1
|
Le Guiner C, Xiao X, Larcher T, Lafoux A, Huchet C, Toumaniantz G, Adjali O, Anegon I, Remy S, Grieger J, Li J, Farrokhi V, Neubert H, Owens J, McIntyre M, Moullier P, Samulski RJ. Evaluation of an AAV9-mini-dystrophin gene therapy candidate in a rat model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 2023; 30:30-47. [PMID: 37746247 PMCID: PMC10512999 DOI: 10.1016/j.omtm.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/15/2023] [Indexed: 09/26/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease caused by loss-of-function mutations in the dystrophin gene and is characterized by muscle wasting and early mortality. Adeno-associated virus-mediated gene therapy is being investigated as a treatment for DMD. In the nonclinical study documented here, we determined the effective dose of fordadistrogene movaparvovec, a clinical candidate adeno-associated virus serotype 9 vector carrying a human mini-dystrophin transgene, after single intravenous injection in a dystrophin-deficient (DMDmdx) rat model of DMD. Overall, we found that transduction efficiency, number of muscle fibers expressing the human mini-dystrophin polypeptide, improvement of the skeletal and cardiac muscle tissue architecture, correction of muscle strength and fatigability, and improvement of diastolic and systolic cardiac function were directly correlated with the amount of vector administered. The effective dose was then tested in older DMDmdx rats with a more dystrophic phenotype similar to the pathology observed in older patients with DMD. Except for a less complete rescue of muscle function in the oldest cohort, fordadistrogene movaparvovec was also found to be therapeutically effective in older DMDmdx rats, suggesting that this product may be appropriate for evaluation in patients with DMD at all stages of disease.
Collapse
Affiliation(s)
- Caroline Le Guiner
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
| | - Xiao Xiao
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599-7352, USA
| | | | - Aude Lafoux
- Therassay Platform, Capacités, Nantes Université, 44007 Nantes, France
| | - Corinne Huchet
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
- Therassay Platform, Capacités, Nantes Université, 44007 Nantes, France
| | - Gilles Toumaniantz
- Therassay Platform, Capacités, Nantes Université, 44007 Nantes, France
- Nantes Université, CHU Nantes, CNRS, L’Institut du Thorax, 44007 Nantes, France
| | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
| | - Ignacio Anegon
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, 44093 Nantes, France
| | - Séverine Remy
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, 44093 Nantes, France
| | - Josh Grieger
- Bamboo Therapeutics, Pfizer, Chapel Hill, NC 27514, USA
| | - Juan Li
- Gene Therapy Center, Eshelman School of Pharmacy DPMP, University of North Carolina, Chapel Hill, NC 27599-7352, USA
| | | | | | | | | | - Philippe Moullier
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599-7352, USA
| |
Collapse
|
2
|
Cheng Q, Kang Y, Yao B, Dong J, Zhu Y, He Y, Ji X. Genetically Engineered-Cell-Membrane Nanovesicles for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302131. [PMID: 37409429 PMCID: PMC10502869 DOI: 10.1002/advs.202302131] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Indexed: 07/07/2023]
Abstract
The advent of immunotherapy has marked a new era in cancer treatment, offering significant clinical benefits. Cell membrane as drug delivery materials has played a crucial role in enhancing cancer therapy because of their inherent biocompatibility and negligible immunogenicity. Different cell membranes are prepared into cell membrane nanovesicles (CMNs), but CMNs have limitations such as inefficient targeting ability, low efficacy, and unpredictable side effects. Genetic engineering has deepened the critical role of CMNs in cancer immunotherapy, enabling genetically engineered-CMN (GCMN)-based therapeutics. To date, CMNs that are surface modified by various functional proteins have been developed through genetic engineering. Herein, a brief overview of surface engineering strategies for CMNs and the features of various membrane sources is discussed, followed by a description of GCMN preparation methods. The application of GCMNs in cancer immunotherapy directed at different immune targets is addressed as are the challenges and prospects of GCMNs in clinical translation.
Collapse
Affiliation(s)
| | - Yong Kang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yalan Zhu
- Jinhua Municipal Central HospitalJinhua321000China
| | - Yiling He
- Jinhua Municipal Central HospitalJinhua321000China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
- Medical CollegeLinyi UniversityLinyi276000China
| |
Collapse
|
3
|
Eftekharpour E, Shcholok T. Cre-recombinase systems for induction of neuron-specific knockout models: a guide for biomedical researchers. Neural Regen Res 2023; 18:273-279. [PMID: 35900402 PMCID: PMC9396489 DOI: 10.4103/1673-5374.346541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Gene deletion has been a valuable tool for unraveling the mysteries of molecular biology. Early approaches included gene trapping and gene targetting to disrupt or delete a gene randomly or at a specific location, respectively. Using these technologies in mouse embryos led to the generation of mouse knockout models and many scientific discoveries. The efficacy and specificity of these approaches have significantly increased with the advent of new technology such as clustered regularly interspaced short palindromic repeats for targetted gene deletion. However, several limitations including unwanted off-target gene deletion have hindered their widespread use in the field. Cre-recombinase technology has provided additional capacity for cell-specific gene deletion. In this review, we provide a summary of currently available literature on the application of this system for targetted deletion of neuronal genes. This article has been constructed to provide some background information for the new trainees on the mechanism and to provide necessary information for the design, and application of the Cre-recombinase system through reviewing the most frequent promoters that are currently available for genetic manipulation of neurons. We additionally will provide a summary of the latest technological developments that can be used for targeting neurons. This may also serve as a general guide for the selection of appropriate models for biomedical research.
Collapse
|
4
|
Cushnie AK, El-Nahal HG, Bohlen MO, May PJ, Basso MA, Grimaldi P, Wang MZ, de Velasco Ezequiel MF, Sommer MA, Heilbronner SR. Using rAAV2-retro in rhesus macaques: Promise and caveats for circuit manipulation. J Neurosci Methods 2020; 345:108859. [PMID: 32668316 DOI: 10.1016/j.jneumeth.2020.108859] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recent genetic technologies such as opto- and chemogenetics allow for the manipulation of brain circuits with unprecedented precision. Most studies employing these techniques have been undertaken in rodents, but a more human-homologous model for studying the brain is the nonhuman primate (NHP). Optimizing viral delivery of transgenes encoding actuator proteins could revolutionize the way we study neuronal circuits in NHPs. NEW METHOD: rAAV2-retro, a popular new capsid variant, produces robust retrograde labeling in rodents. Whether rAAV2-retro's highly efficient retrograde transport would translate to NHPs was unknown. Here, we characterized the anatomical distribution of labeling following injections of rAAV2-retro encoding opsins or DREADDs in the cortico-basal ganglia and oculomotor circuits of rhesus macaques. RESULTS rAAV2-retro injections in striatum, frontal eye field, and superior colliculus produced local labeling at injection sites and robust retrograde labeling in many afferent regions. In every case, however, a few brain regions with well-established projections to the injected structure lacked retrogradely labeled cells. We also observed robust terminal field labeling in downstream structures. COMPARISON WITH EXISTING METHOD(S) Patterns of labeling were similar to those obtained with traditional tract-tracers, except for some afferent labeling that was noticeably absent. CONCLUSIONS rAAV2-retro promises to be useful for circuit manipulation via retrograde transduction in NHPs, but caveats were revealed by our findings. Some afferently connected regions lacked retrogradely labeled cells, showed robust axon terminal labeling, or both. This highlights the importance of anatomically characterizing rAAV2-retro's expression in target circuits in NHPs before moving to manipulation studies.
Collapse
Affiliation(s)
- Adriana K Cushnie
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hala G El-Nahal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, 39216, United States
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Univ. of California Los Angeles, Los Angeles, CA 90095, United States
| | - Piercesare Grimaldi
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Univ. of California Los Angeles, Los Angeles, CA 90095, United States
| | - Maya Zhe Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | | | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
5
|
Gu X, Chai R, Guo L, Dong B, Li W, Shu Y, Huang X, Li H. Transduction of Adeno-Associated Virus Vectors Targeting Hair Cells and Supporting Cells in the Neonatal Mouse Cochlea. Front Cell Neurosci 2019; 13:8. [PMID: 30733670 PMCID: PMC6353798 DOI: 10.3389/fncel.2019.00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/10/2019] [Indexed: 02/05/2023] Open
Abstract
Adeno-associated virus (AAV) is the preferred vector for gene therapy of hereditary deafness, and different viral serotypes, promoters and transduction pathways can influence the targeting of AAV to different types of cells and the expression levels of numerous exogenous genes. To determine the transduction and expression patterns of AAV with different serotypes or promoters in hair cells and supporting cells in the neonatal mouse cochlea, we examined the expression of enhanced green fluorescent protein (eGFP) for five different types of AAV vectors [serotypes 2, 9, and Anc80L65 with promoter cytomegalovirus (CMV)-beta-Globin and serotypes 2 and 9 with promoter chicken beta-actin (CBA)] in in vitro cochlear explant cultures and we tested the transduction of AAV2/2-CBA, AAV2/9-CBA, and AAV2/Anc80L65-CMV by in vivo microinjection into the scala media of the cochlea. We found that each AAV vector had its own transduction and expression characteristics in hair cells and supporting cells in different regions of the cochlea. There was a tonotopic gradient for the in vitro transduction of AAV2/2-CBA, AAV2/9-CBA, AAV2/2-CMV, and AAV2/9-CMV in outer hair cells (OHCs), with more OHCs expressing eGFP at the base of the cochlea than at the apex. AAV2/2-CBA in vitro and AAV2/Anc80L65-CMV in vivo induced more supporting cells expressing eGFP at the apex than in the base. We found that AAV vectors with different promoters had different expression efficacies in hair cells and supporting cells of the auditory epithelium. The CMV-beta-Globin promoter could drive the expression of the delivered construct more efficiently in hair cells, while the CBA promoter was more efficient in supporting cells. The in vitro and in vivo experiments both demonstrated that AAV2/Anc80L65-CMV was a very promising vector for gene therapy of deafness because of its high transduction rates in hair cells. These results might be useful for selecting the appropriate vectors for gene delivery into different types of inner ear cells and thus improving the effectiveness of gene therapy.
