1
|
Smalley Rumfield C, Roller N, Pellom ST, Schlom J, Jochems C. Therapeutic Vaccines for HPV-Associated Malignancies. Immunotargets Ther 2020; 9:167-200. [PMID: 33117742 PMCID: PMC7549137 DOI: 10.2147/itt.s273327] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Human papillomavirus (HPV)-related malignancies are responsible for almost all cases of cervical cancer in women, and over 50% of all cases of head and neck carcinoma. Worldwide, HPV-positive malignancies account for 4.5% of the global cancer burden, or over 600,000 cases per year. HPV infection is a pressing public health issue, as more than 80% of all individuals have been exposed to HPV by age 50, representing an important target for vaccine development to reduce the incidence of cancer and the economic cost of HPV-related health issues. The approval of Gardasil® as a prophylactic vaccine for high-risk HPV 16 and 18 and low-risk HPV6 and 11 for people aged 11-26 in 2006, and of Cervarix® in 2009, revolutionized the field and has since reduced HPV infection in young populations. Unfortunately, prophylactic vaccination does not induce immunity in those with established HPV infections or HPV-induced neoplasms, and there are currently no therapeutic HPV vaccines approved by the US Food and Drug Administration. This comprehensive review will detail the progress made in the development of therapeutic vaccines against high-risk HPV types, and potential combinations with other immunotherapeutic agents for more efficient and rational designs of combination treatments for HPV-associated malignancies.
Collapse
Affiliation(s)
- Claire Smalley Rumfield
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Roller
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Troy Pellom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Jeffrey Schlom Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room 8B09, Bethesda, MD20892, USATel +1 240-858-3463Fax +1 240-541-4558 Email
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Hancock G, Hellner K, Dorrell L. Therapeutic HPV vaccines. Best Pract Res Clin Obstet Gynaecol 2018; 47:59-72. [PMID: 29108943 DOI: 10.1016/j.bpobgyn.2017.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022]
Abstract
High-risk human papillomavirus (HPV) infection is known to be a necessary factor for cervical and anogenital malignancies. Cervical cancers account for over a quarter of a million deaths annually. Despite the availability of prophylactic vaccines, HPV infections remain extremely common worldwide. Furthermore, these vaccines are ineffective at clearing pre-existing infections and associated preinvasive lesions. As cervical dysplasia can regress spontaneously, a therapeutic HPV vaccine that boosts host immunity could have a significant impact on the morbidity and mortality associated with HPV. Therapeutic vaccines differ from prophylactic vaccines in that they are aimed at generating cell-mediated immunity rather than neutralising antibodies. This review will cover various therapeutic vaccine strategies in development for the treatment of HPV-associated lesions and cancers.
Collapse
Affiliation(s)
- Gemma Hancock
- Nuffield Department of Medicine, University of Oxford and Oxford NIHR Biomedical Research Centre, NDM Research Building, Old Road Campus, Headington, Oxford, UK.
| | - Karin Hellner
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, UK.
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford and Oxford NIHR Biomedical Research Centre, NDM Research Building, Old Road Campus, Headington, Oxford, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
3
|
Engineering of a live Salmonella enterica serovar Choleraesuis negative-marker strain that allows serological differentiation between immunised and infected animals. Vet J 2016; 213:53-8. [DOI: 10.1016/j.tvjl.2016.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 11/22/2022]
|
4
|
El Zowalaty ME, Bustin SA, Husseiny MI, Ashour HM. Avian influenza: virology, diagnosis and surveillance. Future Microbiol 2014; 8:1209-27. [PMID: 24020746 DOI: 10.2217/fmb.13.81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Avian influenza virus (AIV) is the causative agent of a zoonotic disease that affects populations worldwide with often devastating economic and health consequences. Most AIV subtypes cause little or no disease in waterfowl, but outbreaks in poultry can be associated with high mortality. Although transmission of AIV to humans occurs rarely and is strain dependent, the virus has the ability to mutate or reassort into a form that triggers a life-threatening infection. The constant emergence of new influenza strains makes it particularly challenging to predict the behavior, spread, virulence or potential for human-to-human transmission. Because it is difficult to anticipate which viral strain or what location will initiate the next pandemic, it is difficult to prepare for that event. However, rigorous implementation of biosecurity, vaccination and education programs can minimize the threat of AIV. Global surveillance programs help record and identify newly evolving and potentially pandemic strains harbored by the reservoir host.
Collapse
Affiliation(s)
- Mohamed E El Zowalaty
- Postgraduate Medical Institute, Faculty of Health, Social Care & Education, Anglia Ruskin University, Chelmsford, Essex, UK
| | | | | | | |
Collapse
|
5
|
Stanek O, Linhartova I, Majlessi L, Leclerc C, Sebo P. Complexes of streptavidin-fused antigens with biotinylated antibodies targeting receptors on dendritic cell surface: a novel tool for induction of specific T-cell immune responses. Mol Biotechnol 2012; 51:221-32. [PMID: 22006508 DOI: 10.1007/s12033-011-9459-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The choice of tools that enable efficient targeting of exogenous antigens (Ag) for processing and presentation by professional Ag-presenting cells (APC) remains limited. This represents, indeed, a bottleneck in development of vaccines inducing specific T-cell responses. Here, we describe a novel strategy of Ag delivery into APCs. The Ag of choice is fused to the N- or C-terminus of streptavidin (SA) and tetrameric Ag-SA or SA-Ag fusion proteins are produced in E. coli and purified by 2-Iminobiotin-Agarose affinity chromatography. Alternatively, Ag-SA proteins are purified from urea extracts of E. coli inclusion bodies and refolded in vitro into functional tetramers. Complexes with biotinylated antibodies targeting cell surface receptors are formed and used to deliver the Ags of choice for processing and presentation by APCs and induction of Ag-specific CD4+ and CD8+ T-cell responses in vitro and in vivo.
