertension. PLoS One 2013; 8:e80319. [PMID: 24224048 PMCID: PMC3818254 DOI: 10.1371/journal.pone.0080319] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/07/2013] [Indexed: 12/28/2022] Open
Abstract
More than 200 heterozygous mutations in the type 2 BMP receptor gene, BMPR2, have been identified in patients with Heritable Pulmonary Arterial Hypertension (HPAH). More severe clinical outcomes occur in patients with BMPR2 mutations by-passing nonsense-mediated mRNA decay (NMD negative mutations). These comprise 40% of HPAH mutations and are predicted to express BMPR2 mutant products. However expression of endogenous NMD negative BMPR2 mutant products and their effect on protein trafficking and signaling function have never been described. Here, we characterize the expression and trafficking of an HPAH-associated NMD negative BMPR2 mutation that results in an in-frame deletion of BMPR2 EXON2 (BMPR2ΔEx2) in HPAH patient-derived lymphocytes and in pulmonary endothelial cells (PECs) from mice carrying the same in-frame deletion of Exon 2 (Bmpr2 (ΔEx2/+) mice). The endogenous BMPR2ΔEx2 mutant product does not reach the cell surface and is retained in the endoplasmic reticulum. Moreover, chemical chaperones 4-PBA and TUDCA partially restore cell surface expression of Bmpr2ΔEx2 in PECs, suggesting that the mutant product is mis-folded. We also show that PECs from Bmpr2 (ΔEx2/+) mice have defects in the BMP-induced Smad1/5/8 and Id1 signaling axis, and that addition of chemical chaperones restores expression of the Smad1/5/8 target Id1. These data indicate that the endogenous NMD negative BMPRΔEx2 mutant product is expressed but has a folding defect resulting in ER retention. Partial correction of this folding defect and restoration of defective BMP signaling using chemical chaperones suggests that protein-folding agents could be used therapeutically in patients with these NMD negative BMPR2 mutations.
Collapse
Affiliation(s)
- Andrea L. Frump
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jonathan W. Lowery
- Department of Developmental Biology, Harvard University School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Rizwan Hamid
- Department of Pediatrics, Division of Molecular Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric D. Austin
- Department of Pediatrics, Division of Pediatric Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mark de Caestecker
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- *E-mail:
| |
Collapse
|
13
|
Yuan K, Orcholski M, Tian X, Liao X, de Jesus Perez VA. MicroRNAs: promising therapeutic targets for the treatment of pulmonary arterial hypertension. Expert Opin Ther Targets 2013; 17:557-64. [PMID: 23379818 DOI: 10.1517/14728222.2013.765863] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are small noncoding RNAs that not only regulate gene expression during normal development but can also be active players in several diseases. To date, several studies have demonstrated a possible role for specific miRNAs in the regulation of pulmonary vascular homeostasis suggesting that novel therapeutic agents which target these modulators of gene expression could serve to treat pulmonary arterial hypertension (PAH). AREAS COVERED The characterization of miRNA-mediated gene modulation in the pulmonary circulation is expanding very rapidly. This review summarizes current relevant findings on the role of miRNAs in the pathogenesis of PAH and expands on the potential use of agents that target these molecules as future disease-modifying therapies. EXPERT OPINION Further understanding of miRNA biology and function in the pulmonary circulation will serve to further enhance our understanding of their contribution to the pathogenesis of PAH. The implementation of a systems biology approach will help accelerate the discovery of miRNAs that influence angiogenesis and cellular responses to vascular injury. Experimental characterization of these miRNAs using in vitro and in vivo methods will be required to validate the biological roles of these miRNAs prior to the consideration of their use as therapeutic targets in future clinical trials.
Collapse
Affiliation(s)
- Ke Yuan
- Stanford University, Department of Medicine, Stanford, CA 94305 , USA
| | | | | | | | | |
Collapse
|
14
|
Pulmonary arterial hypertension in systemic lupus erythematosus: current status and future direction. Clin Dev Immunol 2012; 2012:854941. [PMID: 22489252 PMCID: PMC3318206 DOI: 10.1155/2012/854941] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/02/2012] [Indexed: 12/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is commonly associated with connective tissue diseases (CTDs) including systemic sclerosis and systemic lupus erythematosus (SLE). The prevalence of PAH in SLE is estimated to be 0.5% to 17.5%. The pathophysiology of PAH involves multiple mechanisms from vasculitis and in-situ thrombosis to interstitial pulmonary fibrosis which increases pulmonary vascular resistance, potentially leading to right heart failure. Immune and inflammatory mechanisms may play a significant role in the pathogenesis or progression of PAH in patients with CTDs, establishing a role for anti-inflammatory and immunosuppressive therapies. The leading predictors of PAH in SLE are Raynaud phenomenon, anti-U1RNP antibody, and anticardiolipin antibody positivity. The first-line of diagnostic testing for patients with suspected SLE-associated PAH (SLE-aPAH) involves obtaining a Doppler echocardiogram. Once the diagnosis is confirmed by right heart catheterization, SLE-aPAH patients are generally treated with oxygen, anticoagulants, and vasodilators. Although the prognosis and therapeutic responsiveness of these patients have improved with the addition of intensive immunosuppressive therapies, these treatments are still largely unproven. Recent data put the one-year survival rate for SLE-aPAH patients at 94%. Pregnant women are most at risk of dying due to undiagnosed SLE-aPAH, and screening should be considered essential in this population.
Collapse
|