Collapse
Affiliation(s)
- Xi Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Cochlear Implant, Shanghai, China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Mitsios A, Dubis AM, Moosajee M. Choroideremia: from genetic and clinical phenotyping to gene therapy and future treatments. Ther Adv Ophthalmol 2018; 10:2515841418817490. [PMID: 30627697 PMCID: PMC6311551 DOI: 10.1177/2515841418817490] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 11/15/2022] Open
Abstract
Choroideremia is an X-linked inherited chorioretinal dystrophy leading to blindness by late adulthood. Choroideremia is caused by mutations in the CHM gene which encodes Rab escort protein 1 (REP1), an ubiquitously expressed protein involved in intracellular trafficking and prenylation activity. The exact site of pathogenesis remains unclear but results in degeneration of the photoreceptors, retinal pigment epithelium and choroid. Animal and stem cell models have been used to study the molecular defects in choroideremia and test effectiveness of treatment interventions. Natural history studies of choroideremia have provided additional insight into the clinical phenotype of the condition and prepared the way for clinical trials aiming to investigate the safety and efficacy of suitable therapies. In this review, we provide a summary of the current knowledge on the genetics, pathophysiology, clinical features and therapeutic strategies that might become available for choroideremia in the future, including gene therapy, stem cell treatment and small-molecule drugs with nonsense suppression action.
Collapse
Affiliation(s)
- Andreas Mitsios
- Institute of Ophthalmology, University College London, London, UK
| | - Adam M Dubis
- Institute of Ophthalmology, University College London, London, UK
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
7
|
Roche-Molina M, Sanz-Rosa D, Cruz FM, García-Prieto J, López S, Abia R, Muriana FJ, Fuster V, Ibáñez B, Bernal JA. Induction of Sustained Hypercholesterolemia by Single Adeno-Associated Virus–Mediated Gene Transfer of Mutant hPCSK9. Arterioscler Thromb Vasc Biol 2015; 35:50-9. [DOI: 10.1161/atvbaha.114.303617] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marta Roche-Molina
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - David Sanz-Rosa
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Francisco M. Cruz
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Jaime García-Prieto
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Sergio López
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Rocío Abia
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Francisco J.G. Muriana
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Valentín Fuster
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Borja Ibáñez
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Juan A. Bernal
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| |
Collapse
|
8
|
Tellez J, Van Vliet K, Tseng YS, Finn JD, Tschernia N, Almeida-Porada G, Arruda VR, Agbandje-McKenna M, Porada CD. Characterization of naturally-occurring humoral immunity to AAV in sheep. PLoS One 2013; 8:e75142. [PMID: 24086458 PMCID: PMC3782463 DOI: 10.1371/journal.pone.0075142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
AAV vectors have shown great promise for clinical gene therapy (GT), but pre-existing human immunity against the AAV capsid often limits transduction. Thus, testing promising AAV-based GT approaches in an animal model with similar pre-existing immunity could better predict clinical outcome. Sheep have long been used for basic biological and preclinical studies. Moreover, we have re-established a line of sheep with severe hemophilia A (HA). Given the impetus to use AAV-based GT to treat hemophilia, we characterized the pre-existing ovine humoral immunity to AAV. ELISA revealed naturally-occurring antibodies to AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. For AAV2, AAV8, and AAV9 these inhibit transduction in a luciferase-based neutralization assay. Epitope mapping identified peptides that were common to the capsids of all AAV serotypes tested (AAV2, AAV5, AAV8 and AAV9), with each animal harboring antibodies to unique and common capsid epitopes. Mapping using X-ray crystallographic AAV capsid structures demonstrated that these antibodies recognized both surface epitopes and epitopes located within regions of the capsid that are internal or buried in the capsid structure. These results suggest that sheep harbor endogenous AAV, which induces immunity to both intact capsid and to capsid epitopes presented following proteolysis during the course of infection. In conclusion, their clinically relevant physiology and the presence of naturally-occurring antibodies to multiple AAV serotypes collectively make sheep a unique model in which to study GT for HA, and other diseases, and develop strategies to circumvent the clinically important barrier of pre-existing AAV immunity.
Collapse
Affiliation(s)
- Joseph Tellez
- Department of Animal Biotechnology, University of Nevada, Reno, Nevada, United States of America
| | - Kim Van Vliet
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Yu-Shan Tseng
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Jonathan D. Finn
- University of Pennsylvania School of Medicine, the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Nick Tschernia
- Department of Animal Biotechnology, University of Nevada, Reno, Nevada, United States of America
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, United States of America
| | - Valder R. Arruda
- University of Pennsylvania School of Medicine, the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Christopher D. Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Tracing inputs to inhibitory or excitatory neurons of mouse and cat visual cortex with a targeted rabies virus. Curr Biol 2013; 23:1746-55. [PMID: 23993841 DOI: 10.1016/j.cub.2013.07.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 07/05/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cortical inhibition plays a critical role in controlling and modulating cortical excitation, and a more detailed understanding of the neuronal circuits contributing to each will provide more insight into their roles in complex cortical computations. Traditional neuronal tracers lack a means for easily distinguishing between circuits of inhibitory and excitatory neurons. To overcome this limitation, we have developed a technique for retrogradely labeling inputs to local clusters of inhibitory or excitatory neurons, but not both, using neurotropic adenoassociated and lentiviral vectors, cell-type-specific promoters, and a modified rabies virus. RESULTS Applied to primary visual cortex (V1) in mouse, the cell-type-specific tracing technique labeled thousands of presynaptically connected neurons and revealed that the dominant source of input to inhibitory and excitatory neurons is local in origin. Neurons in other visual areas are also labeled; the percentage of these intercortical inputs to excitatory neurons is somewhat higher (~20%) than to inhibitory neurons (<10%), suggesting that intercortical connections have less direct control over inhibition. The inputs to inhibitory neurons were also traced in cat V1, and when aligned with the orientation preference map revealed for the first time that long-range inputs to inhibitory neurons are well tuned to orientation. CONCLUSIONS These novel findings for inhibitory and excitatory circuits in the visual cortex demonstrate the efficacy of our new technique and its ability to work across species, including larger-brained mammals such as the cat. This paves the way for a better understanding of the roles of specific cell types in higher-order perceptual and cognitive processes.
Collapse
|
10
|
Schierberl KC, Rajadhyaksha AM. Stereotaxic microinjection of viral vectors expressing Cre recombinase to study the role of target genes in cocaine conditioned place preference. J Vis Exp 2013. [PMID: 23929203 DOI: 10.3791/50600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microinjecting recombinant adenoassociated viral (rAAV) vectors expressing Cre recombinase into distinct mouse brain regions to selectively knockout genes of interest allows for enhanced temporally- and regionally-specific control of gene deletion, compared to existing methods. While conditional deletion can also be achieved by mating mice that express Cre recombinase under the control of specific gene promoters with mice carrying a floxed gene, stereotaxic microinjection allows for targeting of discrete brain areas at experimenter-determined time points of interest. In the context of cocaine conditioned place preference, and other cocaine behavioral paradigms such as self-administration or psychomotor sensitization that can involve withdrawal, extinction and/or reinstatement phases, this technique is particularly useful in exploring the unique contribution of target genes to these distinct phases of behavioral models of cocaine-induced plasticity. Specifically, this technique allows for selective ablation of target genes during discrete phases of a behavior to test their contribution to the behavior across time. Ultimately, this understanding allows for more targeted therapeutics that are best able to address the most potent risk factors that present themselves during each phase of addictive behavior.
Collapse
Affiliation(s)
- Kathryn C Schierberl
- Graduate Program in Neuroscience, Weill Cornell Graduate School of Biomedical Sciences
| | | |
Collapse
|
11
|
Minai-Tehrani A, Chang SH, Kwon JT, Hwang SK, Kim JE, Shin JY, Yu KN, Park SJ, Jiang HL, Kim JH, Hong SH, Kang B, Kim D, Chae CH, Lee KH, Beck GR, Cho MH. Aerosol delivery of lentivirus-mediated O-glycosylation mutant osteopontin suppresses lung tumorigenesis in K-ras (LA1) mice. Cell Oncol (Dordr) 2013; 36:15-26. [PMID: 23070870 DOI: 10.1007/s13402-012-0107-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Osteopontin (OPN) is a secreted glycophosphoprotein that has been implicated in the regulation of cancer development. The function of OPN is primarily regulated through post-translational modification such as glycosylation. As yet, however, the relationship between OPN glycosylation and lung cancer development has not been investigated. In this study, we addressed this issue by studying the effect of a triple mutant (TM) of OPN, which is mutated at three O-glycosylation sites, on lung cancer development in K-ras (LA1) mice, a murine model for human non-small cell lung cancer. METHODS Aerosolized lentivirus-based OPN TM was delivered into the lungs of K-ras (LA1) mice using a nose-only-inhalation chamber 3 times/wk for 4 wks. Subsequently, the effects of repeated delivery of OPN TM on lung tumorigenesis and its concomitant OPN-mediated signaling pathways were investigated. RESULTS Aerosol-delivered OPN TM inhibited lung tumorigenesis. In addition, the OPN-mediated Akt signaling pathway was inhibited. OPN TM also decreased NF-κB activity and the phosphorylation of 4E-BP1, while facilitating apoptosis in the lungs of K-ras (LA1) mice. CONCLUSIONS Our results show that aerosol delivery of OPN TM successfully suppresses lung cancer development in the K-ras (LA1) mouse model and, therefore, warrant its further investigation as a possible therapeutic strategy for non-small cell lung cancer.