Collapse
Affiliation(s)
- Ondrej Stanek
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, Videnska 1083, 14220 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
6
|
Evaluation of Salmonella enterica type III secretion system effector proteins as carriers for heterologous vaccine antigens. Infect Immun 2012; 80:1193-202. [PMID: 22252866 DOI: 10.1128/iai.06056-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Live attenuated strains of Salmonella enterica have a high potential as carriers of recombinant vaccines. The type III secretion system (T3SS)-dependent translocation of S. enterica can be deployed for delivery of heterologous antigens to antigen-presenting cells. Here we investigated the efficacy of various effector proteins of the Salmonella pathogenicity island (SPI2)-encoded T3SS for the translocation of model antigens and elicitation of immune responses. The SPI2 T3SS effector proteins SifA, SteC, SseL, SseJ, and SseF share an endosomal membrane-associated subcellular localization after translocation. We observed that all effector proteins could be used to translocate fusion proteins with the model antigens ovalbumin and listeriolysin into the cytosol of host cells. Under in vitro conditions, fusion proteins with SseJ and SteC stimulated T-cell responses that were superior to those triggered by fusion proteins with SseF. However, in mice vaccinated with Salmonella carrier strains, only fusion proteins based on SseJ or SifA elicited potent T-cell responses. These data demonstrate that the selection of an optimal SPI2 effector protein for T3SS-mediated translocation is a critical parameter for the rational design of effective Salmonella-based recombinant vaccines.
Collapse
|
7
|
Abstract
Salmonella enterica is an invasive, facultative intracellular gastrointestinal pathogen causing human diseases such as gastroenteritis and typhoid fever. Virulence-attenuated strains of this pathogen have interesting capacities for the generation of live vaccines. Attenuated live typhoidal and nontyphoidal Salmonella strains can be used for vaccination against Salmonella infections and to target tumor tissue. Such strains may also serve as live carriers for the development of vaccination strategies against other bacterial, viral or parasitic pathogens. Various strategies have been developed to deploy regulatory circuits and protein secretion systems for efficient expression and delivery of foreign antigens by Salmonella carrier strains. One prominent example is the use of type III secretion systems to translocate recombinant antigens into antigen presenting cells. In this review, we will describe the recent developments in strategies that utilize live attenuated Salmonella as vaccine carriers for prophylactic vaccination against infectious diseases and therapeutic vaccination against tumors. Considerations for generating safe, attenuated carrier strains, designing stable expression systems and the use of adjuvants for live carrier strategies are discussed.
Collapse
Affiliation(s)
- Wael Abdel Halim Hegazy
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück Barbarastrasse 11, 49076 Osnabrück, Germany
| | | |
Collapse
|
8
|
Verschoor A, Neuenhahn M, Navarini AA, Graef P, Plaumann A, Seidlmeier A, Nieswandt B, Massberg S, Zinkernagel RM, Hengartner H, Busch DH. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 2011; 12:1194-201. [PMID: 22037602 DOI: 10.1038/ni.2140] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/21/2011] [Indexed: 12/30/2022]
Abstract
The acquisition of pathogen-derived antigen by dendritic cells (DCs) is a key event in the generation of cytotoxic CD8(+) T cell responses. In mice, the intracellular bacterium Listeria monocytogenes is directed from the blood to splenic CD8α(+) DCs. We report that L. monocytogenes rapidly associated with platelets in the bloodstream in a manner dependent on GPIb and complement C3. Platelet association targeted a small but immunologically important portion of L. monocytogenes to splenic CD8α(+) DCs, diverting bacteria from swift clearance by other, less immunogenic phagocytes. Thus, an effective balance is established between maintaining sterility of the circulation and induction of antibacterial immunity by DCs. Other gram-positive bacteria also were rapidly tagged by platelets, revealing a broadly active shuttling mechanism for systemic bacteria.
Collapse
Affiliation(s)
- Admar Verschoor
- Institute for Medical Microbiology, Immunology and Hygiene, and Focus Group, Clinical Cell Processing and Purification, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Choi SH, Kim KH. Generation of two auxotrophic genes knock-out Edwardsiella tarda and assessment of its potential as a combined vaccine in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2011; 31:58-65. [PMID: 21397031 DOI: 10.1016/j.fsi.2011.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/08/2011] [Accepted: 03/03/2011] [Indexed: 05/30/2023]
Abstract
Two auxotrophic genes that play essential roles in bacterial cell wall biosynthesis--alanine racemase (alr) gene and aspartate semialdehyde dehydrogenase (asd) gene--knock-out Edwardsiella tarda (Δalr Δasd E. tarda) was generated by the allelic exchange method to develop a combined vaccine system. Green fluorescent protein (GFP) was used as a model foreign protein, and was expressed by transformation of the mutant E. tarda with antibiotic resistant gene-free plasmids harboring cassettes for GFP and asd expression (pG02-ASD-EtPR-GFP). In vitro growth of the mutant E. tarda was similar to wild-type E. tarda when D-alanine and diaminopimelic acid (DAP) were supplemented to growth medium. However, without d-alanine and/or DAP supplementation, the mutant showed very limited growth. The Δalr Δasd E. tarda transformed with pG02-ASD-EtPR-GFP showed a similar growth pattern of wild-type E. tarda when D-alanine was supplemented in the medium, and the expression of GFP could be observed even with naked eyes. The virulence of the auxotrophic mutant E. tarda was decreased, which was demonstrated by approximately 10⁶ fold increase of LD₅₀ dose compared to wild-type E. tarda. To assess vaccine potential of the present combined vaccine system, olive flounder (Paralichthys olivaceus) were immunized with the GFP expressing mutant E. tarda, and analyzed protection efficacy against E. tarda challenge and antibody titers against E. tarda and GFP. Groups of fish immunized with 10⁷ CFU of the Δalr Δasd E. tarda harboring pG02-ASD-EtPR-GFP showed no mortality, which was irrespective to boost immunization. The cumulative mortality rates of fish immunized with 10⁶ or 10⁵ CFU of the mutant bacteria were lowered by a boost immunization. Fish immunized with the mutant E. tarda at doses of 10⁶-10⁷ CFU/fish showed significantly higher serum agglutination activities against formalin-killed E. tarda than PBS-injected control fish. Furthermore, fish immunized with 10⁶-10⁷ CFU/fish of the mutant E. tarda showed significantly higher ELISA titer against GFP antigen than fish in other groups. These results indicate that the present double auxotrophic genes knock-out E. tarda coupled with a heterologous antigen expression has a great strategic potential to be used as combined vaccines against various fish diseases.