Collapse
Affiliation(s)
- Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Luo Y, Lin L, Bolund L, Jensen TG, Sørensen CB. Genetically modified pigs for biomedical research. J Inherit Metab Dis 2012; 35:695-713. [PMID: 22453682 DOI: 10.1007/s10545-012-9475-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/09/2012] [Accepted: 03/02/2012] [Indexed: 01/17/2023]
Abstract
During the last two decades, pigs have been used to develop some of the most important large animal models for biomedical research. Advances in pig genome research, genetic modification (GM) of primary pig cells and pig cloning by nuclear transfer, have facilitated the generation of GM pigs for xenotransplantation and various human diseases. This review summarizes the key technologies used for generating GM pigs, including pronuclear microinjection, sperm-mediated gene transfer, somatic cell nuclear transfer by traditional cloning, and somatic cell nuclear transfer by handmade cloning. Broadly used genetic engineering tools for porcine cells are also discussed. We also summarize the GM pig models that have been generated for xenotransplantation and human disease processes, including neurodegenerative diseases, cardiovascular diseases, eye diseases, bone diseases, cancers and epidermal skin diseases, diabetes mellitus, cystic fibrosis, and inherited metabolic diseases. Thus, this review provides an overview of the progress in GM pig research over the last two decades and perspectives for future development.
Collapse
Affiliation(s)
- Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
13
|
Structure of adeno-associated virus-2 in complex with neutralizing monoclonal antibody A20. Virology 2012; 431:40-9. [PMID: 22682774 DOI: 10.1016/j.virol.2012.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/21/2012] [Accepted: 05/07/2012] [Indexed: 11/22/2022]
Abstract
The use of adeno-associated virus (AAV) as a gene therapy vector is limited by the host neutralizing immune response. The cryo-electron microscopy (EM) structure at 8.5Å resolution is determined for a complex of AAV-2 with the Fab' fragment of monoclonal antibody (MAb) A20, the most extensively characterized AAV MAb. The binding footprint is determined through fitting the cryo-EM reconstruction with a homology model following sequencing of the variable domain, and provides a structural basis for integrating diverse prior epitope mappings. The footprint extends from the previously implicated plateau to the side of the spike, and into the conserved canyon, covering a larger area than anticipated. Comparison with structures of binding and non-binding serotypes indicates that recognition depends on a combination of subtle serotype-specific features. Separation of the neutralizing epitope from the heparan sulfate cell attachment site encourages attempts to develop immune-resistant vectors that can still bind to target cells.
Collapse
|
14
|
Ammar I, Gogol-Döring A, Miskey C, Chen W, Cathomen T, Izsvák Z, Ivics Z. Retargeting transposon insertions by the adeno-associated virus Rep protein. Nucleic Acids Res 2012; 40:6693-712. [PMID: 22523082 PMCID: PMC3413126 DOI: 10.1093/nar/gks317] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Sleeping Beauty (SB), piggyBac (PB) and Tol2 transposons are promising instruments for genome engineering. Integration site profiling of SB, PB and Tol2 in human cells showed that PB and Tol2 insertions were enriched in genes, whereas SB insertions were randomly distributed. We aimed to introduce a bias into the target site selection properties of the transposon systems by taking advantage of the locus-specific integration system of adeno-associated virus (AAV). The AAV Rep protein binds to Rep recognition sequences (RRSs) in the human genome, and mediates viral integration into nearby sites. A series of fusion constructs consisting of the N-terminal DNA-binding domain of Rep and the transposases or the N57 domain of SB were generated. A plasmid-based transposition assay showed that Rep/SB yielded a 15-fold enrichment of transposition at a particular site near a targeted RRS. Genome-wide insertion site analysis indicated that an approach based on interactions between the SB transposase and Rep/N57 enriched transgene insertions at RRSs. We also provide evidence of biased insertion of the PB and Tol2 transposons. This study provides a comparative insight into target site selection properties of transposons, as well as proof-of-principle for targeted chromosomal transposition by composite protein–protein and protein–DNA interactions.
Collapse
Affiliation(s)
- Ismahen Ammar
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Barthélémy F, Wein N, Krahn M, Lévy N, Bartoli M. Translational research and therapeutic perspectives in dysferlinopathies. Mol Med 2011; 17:875-82. [PMID: 21556485 DOI: 10.2119/molmed.2011.00084] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/05/2011] [Indexed: 12/13/2022] Open
Abstract
Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (DYSF) gene, encoding the dysferlin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B) and the second most common being LGMD. Symptoms generally appear at the end of childhood and, although disease progression is typically slow, walking impairments eventually result. Dysferlin is a modular type II transmembrane protein for which numerous binding partners have been identified. Although dysferlin function is only partially elucidated, this large protein contains seven calcium sensor C2 domains, shown to play a key role in muscle membrane repair. On the basis of this major function, along with detailed clinical observations, it has been possible to design various therapeutic approaches for dysferlin-deficient patients. Among them, exon-skipping and minigene transfer strategies have been evaluated at the preclinical level and, to date, represent promising approaches for clinical trials. This review aims to summarize the pathophysiology of dysferlinopathies and to evaluate the therapeutic potential for treatments currently under development.
Collapse
Affiliation(s)
- Florian Barthélémy
- University of the Mediterranean, Marseille Medical School, Marseille, France Inserm UMR_S 910 Medical Genetics and Functional Genomics Marseille, France
| | | | | | | | | |
Collapse
|
16
|
Lin LH, Dragon DN, Jin J, Talman WT. Targeting neurons of rat nucleus tractus solitarii with the gene transfer vector adeno-associated virus type 2 to up-regulate neuronal nitric oxide synthase. Cell Mol Neurobiol 2011; 31:847-59. [PMID: 21431420 DOI: 10.1007/s10571-011-9674-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/05/2011] [Indexed: 01/27/2023]
Abstract
Adeno-associated virus (AAV) has distinct advantages over other viral vectors in delivering genes of interest to the brain. AAV mainly transfects neurons, produces no toxicity or inflammatory responses, and yields long-term transgene expression. In this study, we first tested the hypothesis that AAV serotype 2 (AAV2) selectively transfects neurons but not glial cells in the nucleus tractus solitarii (NTS) by examining expression of the reporter gene, enhanced green fluorescent protein (eGFP), in the rat NTS after unilateral microinjection of AAV2eGFP into NTS. Expression of eGFP was observed in 1-2 cells in the NTS 1 day after injection. The number of transduced cells and the intensity of eGFP fluorescence increased from day 1 to day 28 and decreased on day 60. The majority (92.9 ± 7.0%) of eGFP expressing NTS cells contained immunoreactivity for the neuronal marker, protein gene product 9.5, but not that for the glial marker, glial fibrillary acidic protein. We observed eGFP expressing neurons and fibers in the nodose ganglia (NG) both ipsilateral and contralateral to the injection. In addition, eGFP expressing fibers were present in both ipsilateral and contralateral nucleus ambiguus (NA), caudal ventrolateral medulla (CVLM) and rostral ventrolateral medulla (RVLM). Having established that AAV2 was able to transduce a gene into NTS neurons, we constructed AAV2 vectors that contained cDNA for neuronal nitric oxide synthase (nNOS) and examined nNOS expression in the rat NTS after injection of this vector into the area. Results from RT-PCR, Western analysis, and immunofluorescent histochemistry indicated that nNOS expression was elevated in rat NTS that had been injected with AAV2nNOS vectors. Therefore, we conclude that AAV2 is an effective viral vector in chronically transducing NTS neurons and that AAV2nNOS can be used as a specific gene transfer tool to study the role of nNOS in CNS neurons.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
17
|
Srivastava A, Rajappa M, Kaur J. Uveitis: Mechanisms and recent advances in therapy. Clin Chim Acta 2010; 411:1165-71. [PMID: 20416287 DOI: 10.1016/j.cca.2010.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
|
18
|
Boison D. Cell and gene therapies for refractory epilepsy. Curr Neuropharmacol 2010; 5:115-25. [PMID: 18615179 DOI: 10.2174/157015907780866938] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 12/20/2022] Open
Abstract
Despite recent advances in the development of antiepileptic drugs, refractory epilepsy remains a major clinical problem affecting up to 35% of patients with partial epilepsy. Currently, there are few therapies that affect the underlying disease process. Therefore, novel therapeutic concepts are urgently needed. The recent development of experimental cell and gene therapies may offer several advantages compared to conventional systemic pharmacotherapy: (i) Specificity to underlying pathogenetic mechanisms by rational design; (ii) specificity to epileptogenic networks by focal delivery; and (iii) avoidance of side effects. A number of naturally occurring brain substances, such as GABA, adenosine, and the neuropeptides galanin and neuropeptide Y, may function as endogenous anticonvulsants and, in addition, may interact with the process of epileptogenesis. Unfortunately, the systemic application of these compounds is compromised by limited bioavailability, poor penetration of the blood-brain barrier, or the widespread systemic distribution of their respective receptors. Therefore, in recent years a new field of cell and gene-based neuropharmacology has emerged, aimed at either delivering endogenous anticonvulsant compounds by focal intracerebral transplantation of bioengineered cells (ex vivo gene therapy), or by inducing epileptogenic brain areas to produce these compounds in situ (in vivo gene therapy). In this review, recent efforts to develop GABA-, adenosine-, galanin-, and neuropeptide Y- based cell and gene therapies are discussed. The neurochemical rationales for using these compounds are discussed, the advantages of focal applications are highlighted and preclinical cell transplantation and gene therapy studies are critically evaluated. Although many promising data have been generated recently, potential problems, such as long-term therapeutic efficacy, long-term safety, and efficacy in clinically relevant animal models, need to be addressed before clinical applications can be contemplated.