Collapse
Affiliation(s)
- Seung Hyuk Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | | |
Collapse
|
10
|
Kremer CJ, O'Meara KM, Layton SL, Hargis BM, Cole K. Evaluation of recombinant Salmonella expressing the flagellar protein fliC for persistence and enhanced antibody response in commercial turkeys. Poult Sci 2011; 90:752-8. [PMID: 21406359 DOI: 10.3382/ps.2010-01076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (SE) is one of the most common causes of human foodborne illness in the United States. Previous research indicates that antibodies against the fliC protein can provide protection against Salmonella challenge in mice. To generate a vaccine that effectively protects poultry against multiple Salmonella serotypes, novel attenuated strains of SE were developed to express a fliC peptide sequence on the outer membrane protein lamB in association with an M2e (marker) epitope. In 3 separate trials, poults were immunized with 10(7) to 10(8) cfu/poult of the appropriate recombinant Salmonella strains (ΔSE-M2e or ΔSE-M2e-fliC) via oral gavage on the day of hatch and again on d 21 posthatch. Liver, spleen, and cecal tonsils were aseptically removed on d 7, 14, 21, 28, 35, and 42 posthatch for detection of Salmonella, and blood samples were obtained at these same time points for determination of an M2e-specific antibody response. In all 3 trials, the ΔSE-M2e-fliC strain exhibited significantly less invasion of the liver and spleen at d 7 and 14 when compared with ΔSE-M2e or SE phage type 13A (P < 0.05). Similarly, colonization of the cecal tonsils was decreased in the poults immunized with the ΔSE-M2e-fliC strain. By d 21, the ΔSE-M2e-fliC strain exhibited a significantly higher M2e-specific antibody response when compared with the negative control and SE phage type 13A groups (P < 0.05). However, no significant differences in M2e-specific antibody responses were observed between the ΔSE candidate vaccine strains throughout the study. Overall, these data suggest that oral live attenuated Salmonella-vectored vaccines expressing a fliC peptide sequence are able to elicit a humoral immune response in commercial poults and may contribute to a reduction in Salmonella organ invasion and colonization.
Collapse
Affiliation(s)
- C J Kremer
- Department of Animal Sciences, The Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
11
|
Zhang X, Wanda SY, Brenneman K, Kong W, Zhang X, Roland K, Curtiss R. Improving Salmonella vector with rec mutation to stabilize the DNA cargoes. BMC Microbiol 2011; 11:31. [PMID: 21303535 PMCID: PMC3047425 DOI: 10.1186/1471-2180-11-31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/08/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Salmonella has been employed to deliver therapeutic molecules against cancer and infectious diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid recombination has been reduced in E. coli by mutating several genes including the recA, recE, recF and recJ. However, to our knowledge, there have been no published studies of the effect of these or any other genes that play a role in plasmid recombination in Salmonella enterica. RESULTS The effect of recA, recF and recJ deletions on DNA recombination was examined in three serotypes of Salmonella enterica. We found that (1) intraplasmid recombination between direct duplications was RecF-independent in Typhimurium and Paratyphi A, but could be significantly reduced in Typhi by a ΔrecA or ΔrecF mutation; (2) in all three Salmonella serotypes, both ΔrecA and ΔrecF mutations reduced intraplasmid recombination when a 1041 bp intervening sequence was present between the duplications; (3) ΔrecA and ΔrecF mutations resulted in lower frequencies of interplasmid recombination in Typhimurium and Paratyphi A, but not in Typhi; (4) in some cases, a ΔrecJ mutation could reduce plasmid recombination but was less effective than ΔrecA and ΔrecF mutations. We also examined chromosome-related recombination. The frequencies of intrachromosomal recombination and plasmid integration into the chromosome were 2 and 3 logs lower than plasmid recombination frequencies in Rec+ strains. A ΔrecA mutation reduced both intrachromosomal recombination and plasmid integration frequencies. CONCLUSIONS The ΔrecA and ΔrecF mutations can reduce plasmid recombination frequencies in Salmonella enterica, but the effect can vary between serovars. This information will be useful for developing Salmonella delivery vectors able to stably maintain plasmid cargoes for vaccine development and gene therapy.
Collapse
Affiliation(s)
- Xiangmin Zhang
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Comparison of a regulated delayed antigen synthesis system with in vivo-inducible promoters for antigen delivery by live attenuated Salmonella vaccines. Infect Immun 2010; 79:937-49. [PMID: 21134969 DOI: 10.1128/iai.00445-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Induction of strong immune responses against a vectored antigen in hosts immunized with live attenuated Salmonella vaccines is related in part to the amount of antigen delivered and the overall fitness of the Salmonella vector in relation to its ability to stimulate the host immune system. Constitutive high-level antigen synthesis causes a metabolic burden to the vaccine vector strain that can reduce the vaccine strain's ability to interact with host lymphoid tissues, resulting in a compromised immune response. A solution to this problem is the use of systems that regulate antigen gene expression, permitting high levels of antigen synthesis only after the vaccine strain has reached its target tissues. In vivo-inducible promoters (IVIPs) are often used to accomplish this. We recently developed an alternative strategy, a regulated delayed antigen synthesis (RDAS) system, in which the LacI-repressible P(trc) promoter controls antigen gene expression by adding arabinose. In this paper, we compared the RDAS system with two commonly used IVIPs, P(ssaG) and P(pagC). Three nearly identical plasmids, differing only in the promoter used to direct transcription of the pneumococcal pspA gene, P(trc), P(ssaG), or P(pagC), were constructed and introduced into isogenic Salmonella vaccine strains with or without arabinose-inducible LacI synthesis. Mice immunized with the RDAS strain developed slightly higher titers of mucosal and serum anti-PspA antibodies than P(pagC)-immunized mice, while titers in mice immunized with the P(ssaG) strain were 100-fold lower. Both the RDAS and P(pagC) strains conferred similar levels of protection against Streptococcus pneumoniae challenge, significantly greater than those for the P(ssaG) strain or controls. Thus, RDAS provides another choice for inclusion in the live vaccine design to increase immunogenicity.
Collapse
|
13
|
O’Meara K, Kremer C, Layton S, Berghman L, Hargis B, Cole K. Evaluation of recombinant Salmonella expressing CD154 for persistence and enhanced antibody response in commercial turkeys. Poult Sci 2010; 89:1399-405. [DOI: 10.3382/ps.2010-00697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Salmonella enterica serovar Choleraesuis derivatives harbouring deletions in rpoS and phoP regulatory genes as vehicles for DNA vaccines. Vet Microbiol 2010; 141:81-8. [DOI: 10.1016/j.vetmic.2009.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 07/09/2009] [Accepted: 08/03/2009] [Indexed: 11/18/2022]
|
15
|
Layton SL, Kapczynski DR, Higgins S, Higgins J, Wolfenden AD, Liljebjelke KA, Bottje WG, Swayne D, Berghman LR, Kwon YM, Hargis BM, Cole K. Vaccination of chickens with recombinant Salmonella expressing M2e and CD154 epitopes increases protection and decreases viral shedding after low pathogenic avian influenza challenge. Poult Sci 2009; 88:2244-52. [PMID: 19834072 DOI: 10.3382/ps.2009-00251] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- S L Layton
- Department of Poultry Science, University of Arkansas, Fayetteville 72701, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The efficacy of an IL-1alpha vaccine depends on IL-1RI availability and concomitant myeloid-derived suppressor cell reduction. J Immunother 2009; 32:552-64. [PMID: 19483654 DOI: 10.1097/cji.0b013e31819b7b9e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We recently reported that tumor-derived interleukin (IL)-1beta strongly promotes tumor growth by inducing myeloid-derived suppressor cell (MDSC) and regulatory T-cell (T(reg)) expansion. To see whether redirection of an immune response can be achieved through immune response-supporting IL-1alpha application, IL-1RI competent (IL-1RI(comp)) and IL-1RI-deficient (IL-1RI(-/-)) mice received IL-1alpha cDNA-transformed attenuated Salmonella typhimurium (SL-IL-1alpha) and/or lysates from methycholanthrene-induced IL-1(comp) or IL-1(-/-) fibrosarcoma cells. Vaccination with SL-IL-1alpha and/or tumor lysate exerted only a minor effect on the survival of IL-1alpha/beta(-/-) and none on IL-1alpha(comp) tumor-bearing mice despite induction of a potent antitumor response, that was overridden by intratumoral and systemic expansion of MDSC. Application of all-trans-retinoic acid together with anti-CD25 efficiently coped with MDSC and T(reg) expansion. Vaccination concomitantly with application of all-trans-retinoic acid and anti-CD25 treatment significantly increased the survival time and rate of IL-1alpha/beta(comp), but even of IL-1alpha(-/-)beta(comp) IL-1RI(comp) tumor-bearing mice. Instead, in IL-1RI(-/-) mice, though MDSC expansion was weaker, SL-IL-1alpha application hardly displayed any therapeutic efficacy, which implies signal transduction through IL-1alpha binding to the IL-1RI as an essential component for immune response induction. Taken together, IL-1alpha can efficiently support tumor vaccination, as far as expansion of MDSC and T(reg) is controlled. However, care should be taken to interfere with MDSC expansion/activation not through a blockade of the IL-1RI, which is the preferential target of IL-1alpha.
Collapse
|
17
|
Abstract
The antiquated system used to manufacture the currently licensed inactivated influenza virus vaccines would not be adequate during an influenza virus pandemic. There is currently a search for vaccines that can be developed faster and provide superior, long-lasting immunity to influenza virus as well as other highly pathogenic viruses and bacteria. Recombinant vectors provide a safe and effective method to elicit a strong immune response to a foreign protein or epitope. This review explores the advantages and limitations of several different vectors that are currently being tested, and highlights some of the newer viruses being used as recombinant vectors.
Collapse
|
18
|
Husseiny MI, Hensel M. Construction of highly attenuated Salmonella enterica serovar Typhimurium live vectors for delivering heterologous antigens by chromosomal integration. Microbiol Res 2009; 163:605-15. [PMID: 19216101 DOI: 10.1016/j.micres.2006.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Attenuated live Salmonella enterica serovar Typhimurium is a versatile organism for the generation of live recombinant vaccines for mucosal immunization and various approaches were devised for the stable and efficient expressions of heterologous antigens by attenuated S. enterica strains. Phage lamda Red recombinase has recently been devised for gene replacements in S. enterica after introduction of PCR products as a one-step deletion approach and FLP-mediated recombination allows the subsequent removal of antibiotic resistance markers. As an extension of this method, we have developed an approach that allows the sequential integration of multiple recombinant expression cassettes for heterologous antigens into the chromosome of S. enterica. We observed the stable expression of model antigens without selective pressure. In addition, the method allows the simultaneous generation of double-attenuating mutations by gene deletions. This approach allows the rapid and efficient construction of recombinant Salmonella strains as vaccine carriers.
Collapse
Affiliation(s)
- Mohamed I Husseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | | |
Collapse
|
19
|
Attenuated Salmonella typhimurium-mediated interleukin-10 delivery is beneficial for dextran sodium sulfate-induced murine colitis. Dis Colon Rectum 2009; 52:230-8. [PMID: 19279417 DOI: 10.1007/dcr.0b013e31819ad4c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Interleukin-10 is a potent immunoregulatory agent that appears to play a role in inflammatory bowel disease. We hypothesized that interleukin-10 delivery to the distal gastrointestinal tract using a unique delivery vehicle may serve as a novel therapeutic for the treatment of experimental colitis. METHODS A murine interleukin-10 cDNA was subcloned and transformed into attenuated Salmonella typhimurium. In vitro interleukin-10 production and biofunction were evaluated. This construct was then used against dextran sodium sulfate-induced murine colitis. RESULTS A murine interleukin-10 producing S. typhimurium model was constructed. Enzyme linked immunosorbent assay and mast cell bioassay revealed interleukin-10 production. After single oral gavage feeding of 10 bacteria, persistence was noted within mesenteric lymph nodes at 6 weeks. Inoculation with/without the interleukin-10 plasmid (n = 7 per group) was performed before and after dextran sodium sulfate exposure. Postdextran sodium sulfate treatment revealed enhanced weight recovery in the S. typhimurium/interleukin-10 group compared to S. typhimurium/plasmid and phosphate buffered saline controls (P < 0.0001). The mean histology score for S. typhimurium/interleukin-10 was 0.86 compared to 3.14 and 3.17 for the S. typhimurium/plasmid and phosphate buffered saline controls respectively (P = 0.028). CONCLUSIONS Attenuated S. typhimurium producing interleukin-10 can be successfully delivered to the murine gastrointestinal tract by single oral dosing. This novel delivery method improved recovery of chemically-induced murine colitis.