Collapse
Affiliation(s)
- Detlev Boison
- RS Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
| |
Collapse
|
19
|
Abstract
Parkinson's disease is the second most common age-related neurodegenerative disorder, typified by the progressive loss of substantia nigra pars compacta dopamine neurons and the consequent decrease in the neurotransmitter dopamine. Patients exhibit a range of clinical symptoms, with the most common affecting motor function and including resting tremor, rigidity, akinesia, bradykinesia and postural instability. Current pharmacological interventions are palliative and largely aimed at increasing dopamine levels through increased production and/or inhibition of metabolism of this key neurotransmitter. The gold standard for treatment of both familial and sporadic Parkinson's disease is the peripheral administration of the dopamine precursor, levodopa. However, many patients gradually develop levodopa-induced dyskinesias and motor fluctuations. In addition, dopamine enhancement therapies are most useful when a portion of the nigrostriatal pathway is intact. Consequently, as the number of substantia nigra dopamine neurons and striatal projections decrease, these treatments become less efficacious. Current translational research is focused on the development of novel disease-modifying therapies, including those utilizing gene therapeutic approaches. Herein we present an overview of current gene therapy clinical trials for Parkinson's disease. Employing either recombinant adeno-associated virus type 2 (rAAV2) or lentivirus vectors, these clinical trials are focused on three overarching approaches: augmentation of dopamine levels via increased neurotransmitter production; modulation of the neuronal phenotype; and neuroprotection. The first two therapies discussed in this article focus on increasing dopamine production via direct delivery of genes involved in neurotransmitter synthesis (amino acid decarboxylase, tyrosine hydroxylase and GTP [guanosine triphosphate] cyclohydrolase 1). In an attempt to bypass the degenerating nigrostriatal pathway, a third clinical trial utilizes rAAV2 to deliver glutamic acid decarboxylase to the subthalamic nucleus, converting a subset of excitatory neurons to GABA-producing cells. In contrast, the final clinical trial is aimed at protecting the degenerating nigrostriatum by striatal delivery of rAAV2 harbouring the neuroprotective gene, neurturin. Based on preclinical studies, this gene therapeutic approach is posited to slow disease progression by enhancing neuronal survival. In addition, we discuss the outcome of each clinical trial and discuss the potential rationale for the marginal yet incremental clinical advancements that have thus far been realized for Parkinson's disease gene therapy.
Collapse
|
20
|
Hwang H, Kloner RA. Improving regenerating potential of the heart after myocardial infarction: factor-based approach. Life Sci 2010; 86:461-72. [PMID: 20093126 DOI: 10.1016/j.lfs.2010.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/28/2009] [Accepted: 01/11/2010] [Indexed: 01/09/2023]
Abstract
The emerging evidence that the heart has the potential to regenerate, albeit not ideally, has stimulated considerable interest in the field of cardiac regenerative medicine. Several lines of research demonstrated that factor-based therapy is feasible and effective, whether it is used independently or as an adjunct to cell therapy. The ultimate goal of the factor-based approach is to improve the regenerating potential of the heart as a means to treat patients with cardiovascular disease. This article reviews recent approaches involving factor-based therapy for cardiac repair and regeneration including some of the advantages of this type of therapy as well as some of the hurdles that must be overcome before this therapeutic approach becomes a standard part of clinical medicine.
Collapse
Affiliation(s)
- Hyosook Hwang
- Heart Institute, Good Samaritan Hospital, Los Angeles, CA 90017, United States
| | | |
Collapse
|
21
|
Mastrangelo MA, Sudol KL, Narrow WC, Bowers WJ. Interferon-{gamma} differentially affects Alzheimer's disease pathologies and induces neurogenesis in triple transgenic-AD mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2076-88. [PMID: 19808651 DOI: 10.2353/ajpath.2009.090059] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammatory processes, including the episodic and/ or chronic elaboration of cytokines, have been identified as playing key roles in a number of neurological disorders. Whether these activities impart a disease-resolving and/or contributory outcome depends at least in part on the disease context, stage of pathogenesis, and cellular milieu in which these factors are released. Interferon-gamma (IFNgamma) is one such cytokine that produces pleiotropic effects in the brain. It is protective by ensuring maintenance of virus latency after infection, yet deleterious by recruiting and activating microglia that secrete potentially damaging factors at sites of brain injury. Using the triple-transgenic mouse model of Alzheimer's disease (3xTg-AD), which develops amyloid and tau pathologies in a pattern reminiscent of human Alzheimer's disease, we initiated chronic intrahippocampal expression of IFNgamma through delivery of a serotype-1 recombinant adeno-associated virus vector (rAAV1-IFNgamma). Ten months of IFNgamma expression led to an increase in microglial activation, steady-state levels of proinflammatory cytokine and chemokine transcripts, and severity of amyloid-related pathology. In contrast, these rAAV1-IFNgamma-treated 3xTg-AD mice also exhibited diminished phospho-tau pathology and evidence of increased neurogenesis. Overall, IFNgamma mediates what seem to be diametrically opposed functions in the setting of AD-related neurodegeneration. Gaining an understanding as to how these apparently divergent functions are interrelated and controlled could elucidate new therapeutic strategies designed to harness the neuroprotective activity of IFNgamma.
Collapse
Affiliation(s)
- Michael A Mastrangelo
- Center for Neural Development and Disease, University of Rochester Medical Center, NY 14642, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Gene transfer into the cells of the cochlea is useful for both research and therapy. Bovine adeno-associated virus (BAAV) is a new viral vector with potential for long-term gene expression with little or no side effects. In this study, we assessed transgene expression using BAAV with beta-actin-GFP as a reporter gene, in the cochleae of normal and deafened guinea pigs. We used two different routes to inoculate the cochlea: scala media (SM) or scala tympani (ST). Auditory brainstem response assessments were carried out before inoculation, 7 days after inoculation and immediately before killing, to assess the functional consequences of the treatment. We observed threshold shifts because of the surgical invasion, but no apparent pathology associated with the virus. Fourteen days after the injection, animals were killed and cochleae assessed histologically. Epi-fluorescence showed that BAAV transduced the supporting cells of both normal and deafened animals through SM and ST inoculations. Transgene expression in cells of the membranous labyrinth after ST inoculation is an important outcome because of the greater feasibility of this route for future clinical application. BAAV facilitates efficient transduction of the membranous labyrinth epithelium with minimum pathogenicity and may become clinically applicable for inner ear gene therapy.
Collapse
|
23
|
Laurence JM, Wang C, Zheng M, Cunningham S, Earl J, Tay SS, Allen RDM, McCaughan GW, Alexander IE, Bishop GA, Sharland AF. Overexpression of indoleamine dioxygenase in rat liver allografts using a high-efficiency adeno-associated virus vector does not prevent acute rejection. Liver Transpl 2009; 15:233-41. [PMID: 19177450 DOI: 10.1002/lt.21662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this study was to evaluate the ability of local overexpression of indoleamine dioxygenase (IDO) to abrogate rat liver transplant rejection by the use of an adeno-associated virus vector [recombinant adeno-associated virus 2/8 (rAAV2/8)] to deliver the transgene to the allograft prior to transplantation. A green fluorescent protein (GFP)-expressing vector [recombinant adeno-associated virus 2/8-liver-specific promoter 1-enhanced green fluorescent protein (rAAV2/8-LSP1-eGFP)] was used to examine the kinetics of expression and optimal dosing for transduction of Piebald Virol Glaxo (PVG) rat livers. A vector encoding the rat IDO gene (rAAV2/8-LSP1-rIDO) was constructed and tested by its ability to induce tryptophan catabolism and kynurenine production in vitro and in vivo. PVG donor rats were injected, via the portal vein, with rAAV2/8-LSP1-rIDO 2 weeks before transplantation into PVG strain isograft or Lewis (LEW) strain allograft recipients. With the enhanced GFP vector, 29.5% and 47.4% of hepatocytes were found to express GFP at 3 and 6 weeks after injection, respectively. In untransplanted PVG animals, the rAAV2/8-LSP1-rIDO vector induced, 3 weeks after administration, a 1.8-fold increase (P = 0.0161) in liver IDO activity, which was associated with a fall in serum tryptophan to 0.5 times the baseline level (P < 0.001). PVG recipients of PVG liver isografts pretreated with the IDO-expressing vector had a 45% lower level of serum tryptophan than recipients of isografts pretreated with the GFP-expressing vector (P = 0.03). LEW recipients of PVG liver allografts pretreated with the rat IDO vector had a median survival time of 12 days, whereas recipients of allografts pretreated with rAAV2/8-LSP1-eGFP had a median survival time of 13 days (P = 0.38). Both groups displayed similar histological features of acute cellular rejection. In conclusion, rAAV2/8 vectors produce highly efficient, though delayed, hepatocyte transduction in vivo and provide a useful gene delivery tool for transplantation models. However, gene delivery using IDO was unsuccessful in prolonging rat liver allograft survival.
Collapse
Affiliation(s)
- Jerome M Laurence
- Collaborative Transplantation Research Group, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Adeno-associated virus-2 and its primary cellular receptor--Cryo-EM structure of a heparin complex. Virology 2009; 385:434-43. [PMID: 19144372 DOI: 10.1016/j.virol.2008.11.037] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/10/2008] [Accepted: 11/18/2008] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus serotype 2 (AAV-2) is a leading candidate vector for gene therapy. Cell entry starts with attachment to a primary receptor, Heparan Sulfate Proteoglycan (HSPG) before binding to a co-receptor. Here, cryo-electron microscopy provides direct visualization of the virus-HSPG interactions. Single particle analysis was performed on AAV-2 complexed with a 17 kDa heparin fragment at 8.3 A resolution. Heparin density covers the shoulder of spikes surrounding viral 3-fold symmetry axes. Previously implicated, positively charged residues R(448/585), R(451/588) and R(350/487) from another subunit cluster at the center of the heparin footprint. The footprint is much more extensive than apparent through mutagenesis, including R(347/484), K(395/532) and K(390/527) that are more conserved, but whose roles have been controversial. It also includes much of a region proposed as a co-receptor site, because prior studies had not revealed heparin interactions. Heparin density bridges over the viral 3-fold axes, indicating multi-valent attachment to symmetry-related binding sites.