Collapse
|
20
|
Domínguez-Bernal G, Tierrez A, Bartolomé A, Martínez-Pulgarín S, Salguero FJ, Orden JA, de la Fuente R. Salmonella enterica serovar Choleraesuis derivatives harbouring deletions in rpoS and phoP regulatory genes are attenuated in pigs, and survive and multiply in porcine intestinal macrophages and fibroblasts, respectively. Vet Microbiol 2008; 130:298-311. [PMID: 18313237 DOI: 10.1016/j.vetmic.2008.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/16/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
Live attenuated Salmonella enterica strains have been extensively studied as potential vectors for the oral delivery of heterologous antigens. Due to its ability to target immune cells, its specific mechanism for crossing the intestinal barrier, and its swine-restricted tropism, S. enterica subspecies enterica serovar Choleraesuis (S. Choleraesuis) has attracted a great deal of interest for the production of bacterial-based oral carriers specifically adapted to swine. In this study, two mutants of S. Choleraesuis were constructed and their attenuation and intracellular fate analysed with the purpose of engineering new attenuated live strains with improved properties as oral vaccine carriers. Those strains harboured a specific deletion either within the phoP or rpoS genes, which encode virulence-related regulators in S. Typhimurium. In comparison to the wild-type parental S. Choleraesuis, the mutant strains, especially DeltaphoP, were extremely low in virulence in the murine model and in the natural host, the pig. Moreover, when compared with a commercial live vaccine strain, SC-54, the two mutants showed a higher level of attenuation in mice and DeltaphoP also in pigs. In addition, DeltarpoS and DeltaphoP presented a proliferation and survival phenotype within swine intestinal primary fibroblast and macrophage cell cultures, respectively. Collectively, the present results indicate that the DeltarpoS and DeltaphoP strains of S. Choleraesuis gather adequate features to be potential candidates for vaccine vectors for the specific delivery of heterologous antigens adapted to pigs.
Collapse
Affiliation(s)
- Gustavo Domínguez-Bernal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda Puerta de Hierro s/n, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Salmonella enterica is an important pathogen of animals and humans causing a variety of infectious diseases. The large number of cases of typhoid fever due to S. enterica serovar Typhi infections gives rise to the continuous need for improved vaccines against this life-threatening infection. However, S. enterica is also an interesting organism to act as a live attenuated carrier for the presentation of recombinant heterologous antigens. Comprehensive experimental studies have been performed and a detailed knowledge of the molecular mechanisms of important virulence factors is available. This allows the rationale design of improved Salmonella carrier strains and the development of novel strategies for the expression and presentation of recombinant antigens. Here, we review recent advances in generation of live attenuated Salmonella vaccines and discuss criteria for expression strategies of heterologous antigens by Salmonella carrier strains.
Collapse
|
22
|
Loessner H, Endmann A, Leschner S, Bauer H, Zelmer A, zur Lage S, Westphal K, Weiss S. Improving live attenuated bacterial carriers for vaccination and therapy. Int J Med Microbiol 2007; 298:21-6. [PMID: 17702649 DOI: 10.1016/j.ijmm.2007.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Live attenuated bacteria are well established as vaccines. Thus, their use as carriers for prophylactic and therapeutic macromolecules is a logical consequence. Here we describe several experimental applications of bacteria to carry heterologous macromolecules into the murine host. First, Listeria monocytogenes are described that are able to transfer eukaryotic expression plasmids into host cells for gene therapy. High multiplicities of infection are still required for efficient gene transfer and we point out some of the bottlenecks that counteract a more efficient transfer and application in vivo. Then, we describe Salmonella enterica serovar Typhimurium (S. typhimurium) as an expression plasmid transfer vehicle for oral DNA vaccination of mice. We demonstrate that the stabilization of the plasmid transformants results in an improved immune response. Stabilization was achieved by replacing the origin of replication of the original high-copy-number plasmid by a low-copy-number origin. Finally, we describe Salmonella carriers for the improved expression of heterologous proteins. We introduce a system in which the plasmid is carried as a single copy during cultivation but is amplified several fold upon infection of the host. Using the same in vivo inducible promoter for both protein expression and plasmid amplification, a substantial increase in antigen expression in vivo can be achieved. A modification of this approach is the introduction of inducible gene expression in vivo with a low-molecular-weight compound. Using P(BAD) promoter and L-arabinose as inducer we were able to deliberately activate genes in the bacterial carrier. No background activity could be observed with P(BAD) such that an inducible suicide gene could be introduced. This is adding an important safety feature to such live attenuated carrier bacteria.
Collapse
Affiliation(s)
- Holger Loessner
- Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The development of more advanced and effective vaccines is of great interest in modern medicine. These new-generation vaccines, based on recombinant proteins or DNA, are often less reactogenic and immunogenic than traditional vaccines. Thus, there is an urgent need for the development of new and improved adjuvants. Besides many other immunostimulatory components, the bacterial ghost (BG) system is currently under investigation as a potent vaccine delivery system with intrinsic adjuvant properties. BGs are nonliving cell envelope preparations from Gram-negative cells, devoid of cytoplasmic contents, while their cellular morphology and native surface antigenic structures remain preserved. Owing to the particulate nature of BGs and the fact that they contain many well known immune-stimulating compounds, BGs have the potential to enhance immune responses against ghost-delivered target antigens.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Chemistry, Pharmaceutical
- Drug Carriers
- Genetic Vectors
- Gram-Negative Bacteria/genetics
- Gram-Negative Bacteria/immunology
- Humans
- Immunity, Mucosal
- Technology, Pharmaceutical/trends
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Eva M Riedmann
- Department of Chromosome Biology, Max F Perutz Laboratories, University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
24
|
Giacalone MJ, Zapata JC, Berkley NL, Sabbadini RA, Chu YL, Salvato MS, McGuire KL. Immunization with non-replicating E. coli minicells delivering both protein antigen and DNA protects mice from lethal challenge with lymphocytic choriomeningitis virus. Vaccine 2006; 25:2279-87. [PMID: 17258845 PMCID: PMC2384231 DOI: 10.1016/j.vaccine.2006.11.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/20/2006] [Accepted: 11/30/2006] [Indexed: 11/29/2022]
Abstract
In the midst of new investigations into the mechanisms of both delivery and protection of new vaccines and vaccine carriers, it has become clear that immunization with delivery mechanisms that do not involve living, replicating organisms are vastly preferred. In this report, non-replicating bacterial minicells simultaneously co-delivering the nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) and the corresponding DNA vaccine were tested for the ability to generate protective cellular immune responses in mice. It was found that good protection (89%) was achieved after intramuscular administration, moderate protection (31%) was achieved after intranasal administration, and less protection (7%) was achieved following gastric immunization. These results provide a solid foundation on which to pursue the use of bacterial minicells as a non-replicating vaccine delivery platform.