Collapse
|
25
|
Abstract
Genetic and environmental agents that disrupt organogenesis are numerous and well described. Less well established, however, is the role of delay in the developmental processes that yield functionally immature tissues at birth. Evidence is mounting that organs do not continue to develop postnatally in the context of these organogenesis insults, condemning the patient to utilize under-developed tissues for adult processes. These poorly differentiated organs may appear histologically normal at birth but with age may deteriorate revealing progressive or adult-onset pathology. The genetic and molecular underpinning of the proposed paradigm reveals the need for a comprehensive systems biology approach to evaluate the role of maternal-fetal environment on organogenesis."You may delay, but time will not" Benjamin Franklin, USA Founding Father.
Collapse
Affiliation(s)
- J Craig Cohen
- The Brady Laboratory, Section of Neonatology, Department of Pediatrics, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
26
|
Kwon I, Schaffer DV. Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 2007; 25:489-99. [PMID: 17763830 PMCID: PMC2265771 DOI: 10.1007/s11095-007-9431-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/03/2007] [Indexed: 12/23/2022]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure-function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. "Shielding" polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating 'designer' gene delivery vectors with enhanced properties.
Collapse
Affiliation(s)
- Inchan Kwon
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, California 94720-1462 USA
| | - David V. Schaffer
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, California 94720-1462 USA
| |
Collapse
|
27
|
Abstract
Most research in the area of micro- and nano-particles as applied to respiratory disease has been on potential toxic effects. Particulate emissions from industrial processes, coal burning and diesel exhaust have been shown to cause a variety of adverse effects both in vitro and in vivo. However, the vast majority of these studies has focused on larger, micron-sized particles. It is only within the last few years that the emphasis has shifted to nanoparticles as nanotechnology research and its applications have increased. Investigations have also begun into how nanoparticles may be used for therapeutic and imaging purposes in pulmonary diseases such as tuberculosis and cystic fibrosis. Some of these applications, along with recent studies on the toxic effects of nanoparticulate emissions will be reviewed in this article.
Collapse
|
28
|
Abstract
OBJECTIVES To provide a comprehensive literature review describing recent developments of the recombinant adeno-associated virus (rAAV) vector and exploring the therapeutic application of rAAV for bone defects, cartilage lesions and rheumatoid arthritis. DESIGN Narrative review. RESULT The review outlines the serotypes and genome of AAV, integration and life cycle of the rAAV vectors, the immune response and regulating system for AAV gene therapy. Furthermore, the advancements of rAAV gene therapy for bone growth together with cartilage repair are summarized. CONCLUSION Recombinant adeno-associated virus vector is perceived to be one of the most promising vector systems for bone and cartilage gene therapy approaches and further investigations need to be carried out for craniofacial research.
Collapse
Affiliation(s)
- Juan Dai
- The Biomedical and Tissue Engineering Group, Department of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
29
|
Leonard JN, Ferstl P, Delgado A, Schaffer DV. Enhanced preparation of adeno-associated viral vectors by using high hydrostatic pressure to selectively inactivate helper adenovirus. Biotechnol Bioeng 2007; 97:1170-9. [PMID: 17252611 DOI: 10.1002/bit.21355] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) have significant therapeutic potential, but much room for improvement remains in the areas of vector engineering and production. AAV production requires complementation with either helper virus, such as adenovirus, or plasmids containing helper genes, and helper virus-based approaches have distinct advantages in the use of bioreactors to produce large quantities of AAV vectors for clinical applications. However, helper viruses must eventually be inactivated and removed from AAV preparations to ensure safety. The current practice of thermally inactivating adenovirus is problematic as it can also inactivate AAV. Here, we report a novel method using high hydrostatic pressure (HHP) to selectively and completely inactivate helper adenovirus without any detectable loss of functional AAV vectors. The pressure inactivation kinetics of human adenovirus serotype 5 and the high-pressure stabilities of AAV serotypes 2 and 5 (AAV2, AAV5), which were previously unknown, were characterized. Adenovirus was inactivated beyond detection at 260 MPa or higher, whereas AAV2 was stable up to approximately 450 MPa, and surprisingly, AAV5 was stable up to at least 700 MPa. The viral genomic DNA of pressure-inactivated AAV2 was made sensitive to DNAse I digestion, suggesting that gross changes in particle structure had occurred, and this hypothesis was further supported by transmission electron microscopy. This approach should be useful in the laboratory- and clinical-scale production of AAV gene delivery vectors. Moreover, HHP provides a tool for probing the biophysical properties of AAV, which may facilitate understanding and improving the functions of this important virus.
Collapse
Affiliation(s)
- Joshua N Leonard
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
30
|
Adriaansen J, Vervoordeldonk MJBM, Tak PP. Gene therapy as a therapeutic approach for the treatment of rheumatoid arthritis: innovative vectors and therapeutic genes. Rheumatology (Oxford) 2006; 45:656-68. [PMID: 16510530 DOI: 10.1093/rheumatology/kel047] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In recent years, significant progress has been made in the treatment of rheumatoid arthritis (RA). In addition to conventional therapy, novel biologicals targeting tumour necrosis factor-alpha have successfully entered the clinic. However, the majority of the patients still has some actively inflamed joints and some patients suffer from side-effects associated with the high systemic dosages needed to achieve therapeutic levels in the joints. In addition, due to of the short half-life of these proteins there is a need for continuous, multiple injections of the recombinant protein. An alternative approach might be the use of gene transfer to deliver therapeutic genes locally at the site of inflammation. Several viral and non-viral vectors are being used in animal models of RA. The first gene therapy trials for RA have already entered the clinic. New vectors inducing long-term and regulated gene expression in specific tissue are under development, resulting in more efficient gene transfer, for example by using distinct serotypes of viral vectors such as adeno-associated virus. This review gives an overview of some promising vectors used in RA research. Furthermore, several therapeutic genes are discussed that could be used for gene therapy in RA patients.
Collapse
Affiliation(s)
- J Adriaansen
- Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
31
|
Lee GK, Maheshri N, Kaspar B, Schaffer DV. PEG conjugation moderately protects adeno-associated viral vectors against antibody neutralization. Biotechnol Bioeng 2005; 92:24-34. [PMID: 15937953 DOI: 10.1002/bit.20562] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AAV gene therapy vectors have significant clinical promise, but serum neutralization poses a challenge that must be overcome. We have examined the potential of conjugating the AAV surface with activated polyethylene glycol chains to protect the vector from neutralizing antibodies. Two key parameters were investigated: the polymer chain size and the PEG:lysine conjugation ratio. Transduction data revealed that the vector is fully infectious until a critical PEG conjugation reaction ratio was exceeded, and this critical level was found to vary with polymer chain size. At this key conjugation ratio, however, particles were moderately protected from serum neutralization, 2.3-fold over unmodified vector, demonstrating that there is a small window of PEGylation for which particles are still fully infective and benefit from antibody protection. TEM results and structural analysis indicate that the drop of infectivity as the PEG concentration is increased beyond the critical conjugation ratio may be due to a combination of steric interference with viral regions necessary for infection as well as reaction at important lysine residues. However, this first study analyzing the potential of PEG to protect AAV from serum neutralization shows that the approach has promise, which can be further enhanced if the locations of PEG attachment can be more finely controlled.
Collapse
Affiliation(s)
- Gary K Lee
- The Department of Chemical Engineering and, The Helen Wills Neuroscience Institute, The University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
32
|
Yu JH, Schaffer DV. Advanced targeting strategies for murine retroviral and adeno-associated viral vectors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 99:147-67. [PMID: 16568891 DOI: 10.1007/10_006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Targeted gene delivery involves broadening viral tropism to infect previously nonpermissive cells, replacing viral tropism to infect a target cell exclusively, or stealthing the vector against nonspecific interactions with host cells and proteins. These approaches offer the potential advantages of enhanced therapeutic effects, reduced side effects, lowered dosages, and enhanced therapeutic economics. This review will discuss a variety of targeting strategies, both genetic and nongenetic, for re-engineering the tropism of two representative enveloped and nonenveloped viruses, murine retrovirus and adeno-associated virus. Basic advances in understanding the structural biology and virology of the parent viruses have aided rational design efforts to engineer novel properties into the viral attachment proteins. Furthermore, even in the absence of basic, mechanistic knowledge of viral function, high-throughput library and directed evolution approaches can yield significant improvements in vector function. These two complementary strategies offer the potential to gain enhanced molecular control over vector properties and overcome challenges in generating high titer, stealthy, retargeted vectors.
Collapse
Affiliation(s)
- Julie H Yu
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley 94720, USA
| | | |
Collapse
|
33
|
Stone IM, Lurie DI, Kelley MW, Poulsen DJ. Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea. Mol Ther 2005; 11:843-8. [PMID: 15922954 DOI: 10.1016/j.ymthe.2005.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 11/19/2022] Open
Abstract
More than 28 million Americans suffer from various forms of hearing loss. The lack of effective treatments for many forms of hearing disorders has prompted interest in the potential application of gene delivery techniques to treat both inherited and pathological hearing disorders. However, to develop a gene therapy strategy that will successfully treat hearing disorders, appropriate vectors that are capable of transducing cochlear hair cells and support cells must be identified. In the present study, we examined the efficiency with which AAV vectors (serotypes 1, 2, and 5) transduce hair cells and support cells in cochlear explants from P0 and E13 mice. We further examined the ability of the CBA and GFAP promoters to drive expression of a GFP marker gene in hair cells and support cells. Robust GFP expression was observed in hair cells and support cells following transduction of primary murine cochlear explants with AAV serotypes 1 and 2, but not serotype 5. The CBA promoter predominantly drove GFP expression in hair cells. In contrast, strong expression from the GFAP promoter was observed primarily in support cells. Thus, using AAV vectors and specific promoters, cell-type-specific expression of transgenes can be established within the cochlea.