Collapse
Affiliation(s)
- Matthew J. Giacalone
- Vaxiion Therapeutics, Inc., San Diego, CA, USA
- Department of Biology, Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Juan C. Zapata
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | | | - Roger A. Sabbadini
- Vaxiion Therapeutics, Inc., San Diego, CA, USA
- Department of Biology, Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Yen-Lin Chu
- Department of Biology, Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Maria S. Salvato
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | - Kathleen L. McGuire
- Vaxiion Therapeutics, Inc., San Diego, CA, USA
- Department of Biology, Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
- * Corresponding author at: Department of Biology, Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA. Tel.: +1 619 594 7191; fax: +1 619 594 5676. E-mail address: (K.L. McGuire)
| |
Collapse
|
25
|
Nagy G, Danino V, Dobrindt U, Pallen M, Chaudhuri R, Emödy L, Hinton JC, Hacker J. Down-regulation of key virulence factors makes the Salmonella enterica serovar Typhimurium rfaH mutant a promising live-attenuated vaccine candidate. Infect Immun 2006; 74:5914-25. [PMID: 16988271 PMCID: PMC1594928 DOI: 10.1128/iai.00619-06] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mutants of Salmonella enterica serovar Typhimurium that lack the transcriptional regulator RfaH are efficient as live oral vaccines against salmonellosis in mice. We show that the attenuation of the vaccine candidate strain is associated with reduced net growth in epithelial and macrophage cells. In order to identify the relevant RfaH-dependent genes, the RfaH regulon was determined with S. enterica serovars Enteritidis and Typhimurium using whole-genome Salmonella microarrays. As well as impacting the expression of genes involved in lipopolysaccharide (LPS) core and O-antigen synthesis, the loss of RfaH results in a marked down-regulation of SPI-4 genes, the flagellum/chemotaxis system, and type III secretion system 1. However, a proportion of these effects could have been the indirect consequence of the altered expression of genes required for LPS biosynthesis. Direct and indirect effects of the rfaH mutation were dissociated by genome-wide transcriptional profiling of a structural deep-rough LPS mutant (waaG). We show that truncation of LPS itself is responsible for the decreased intracellular yield observed for DeltarfaH strains. LPS mutants do not differ in replication ability; rather, they show increased susceptibility to antimicrobial peptides in the intracellular milieu. On the other hand, evidence that deletion of rfaH, as well as some other genes involved in LPS biosynthesis, results in enhanced invasion of various mammalian cells is shown. Exposure of common minor antigens in the absence of serovar-specific antigens might be responsible for the observed cross-reactive nature of the elicited immune response upon vaccination. Increased invasiveness of the Salmonella rfaH mutant into antigen-presenting cells, combined with increased intracellular killing and the potential for raising a cross-protective immune response, renders the rfaH mutant an ideal vaccine candidate.
Collapse
Affiliation(s)
- Gábor Nagy
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Spreng S, Dietrich G, Weidinger G. Rational design of Salmonella-based vaccination strategies. Methods 2006; 38:133-43. [PMID: 16414270 DOI: 10.1016/j.ymeth.2005.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/16/2005] [Indexed: 11/30/2022] Open
Abstract
A permanently growing body of information is becoming available about the quality of protective immune responses induced by mucosal immunization. Attenuated live bacterial vaccines can be administered orally and induce long-lasting protective immunity in humans without causing major side effects. An attenuated Salmonella enterica serovar Typhi strain is registered as live oral vaccine against typhoid fever and has been in use for more than two decades. Recombinant attenuated Salmonella strains are also an attractive means of delivering heterologous antigens to the immune system, thereby, stimulating strong mucosal and systemic immune responses and consequently provide an efficient platform technology to design novel vaccination strategies. This includes the choice of heterologous protective antigens and their expression under the control of appropriate promoters within the carrier strain. The availability of well-characterized attenuated mutants of Salmonella concomitantly supports fine tuning of immune response triggered against heterologous antigens. Exploring different mucosal sites as a potential route of immunization has to be taken into account as an additional important way to modulate immune responses according to clinical requirements. This article focuses on the rational design of strategies to modulate appropriate immunological effector functions on the basis of selection of (i) attenuating mutations of the Salmonella strains, (ii) specific expression systems for the heterologous antigens, and (iii) route of mucosal administration.
Collapse
Affiliation(s)
- Simone Spreng
- Berna Biotech Ltd., Bacterial Vaccine Research, Rehhagstr. 79, CH-3018 Berne, Switzerland.
| | | | | |
Collapse
|
27
|
Guzman CA, Borsutzky S, Griot-Wenk M, Metcalfe IC, Pearman J, Collioud A, Favre D, Dietrich G. Vaccines against typhoid fever. Vaccine 2005; 24:3804-11. [PMID: 16278037 DOI: 10.1016/j.vaccine.2005.07.111] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of high infectivity and significant disease burden, typhoid fever constitutes a major global health problem. Implementation of adequate food handling practices and establishment of safe water supplies are the cornerstone for the development of an effective prevention program. However, vaccination against typhoid fever remains an essential tool for the effective management of this disease. Currently, there are two well tolerated and effective licensed vaccines. One is based on defined subunit virulence (Vi) polysaccharide antigen and can be administered either intramuscularly or subcutaneously and the other is based on the use of live attenuated bacteria for oral administration. The advantages and disadvantages of the various approaches taken in the development of a vaccine against typhoid fever are discussed, along with the potential for future vaccine candidates.