Collapse
Affiliation(s)
- Ida M Stone
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, No. 1552, Missoula, MT 59812, USA
| | | | | | | |
Collapse
|
34
|
Déglon N, Hantraye P. Viral vectors as tools to model and treat neurodegenerative disorders. J Gene Med 2005; 7:530-9. [PMID: 15651039 DOI: 10.1002/jgm.707] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The identification of disease-causing genes in familial forms of neurodegenerative disorders and the development of genetic models closely replicating human central nervous system (CNS) pathologies have drastically changed our understanding of the molecular events leading to neuronal cell death. If these achievements open new opportunities of therapeutic interventions, including gene-based therapies, the presence of the blood-brain barrier and the post-mitotic and poor regenerative nature of the target cells constitute important challenges. Efficient delivery systems taking into account the specificity of the CNS are required to administer potential therapeutic candidates. In addition, genetic models in large animals that replicate the late stages of the diseases are in most cases not available for pre-clinical studies. The present review summarizes the potential of viral vectors as tools to create new genetic models of CNS disorders in various species including primates and the recent progress toward viral gene therapy clinical trials for the administration of therapeutic candidates into the brain.
Collapse
Affiliation(s)
- N Déglon
- Commissariat à l'Energie Atomique (CEA) CNRS URA2210, Service Hospitalier Frédéric Joliot and ImaGene Program, Orsay Cedex, France.
| | | |
Collapse
|
35
|
Lai L, Lin K, Foulks G, Ma L, Xiao X, Chen K. Highly efficient ex vivo gene delivery into human corneal endothelial cells by recombinant adeno-associated virus. Curr Eye Res 2005; 30:213-9. [PMID: 15804747 DOI: 10.1080/02713680590927515] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Gene delivery at high efficiency is crucial for cornea endothelial cell gene therapy. This study investigated the efficiency of gene transfer by recombinant adeno-associated virus (rAAV) in an organ culture system. METHODS Human cornea tissue was exposed to rAAV delivering green fluorescent protein (ss-rAAV2-CMV-GFP) for one hour and then cultured at 31 degrees C for 2 weeks in a medium supplemented with growth factors. Endothelial cells expressing GFP gene were then identified. RESULTS High-efficiency gene transfer was found in over 90% of endothelial cells. Gene expression could be detected within 24 hours and remained stable up to 2 weeks in the organ culture system. CONCLUSIONS The high-delivery efficiency and rapid induction of gene expression indicate that rAAV is a promising vector for cornea endothelial cell gene therapy for ocular diseases. Organ culture at 31 degrees C using culture medium supplemented with growth factors significantly facilitates gene transfer into human corneal endothelium.
Collapse
Affiliation(s)
- Li Lai
- Graduate Institute of Clinical Medical Sciences,Chang Gang University, Tau-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Xie Q, Hare J, Turnigan J, Chapman MS. Large-scale production, purification and crystallization of wild-type adeno-associated virus-2. J Virol Methods 2005; 122:17-27. [PMID: 15488616 DOI: 10.1016/j.jviromet.2004.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 07/08/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
Adeno-associated virus-2 (AAV-2) has long been recognized as a potential vector for human gene therapy. Although much progress has been made in the molecular virology of AAV-2, structural studies of AAV-2 have been hampered by the low efficiency of virus production in culture, the low purity of preparations, and the low solubility of pure virus particles in solution. Methods of larger scale AAV-2 production have been developed through adaptation to suspension culture and re-optimization of the times of infection and transfection with respect to particle production. The methods allow the purification of 10mg ( approximately 10(15) particles) of AAV-2 per preparation at approximately 99% purity as judged by SDS-PAGE. This was sufficient for the screening of conditions for the formation of diffraction-grade crystals, ultimately leading to an atomic structure for AAV-2.
Collapse
Affiliation(s)
- Qing Xie
- Kasha Laboratory of Molecular Biophysics, Florida State University, FL, USA
| | | | | | | |
Collapse
|
37
|
Shiau AL, Liu PS, Wu CL. Novel strategy for generation and titration of recombinant adeno-associated virus vectors. J Virol 2005; 79:193-201. [PMID: 15596815 PMCID: PMC538720 DOI: 10.1128/jvi.79.1.193-201.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin alpha (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.
Collapse
Affiliation(s)
- Ai-Li Shiau
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | |
Collapse
|
38
|
Cottard V, Valvason C, Falgarone G, Lutomski D, Boissier MC, Bessis N. Immune response against gene therapy vectors: influence of synovial fluid on adeno-associated virus mediated gene transfer to chondrocytes. J Clin Immunol 2005; 24:162-9. [PMID: 15024183 DOI: 10.1023/b:joci.0000019781.64421.5c] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intraarticular gene transfer with adeno-associated virus (AAV) vectors may allow efficient therapeutic transgene expression within the joint. In an effort to understand potential obstacles (particularly immunity against AAV vectors) to intraarticular gene therapy better, our objective was to determine whether synovial fluid (SF) influenced AAV-mediated gene transfer to chondrocytes. SF and sera from 21 patients with joint diseases were collected. Neutralizing activity against AAV/interleukin-4 (IL-4) was determined by assessing the ability of SF or serum to inhibit AAV/IL-4 transduction to the C20A4 chondrocytes. IgGs were purified from SF by salt-dependent chromatography. Anti-AAV IgG levels were determined by ELISA in the SF. SF and sera from all the patients inhibited AAV-mediated gene transfer to chondrocytes. Six SF out of 21 exerted a stronger inhibition. Serum from healthy patients were also inhibitory. Purified IgGs from SF exhibited inhibition patterns similar to those seen with whole SF. Anti-AAV IgG were found in SF from 13 patients out of 18. Moreover, in the SF, anti-AAV IgG level was correlated with the neutralizing activity (p < 0.001, r = 0.716). A correlation was observed between levels of inhibition by the SF and serum (P < 0.0001, r = 0.813). Inhibition of AAV/IL-4 infection of C20A4 cells by SF and sera was abolished by increasing the number of AAV/IL-4 particles. SF from patients with joint disease consistently inhibited AAV infection of chondrocytes in vitro. This effect was ascribable to IgG, most probably directed against AAV. In the future, these data may be useful for tailoring intraarticular AAV-mediated gene therapy to individual patients.
Collapse
Affiliation(s)
- Virginie Cottard
- UPRES EA-3408, Léonard de Vinci Medical School and Department of Rheumatology, Avicenne Teaching Hospital, Bobigny, AP-HP, University of Paris 13, France
| | | | | | | | | | | |
Collapse
|
39
|
Zhang W, Singam R, Hellermann G, Kong X, Juan HS, Lockey RF, Wu SJ, Porter K, Mohapatra SS. Attenuation of dengue virus infection by adeno-associated virus-mediated siRNA delivery. GENETIC VACCINES AND THERAPY 2004; 2:8. [PMID: 15301687 PMCID: PMC514572 DOI: 10.1186/1479-0556-2-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 08/09/2004] [Indexed: 11/25/2022]
Abstract
Background The need for safe and effective treatment of dengue virus (DEN), a class A agent that causes dengue hemorrhagic fever/dengue shock syndrome, has been a critical global priority. An effective vaccine for DEN is not yet available. In this study the possibility of attenuating DEN infection using adeno-associated virus (AAV)-encoded short interfering RNAs (siRNA) was examined in Vero cells and human dendritic cells (DCs). Methods A cassette encoding siRNA targeted to a 3' untranslated sequence common to all DEN serotypes was designed and tested for its ability to attenuate DEN infection by use of AAV delivery. Results Vero cells or DCs infected with AAV-siRNA showed a significant, dose-dependent reduction in DEN infection. Treatment of DCs with AAV-siRNA also decreased the DEN-induced apoptosis of DCs and did not induce significant inflammation. Conclusion These results demonstrate that AAV-mediated siRNA delivery is capable of reducing DEN infection in cells and may be useful in decreasing DEN replication in humans.
Collapse
Affiliation(s)
- Weidong Zhang
- Division of Allergy and Immunology-JMC Airway Disease Research Center, Department of Internal Medicine, University of South Florida; VA Hospital Tampa, FL, USA
| | - Rajeswari Singam
- Division of Allergy and Immunology-JMC Airway Disease Research Center, Department of Internal Medicine, University of South Florida; VA Hospital Tampa, FL, USA
| | - Gary Hellermann
- Division of Allergy and Immunology-JMC Airway Disease Research Center, Department of Internal Medicine, University of South Florida; VA Hospital Tampa, FL, USA
| | - Xiaoyuan Kong
- Division of Allergy and Immunology-JMC Airway Disease Research Center, Department of Internal Medicine, University of South Florida; VA Hospital Tampa, FL, USA
| | - Homero San Juan
- Division of Allergy and Immunology-JMC Airway Disease Research Center, Department of Internal Medicine, University of South Florida; VA Hospital Tampa, FL, USA
| | - Richard F Lockey
- Division of Allergy and Immunology-JMC Airway Disease Research Center, Department of Internal Medicine, University of South Florida; VA Hospital Tampa, FL, USA
| | - Shuen-Ju Wu
- Viral Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Kevin Porter
- Viral Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Shyam S Mohapatra
- Division of Allergy and Immunology-JMC Airway Disease Research Center, Department of Internal Medicine, University of South Florida; VA Hospital Tampa, FL, USA
| |
Collapse
|
40
|
Garrett DJ, Cohen JC, Larson JE. Long term physiologic modification using rAAV in utero gene-therapy. GENETIC VACCINES AND THERAPY 2004; 2:4. [PMID: 15151697 PMCID: PMC420496 DOI: 10.1186/1479-0556-2-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 05/19/2004] [Indexed: 11/25/2022]
Abstract
Background Transfer of genes in utero via the amniotic fluid was shown previously with recombinant adeno-associated viruses (rAAV) to be highly efficient. Expression for over one year was demonstrated using reporter genes. In addition, it was shown previously that transgenes delivered by this method release protein into the general circulation. Given these results experiments were designed to test the hypothesis that in utero rAAV gene therapy could result in long term physiologic modification. Methods A rAAV recombinant expressing ciliary neurotrophic factor (cntf) and green fluorescent (gfp) in a polycistronic messenger was used to treat rat fetuses in utero. CNTF causes weight loss and decreased water consumption as a measurable physiologic effect. GFP was used as a marker of gene expression. Results In utero gene transfer with rAAV carrying human cntf and gfp resulted in long-term gene expression in rat. CNTF-specific physiologic effects of a decrease in weight and water intake were obtained. Expression of the GFP was documented in the treated animals at one year of age. Conclusion Given this data, in utero gene therapy with rAAV into multipotential stem cells resulted in long term systemic physiologic modification of the treated animals by the transgene product. In utero rAAV gene therapy potentially could be used for gene replacement therapy in metabolic disorders.