Collapse
Affiliation(s)
- Carlos A Guzman
- Vaccine Research Group, Division of Microbiology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hummel S, Apte RN, Qimron U, Vitacolonna M, Porgador A, Zöller M. Tumor Vaccination by Salmonella typhimurium After Transformation with a Eukaryotic Expression Vector in Mice. J Immunother 2005; 28:467-79. [PMID: 16113603 DOI: 10.1097/01.cji.0000170359.92090.8b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transformed attenuated Salmonella typhimurium (ST) have been suggested as an efficient means of tumor vaccination. However, ST themselves might be immunosuppressive, and the question has arisen as to whether this impedes vaccination efficacy even if ST are transformed with a eukaryotic expression vector such that "tumor antigen" will be transcribed by the host. The question was evaluated using a mutant SL7207, where the yej operon, which interferes with MHC I-mediated presentation, had been inactivated (SL7207DeltayejE). Mice were vaccinated with SL7207 or SL7207DeltayejE transformed with a eukaryotic expression vector carrying the lacZ or the gp100 gene and later received lacZ-transfected RENCA or YC8 or gp100-expressing B16F1 tumor cells. In vaccinated mice, tumor growth started with a delay and some animals remained tumor-free; however, the tumor growth rate remained unaltered. No significant difference was seen between SL7207DeltayejE versus SL7207 vaccinated mice. The latter finding contrasted with ex vivo analyses where vaccination with SL7207DeltayejE, compared with SL7207, induced a significantly stronger response, including nonadaptive defense mechanisms. The failure to detect a superior vaccination efficacy of SL7207DeltayejE in vivo could be attributed to a stronger effect of the yej operon on MHC-mediated antigen presentation when driven by a prokaryotic promoter. Also, additional Salmonella genes apparently interfere with maintenance of a sustained immune response. Thus, the immunosuppressive yej operon affects innate and adaptive immunity. However, when ST are carriers for eukaryotic-expressed tumor antigens, yej does not severely hamper induction of an immune response.
Collapse
Affiliation(s)
- Susanne Hummel
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Husseiny MI, Hensel M. Rapid method for the construction of Salmonella enterica Serovar Typhimurium vaccine carrier strains. Infect Immun 2005; 73:1598-605. [PMID: 15731059 PMCID: PMC1064926 DOI: 10.1128/iai.73.3.1598-1605.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a versatile organism for the generation of live recombinant vaccines for mucosal immunization. Various strategies have been devised for the stable and efficient expression of heterologous antigens by attenuated S. enterica strains, but these methods often require complex manipulations. Use of phage lambda Red recombinase has recently been devised for gene replacements in Escherichia coli and S. enterica after introduction of PCR products. Based on this method, we have developed an approach that allows the integration of recombinant expression cassettes for heterologous antigens in a single step. The recombinant construct is integrated into the chromosome and is devoid of any selective marker such as antibiotic resistance. We observed the stable expression of model antigens without selective pressure. In addition, the method allows the simultaneous generation of attenuating mutations by gene deletions. The novel "knock-in" approach allows the rapid and efficient construction of recombinant Salmonella strains as vaccine carriers.
Collapse
Affiliation(s)
- Mohamed I Husseiny
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, FAU Erlangen-Nürnberg, Wasserturmstr. 3-5, D-91054 Erlangen, Germany
| | | |
Collapse
|
30
|
Ranallo RT, Fonseka CP, Cassels F, Srinivasan J, Venkatesan MM. Construction and characterization of bivalent Shigella flexneri 2a vaccine strains SC608(pCFAI) and SC608(pCFAI/LTB) that express antigens from enterotoxigenic Escherichia coli. Infect Immun 2005; 73:258-67. [PMID: 15618162 PMCID: PMC538972 DOI: 10.1128/iai.73.1.258-267.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An invasive strain of Shigella flexneri 2a (SC608) has been developed as a vector for the expression and delivery of heterologous antigens. SC608 is an aspartate semialdehyde dehydrogenase (asd) derivative of SC602 (icsA iuc), a well-characterized live attenuated vaccine strain which has undergone several clinical trials in human volunteers. When administered orally at a single 10(4) (CFU) dose, SC602 is both immunogenic and efficacious against shigellosis. Using asd-based plasmid vectors, we designed SC608 to express the enterotoxigenic Escherichia coli (ETEC) fimbrial subunit CfaB (CFA/I structural subunit) alone or in combination with the E. coli B subunit of heat-labile enterotoxin (LTB). The expression of each heterologous protein in SC608 was verified by immunoblot analysis. Each strain was comparable to the parent strain, SC602, in a HeLa cell invasion assay. After intranasal immunizations of guinea pigs, serum and mucosal immune responses were detected against both Shigella lipopolysaccharide and heterologous ETEC antigens by enzyme-linked immunosorbent assay and ELISPOT analysis. All immunized animals were subsequently protected against a challenge with wild-type S. flexneri 2a in a keratoconjunctivitis Sereny test. Serum antibodies generated against LTB and CfaB demonstrated antitoxin and agglutination activities, respectively. These results suggest that CfaB and LTB expressed in SC608 retain important conformational epitopes that are required for the generation of antibodies that have functional activities. These initial experiments demonstrate that a fully invasive Shigella vaccine strain can be engineered to deliver antigens from other diarrheal pathogens.
Collapse
Affiliation(s)
- Ryan T Ranallo
- Department of Enteric Infections, Division of Communicable Disease and Immunology, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD 20910, USA
| | | | | | | | | |
Collapse
|
31
|
Vaccines against Infections Caused by Salmonella, Shigella, and Pathogenic Escherichia coli. EcoSal Plus 2004; 1. [PMID: 26443352 DOI: 10.1128/ecosalplus.8.8.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infectious diseases represent one of the most common causes of death worldwide, with the enteropathogenic bacteria Salmonella and Shigella and pathogenic Escherichia coli being among the most detrimental. Currently, vaccination represents the preferred method of preventing such infections. For stimulating the adaptive immune response, immunizations are frequently based on formulations which include inactivated whole-cell vaccines, live attenuated vaccines, or subunit vaccines. These can be administered via a parenteral or mucosal route, the latter having the advantage that it most closely mimics the actual course of infection. In addition to the type of vaccine and method of application, important consideration needs to be paid to safety, efficacy, and cost, which are often major bottlenecks in the successful implementation of vaccines. In this chapter we take a limited look at the history surrounding vaccinations involving Salmonella, Shigella, and pathogenic E. coli. Salmonella infections, which can lead to typhoid fever, are becoming increasing difficult to treat with antibiotics due to multi-drug-resistant strains. At present, the parenteral Vi-based subunit vaccines and the live attenuated oral vaccine Ty21a have proven to be the vaccines of choice, with high levels of protective efficacy and limited side effects. Shigella infections are responsible for the diarrheal disease shigellosis. Various live and nonliving mucosal and parenteral vaccines have been tested, with the most promising candidates evolving around those that stimulate the production of O-antigen-specific antibodies. Pathogenic Escherichia coli infections can lead to severe diseases due to the bacterium's production of several specific toxins. Vaccines against this bacterium target its toxins, as well as surface-exposed antigens, all of which have been found to be effective as immunogens.