Collapse
Affiliation(s)
- Deiadra J Garrett
- Ochsner Children's Research Institute, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
- Departments of Medicine, Biochemistry, and Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - J Craig Cohen
- Departments of Medicine, Biochemistry, and Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Janet E Larson
- Ochsner Children's Research Institute, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| |
Collapse
|
41
|
Wu S, Zhou L, Rose M, Xiao X, Graham SH. c-FLIP-L recombinant adeno-associated virus vector infection prevents Fas-mediated but not nerve growth factor withdrawal-mediated cell death in PC12 cells. ACTA ACUST UNITED AC 2004; 122:79-87. [PMID: 14992818 DOI: 10.1016/j.molbrainres.2003.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2003] [Indexed: 11/22/2022]
Abstract
Fas is a cell surface death receptor that may play an important role in regulating cell death in neuronal cell types by activation of caspase 8. Cellular FLICE inhibitory protein-long (c-FLIP-L) is an endogenous inhibitor of the activation of caspase 8 by Fas. The current study addresses the role of c-FLIP-L in regulation of cell death in PC12 cells induced by nerve growth factor (NGF) withdrawal and Fas antibody, which acts as a Fas ligand and activates the Fas receptor. A recombinant adeno-associated virus (rAAV) vector that expresses c-FLIP-L was constructed. PC12 cells infected with the c-FLIP-L rAAV were resistant to apoptosis induced by treatment with Fas antibody compared to cells infected with enhanced green fluorescent protein (EGFP) expressing rAAV. Overexpression of c-FLIP-L rAAV inhibited cleavage of caspase 8 induced by Fas antibody treatment. In contrast, treatment with the c-FLIP-L rAAV did not protect PC12 cells from cell death induced by NGF withdrawal. In conclusion, overexpression of c-FLIP-L rAAV inhibits Fas antibody-mediated cell death, but not NGF withdrawal-mediated cell death in PC12 cells.
Collapse
Affiliation(s)
- Shasha Wu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
42
|
Boulis NM, Noordmans AJ, Song DK, Imperiale MJ, Rubin A, Leone P, During M, Feldman EL. Adeno-associated viral vector gene expression in the adult rat spinal cord following remote vector delivery. Neurobiol Dis 2004; 14:535-41. [PMID: 14678769 DOI: 10.1016/j.nbd.2003.08.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current investigation tests whether adeno-associated viral vectors (rAAV) undergo remote delivery to the spinal cord via peripheral nerve injection as previously demonstrated with adenoviral vectors. The sciatic nerves of adult rats (n = 10) were injected with either an rAAV (rAAVCMV-lacZ) or adenoviral (AdCMV-lacZ) vector (1.4 x 10(7) particles/ml). After 21 days, the rAAV group demonstrated significantly higher spinal cord viral expression than the adenoviral group (P < 0.024). A second group of rats was injected with rAAV expressing the green fluorescence protein (GFP) reporter gene. GFP was detected 21 days after unilateral sciatic nerve injection in the neurons of the dorsal root ganglion and spinal cord. The codistribution of the viral genome and transgene in CNS neurons was confirmed with in situ hybridization. In summary, rAAV genes are expressed in CNS neurons following peripheral nerve injection at levels exceeding those seen following remote adenovirus injection.
Collapse
Affiliation(s)
- Nicholas M Boulis
- Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mohan RM, Golding S, Heaton DA, Danson EJ, Paterson DJ. Targeting neuronal nitric oxide synthase with gene transfer to modulate cardiac autonomic function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:321-44. [PMID: 14769442 DOI: 10.1016/j.pbiomolbio.2003.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microdomains of neuronal nitric oxide synthase (nNOS) are spatially localised within both autonomic neurons innervating the heart and post-junctional myocytes. This review examines the use of gene transfer to investigate the role of nNOS in cardiac autonomic control. Furthermore, it explores techniques that may be used to improve upon gene delivery to the cardiac autonomic nervous system, potentially allowing more specific delivery of genes to the target neurons/myocytes. This may involve modification of the tropism of the adenoviral vector, or the use of alternative viral and non-viral gene delivery mechanisms to minimise potential immune responses in the host. Here we show that adenoviral vectors provide an efficient method of gene delivery to cardiac-neural tissue. Functionally, adenovirus-nNOS can increase cardiac vagal responsiveness by facilitating cholinergic neurotransmission and decrease beta-adrenergic excitability. Whether gene transfer remains the preferred strategy for targeting cardiac autonomic impairment will depend on site-specific promoters eliciting sustained gene expression that results in restoration of physiological function.
Collapse
Affiliation(s)
- R M Mohan
- University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | |
Collapse
|
44
|
Ahmed BY, Chakravarthy S, Eggers R, Hermens WTJMC, Zhang JY, Niclou SP, Levelt C, Sablitzky F, Anderson PN, Lieberman AR, Verhaagen J. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci 2004; 5:4. [PMID: 15005815 PMCID: PMC343275 DOI: 10.1186/1471-2202-5-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Accepted: 01/30/2004] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation of genes involves the use of Cre recombinase to remove loxP-flanked segments of DNA. We have studied the effects of delivering Cre to the hippocampus and neocortex of adult mice by injecting replication-deficient adeno-associated virus (AAV) and lentiviral (LV) vectors into discrete regions of the forebrain. RESULTS Recombinant AAV-Cre, AAV-GFP (green fluorescent protein) and LV-Cre-EGFP (enhanced GFP) were made with the transgene controlled by the cytomegalovirus promoter. Infecting 293T cells in vitro with AAV-Cre and LV-Cre-EGFP resulted in transduction of most cells as shown by GFP fluorescence and Cre immunoreactivity. Injections of submicrolitre quantities of LV-Cre-EGFP and mixtures of AAV-Cre with AAV-GFP into the neocortex and hippocampus of adult Rosa26 reporter mice resulted in strong Cre and GFP expression in the dentate gyrus and moderate to strong labelling in specific regions of the hippocampus and in the neocortex, mainly in neurons. The pattern of expression of Cre and GFP obtained with AAV and LV vectors was very similar. X-gal staining showed that Cre-mediated recombination had occurred in neurons in the same regions of the brain, starting at 3 days post-injection. No obvious toxic effects of Cre expression were detected even after four weeks post-injection. CONCLUSION AAV and LV vectors are capable of delivering Cre to neurons in discrete regions of the adult mouse brain and producing recombination.
Collapse
Affiliation(s)
- Bushra Y Ahmed
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands
| | - Sridhara Chakravarthy
- Molecular Visual Plasticity, Netherlands Ophthalmic Research Institute, Netherlands Royal Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Ruben Eggers
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands
| | - Wim TJMC Hermens
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands
| | - Jing Ying Zhang
- Institute of Genetics, School of Biology, Queen's Medical Centre, The University of Nottingham, UK
| | - Simone P Niclou
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands
| | - Christiaan Levelt
- Molecular Visual Plasticity, Netherlands Ophthalmic Research Institute, Netherlands Royal Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Fred Sablitzky
- Institute of Genetics, School of Biology, Queen's Medical Centre, The University of Nottingham, UK
| | - Patrick N Anderson
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - AR Lieberman
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands
| | - Joost Verhaagen
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
45
|
Lee K, Kim YG, Jo EC. Shuttle PCR-based cloning of the infectious adeno-associated virus type 5 genome. J Virol Methods 2003; 111:75-84. [PMID: 12880922 DOI: 10.1016/s0166-0934(03)00135-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adeno-associated virus type 5 (AAV5), which is distinct from the other serotypes of AAV, has attracted considerable interest as a premier gene delivery vector. As do the other serotypes, AAV5 contains its 4.7 kb-sized, single-stranded genome flanked with inverted terminal repeats (ITRs) in a hairpin conformation, which serves frequently as pause and arrest sites for DNA polymerases during PCR. To amplify the full-length of the AAV5 genome in single step, we established a shuttled, long and accurate PCR (LA-PCR) procedure in the present study. Furthermore, helper oligonucleotides, which hybridize with the palindromic sequence elements in ITR, were designed and employed in PCR to prevent the formation of hairpin structures by highly GC-rich ITRs. Consequently, a 4.7 kb-sized PCR product was amplified successfully, and cloned into a pBluescript II KS(+) plasmid. Six plasmids, harboring the full-length AAV5 genome, rescued wild type AAV5 viruses on transfection to HeLa and HEK 293 cells, which were co-infected with helper adenoviruses. Western and Southern blot analyses supported further the fact that the pAAV5 plasmids harbored the full-length AAV5 genome. The PCR method described in this study is applicable for the cloning of genomes containing variable palindromic structures, in addition to AAV genomes of other serotypes.
Collapse
Affiliation(s)
- Kyuhyun Lee
- MOGAM Biotechnology Research Institute, 341 Pojung-Ri Koosung-Eup, Yongin, Kyonggi-Do 449-913, South Korea
| | | | | |
Collapse
|
46
|
Lu YY, Wang LJ, Muramatsu SI, Ikeguchi K, Fujimoto KI, Okada T, Mizukami H, Matsushita T, Hanazono Y, Kume A, Nagatsu T, Ozawa K, Nakano I. Intramuscular injection of AAV-GDNF results in sustained expression of transgenic GDNF, and its delivery to spinal motoneurons by retrograde transport. Neurosci Res 2003; 45:33-40. [PMID: 12507722 DOI: 10.1016/s0168-0102(02)00195-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adeno-associated virus (AAV) vector has been developed as an attractive gene delivery system with proven safety. Glial cell line-derived neurotrophic factor (GDNF) is proposed to be a promising therapeutic agent for amyotrophic lateral sclerosis (ALS) and other motor neuron diseases. The purpose of this report was to investigate transgenic GDNF expression at different time points post AAV mediated GDNF intramuscular delivery. An AAV vector was constructed to encode a recombinant fusion of GDNF tagged with a FLAG sequence at the C-terminal (AAV-GDNF) to distinguish it from its endogenous counterpart. A single intramuscular injection of AAV-GDNF led to substantial expression of transgenic GDNF which remained for at least 10 months in transduced gastrocnemius muscle. This transgenic GDNF was distributed in a large number of myofibers, mainly in the vicinity of the sarcolemma and predominantly concentrated at the sites of neuromuscular junctions (NMJs). Furthermore, transgenic GDNF, but not beta-galactosidase expressed as a control, was detected in the motoneurons that projected axons to the injected muscles, thus, indicating retrograde axonal transportation of the transgenic GDNF. This study provides a basis for a strategy of intramuscular AAV-GDNF delivery to protect motoneurons as a possible means of ALS treatment.
Collapse
Affiliation(s)
- Yan-Yan Lu
- Division of Neurology, Department of Medicine, Jichi Medical School, 3311-1 Yakushiji, Minamikawachi-machi, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Use of novel drug delivery methods could enhance the efficacy and reduce the toxicity of antiepileptic drugs (AEDs). Slow-release oral forms of medication or depot drugs such as skin patches might improve compliance and therefore seizure control. In emergency situations, administration via rectal, nasal or buccal mucosa can deliver the drug more quickly than can oral administration. Slow-release oral forms and rectal forms of AEDs are already approved for use, nasal and buccal administration is currently off-label and skin patches for AEDs are an attractive but currently hypothetical option. Therapies under development may result in the delivery of AEDs directly to the regions of the brain involved in seizures. Experimental protocols are underway to allow continuous infusion of potent excitatory amino acid antagonists into the CSF. In experiments with animal models of epilepsy, AEDs have been delivered successfully to seizure foci in the brain by programmed infusion pumps, acting in response to computerised EEG seizure detection. Inactive prodrugs can be given systemically and activated at the site of the seizure focus by locally released compounds. One such drug under development is DP-VPA (or DP16), which is cleaved to valproic acid (sodium valproate) by phospholipases at the seizure focus. Liposomes and nanoparticles are engineered micro-reservoirs of a drug, with attached antibodies or receptor-specific binding agents designed to target the particles to a specific region of the body. Liposomes in theory could deliver a high concentration of an AED to a seizure focus. Penetration of the blood-brain barrier can be accomplished by linking large particles to iron transferrin or biological toxins that can cross the barrier. In the near future, it is likely that cell transplants that generate neurotransmitters and neuromodulators will accomplish renewable endogenous drug delivery. However, the survival and viability of transplanted cells have yet to be demonstrated in the clinical setting. Gene therapy also may play a role in local drug delivery with the use of adenovirus, adeno-associated virus, herpesvirus or other delivery vectors to induce brain cells to produce local modulatory substances. New delivery systems should significantly improve the therapeutic/toxic ratio of AEDs.
Collapse
Affiliation(s)
- Robert S Fisher
- Stanford Comprehensive Epilepsy Center, Stanford University Medical Center, Stanford, California 94305-5235, USA.
| | | |
Collapse
|
48
|
Eaton MJ, Blits B, Ruitenberg MJ, Verhaagen J, Oudega M. Amelioration of chronic neuropathic pain after partial nerve injury by adeno-associated viral (AAV) vector-mediated over-expression of BDNF in the rat spinal cord. Gene Ther 2002; 9:1387-95. [PMID: 12365004 DOI: 10.1038/sj.gt.3301814] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Accepted: 05/07/2002] [Indexed: 11/09/2022]
Abstract
Changing the levels of neurotrophins in the spinal cord micro-environment after nervous system injury has been proposed to recover normal function, such that behavioral response to peripheral stimuli does not lead to chronic pain. We have investigated the effects of recombinant adeno-associated viral (rAAV)-mediated over-expression of brain-derived neurotrophic factor (BDNF) in the spinal cord on chronic neuropathic pain after unilateral chronic constriction injury (CCI) of the sciatic nerve. The rAAV-BDNF vector was injected into the dorsal horn at the thirteenth thoracic spinal cord vertebra (L(1) level) 1 week after CCI. Allodynia and hyperalgesia induced by CCI in the hindpaws were permanently reversed, beginning 1 week after vector injection, compared with a similar injection of a control rAAV-GFP vector (green fluorescent protein) or saline. In situ hybridization for BDNF demonstrated that both dorsal and ventral lumbar spinal neurons contained an intense signal for BDNF mRNA, at 1 to 8 weeks after vector injection. There was no similar BDNF mRNA over-expression associated with either injections of saline or rAAV-GFP. These data suggest that chronic neuropathic pain is sensitive to early spinal BDNF levels after partial nerve injury and that rAAV-mediated gene transfer could potentially be used to reverse chronic pain after nervous system injuries in humans.
Collapse
Affiliation(s)
- M J Eaton
- The Miami Project To Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
This article provides a review of the application of gene transfer technology to studies of salivary glands. Salivary glands provide an uncommon target site for gene transfer but offer many experimental situations likely of interest to the cell biologist. The reader is provided with a concise overview of salivary biology, along with a general discussion of the strategies available for gene transfer to any tissue. In particular, adenoviral vectors have been useful for proof of concept studies with salivary glands. Several examples are given, using adenoviral-mediated gene transfer, for addressing both biological and clinical questions. Additionally, benefits and shortcomings affecting the utility of this technology are discussed.
Collapse
Affiliation(s)
- Bruce J Baum
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
50
|
Zaiss AK, Liu Q, Bowen GP, Wong NCW, Bartlett JS, Muruve DA. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 2002; 76:4580-90. [PMID: 11932423 PMCID: PMC155101 DOI: 10.1128/jvi.76.9.4580-4590.2002] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus vectors induce acute inflammation of infected tissues due to activation of the innate immune system and expression of numerous chemokines and cytokines in transduced target cells. In contrast, adeno-associated virus (AAV) vectors are not associated with significant inflammation experimentally or clinically. We tested the ability of AAV vectors to induce the expression of chemokines in vitro and to activate the innate immune system in vivo. In human HeLa cells and murine renal epithelium-derived cells (REC cells) the adenovirus vector AdlacZ induced the expression of multiple inflammatory chemokines including RANTES, interferon-inducible protein 10 (IP-10), interleukin-8 (IL-8), MIP-1beta, and MIP-2 in a dose-dependent manner. The use of AAVlacZ did not induce the expression of these chemokines above baseline levels despite 40-fold-greater titers than AdlacZ and greater amounts of intracellular AAVlacZ genomes according to Southern and slot blot analysis. This finding confirmed that the lack of AAVlacZ induction of chemokine was not due to reduced transduction. In DBA/2 mice, the intravenous administration of 2.5 x 10(11) particles of AAVlacZ resulted in the rapid induction of liver tumor necrosis factor alpha (TNF-alpha), RANTES, IP-10, MIP-1beta, MCP-1, and MIP-2 mRNAs. However, 6 h following injection, chemokine mRNA levels returned to baseline. As expected, administration of 10-fold less AdlacZ caused an induction of liver TNF-alpha and chemokine mRNAs that persisted for more than 24 h posttransduction. Whereas intravenous administration of 2.5 x 10(11) particles of AAVlacZ triggered a transient infiltration of neutrophils and CD11b(+) cells into liver, this response stood in contrast to widespread inflammation and toxicity induced by AdlacZ. Kupffer cell depletion abolished AAVlacZ but not AdlacZ-induced chemokine expression and neutrophil infiltration. In summary, these results show that AAV vectors activate the innate immune system to a lesser extent than do adenovirus vectors and offer a possible explanation for the reduced inflammatory properties of AAV compared to adenovirus vectors.
Collapse
Affiliation(s)
- Anne-Kathrin Zaiss
- Department of Biochemistry and Molecular Biology, Department of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, Department of Pediatrics, Ohio State University, Children's Research Institute, Children's Hospital, Columbus, Ohio
| | - Qiang Liu
- Department of Biochemistry and Molecular Biology, Department of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, Department of Pediatrics, Ohio State University, Children's Research Institute, Children's Hospital, Columbus, Ohio
| | - Gloria P. Bowen
- Department of Biochemistry and Molecular Biology, Department of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, Department of Pediatrics, Ohio State University, Children's Research Institute, Children's Hospital, Columbus, Ohio
| | - Norman C. W. Wong
- Department of Biochemistry and Molecular Biology, Department of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, Department of Pediatrics, Ohio State University, Children's Research Institute, Children's Hospital, Columbus, Ohio
| | - Jeffrey S. Bartlett
- Department of Biochemistry and Molecular Biology, Department of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, Department of Pediatrics, Ohio State University, Children's Research Institute, Children's Hospital, Columbus, Ohio
| | - Daniel A. Muruve
- Department of Biochemistry and Molecular Biology, Department of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, Department of Pediatrics, Ohio State University, Children's Research Institute, Children's Hospital, Columbus, Ohio
- Corresponding author. Mailing address: Faculty of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada. Phone: (403) 220-3908. Fax: (403) 270-0979. E-mail:
| |
Collapse
|