Collapse
|
32
|
Gentschev I, Dietrich G, Spreng S, Neuhaus B, Maier E, Benz R, Goebel W, Fensterle J, Rapp UR. Use of the α-hemolysin secretion system of Escherichia coli for antigen delivery in the Salmonella typhi Ty21a vaccine strain. Int J Med Microbiol 2004; 294:363-71. [PMID: 15595386 DOI: 10.1016/j.ijmm.2004.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This study examined the suitability of the hemolysin secretion system of Escherichia coli for expression and delivery of alpha-hemolysin (HlyA) by the S. typhi Ty21a strain, the only live oral Salmonella vaccine strain licensed for human use, under in vitro and in vivo conditions. For this purpose, two plasmid vectors encoding either the whole alpha-hemolysin of E. coli (pANN202-812/pMOhly2) or the hemolysin secretion signal (pMOhly1) were transferred into S. typhi Ty21a. S. typhi Ty21a carrying pANN202-812/pMOhly2 revealed efficient secretion of hemolysin in vitro. After formulation according to a process suitable for commercial production of Salmonella-based live bacterial vaccines, plasmids were shown to be stable in Ty21a and hemolysin secretion was demonstrated even after storage of the strains under real-time and stress conditions. After intranasal immunization of mice with S. typhi Ty21a/pANN202-812 plasmids are stable in vivo, and immunization induced a profound immune response against the heterologous HlyA antigen. Therefore, the combination of the hemolysin secretion system and S. typhi Ty21a could form the basis for a new generation of live bacterial vaccines.
Collapse
Affiliation(s)
- Ivaylo Gentschev
- Institut für Medizinische Strahlenkunde und Zellforschung, University of Würzburg, Versbacher Str. 5, D-97078 Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mucosal delivery of anti-inflammatory IL-1Ra by sporulating recombinant bacteria. BMC Biotechnol 2004; 4:27. [PMID: 15516267 PMCID: PMC534112 DOI: 10.1186/1472-6750-4-27] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 10/30/2004] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mucosal delivery of therapeutic protein drugs or vaccines is actively investigated, in order to improve bioavailability and avoid side effects associated with systemic administration. Orally administered bacteria, engineered to produce anti-inflammatory cytokines (IL-10, IL-1Ra), have shown localised ameliorating effects in inflammatory gastro-intestinal conditions. However, the possible systemic effects of mucosally delivered recombinant bacteria have not been investigated. RESULTS B. subtilis was engineered to produce the mature human IL-1 receptor antagonist (IL-1Ra). When recombinant B. subtilis was instilled in the distal colon of rats or rabbits, human IL-1Ra was found both in the intestinal lavage and in the serum of treated animals. The IL-1Ra protein in serum was intact and biologically active. IL-1-induced fever, neutrophilia, hypoglycemia and hypoferremia were inhibited in a dose-dependent fashion by intra-colon administration of IL-1Ra-producing B. subtilis. In the mouse, intra-peritoneal treatment with recombinant B. subtilis could inhibit endotoxin-induced shock and death. Instillation in the rabbit colon of another recombinant B. subtilis strain, which releases bioactive human recombinant IL-1beta upon autolysis, could induce fever and eventually death, similarly to parenteral administration of high doses of IL-1beta. CONCLUSIONS A novel system of controlled release of pharmacologically active proteins is described, which exploits bacterial autolysis in a non-permissive environment. Mucosal administration of recombinant B. subtilis causes the release of cytoplasmic recombinant proteins, which can then be found in serum and exert their biological activity in vivo systemically.
Collapse
|
34
|
Abstract
In September 2000, recognizing the effect of communicable diseases as obstacles to development in poorer countries, the European Commission assembled a special round table on 'accelerated action targeted at major communicable diseases within the context of poverty reduction'. The three major communicable diseases discussed were tuberculosis (TB), malaria and HIV. One outcome of this discussion was a workshop examining issues related to the fight against TB in Africa, which took place in Gorée, Sénégal, in May 2001. The timing was propitious, as new vaccines for TB (recombinant MVA and BCG, and adjuvanated recombinant fusion proteins or peptide constructs), are just beginning to enter human clinical trials. All but the last of these have shown promise in animal models, up to and including non-human primates, and all are strongly immunogenic and apparently safe. Humans trials for safety and efficacy are thus the logical next step. This review summarizes recent advances in tuberculosis vaccine development, with a special emphasis on issues raised at the Gorée meeting about testing and deploying new generation vaccines in TB-endemic areas such as Africa.
Collapse
Affiliation(s)
- T Mark Doherty
- Department of TB Immunology, Statens Serum Institute, Copenhagen, Denmark.
| |
Collapse
|
35
|
Abstract
DNA vaccines have been widely used in laboratory animals and non-human primates over the last decade to induce antibody and cellular immune responses. This approach has shown some promise, in models of infectious diseases of both bacterial and viral origin as well as in tumour models. Clinical trials have shown that DNA vaccines appear safe and well tolerated, but need to be made much more potent to be candidates for preventive immunisation of humans. This review describes recent work to improve the delivery of plasmid DNA vaccines and also to increase the immunogenicity of antigens expressed from the DNA vaccine plasmids, including various formulations and molecular adjuvants. Because DNA vaccines are relatively new and represent a novel vaccine technology, certain safety issues, such as the potential for induction of autoimmune disease and integration into the host genome, must be examined carefully. If potency can be improved and safety established, plasmid DNA vaccines offer advantages in speed, simplicity, and breadth of immune response that may be useful for the immunisation of humans against infectious diseases and cancers.
Collapse
Affiliation(s)
- John Donnelly
- Chiron Corporation, 4560 Horton Street--M/S 4.3, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
36
|
Yamamoto K, Chomel BB, Kasten RW, Hew CM, Weber DK, Lee WI, Koehler JE, Pedersen NC. Infection and re-infection of domestic cats with various Bartonella species or types: B. henselae type I is protective against heterologous challenge with B. henselae type II. Vet Microbiol 2003; 92:73-86. [PMID: 12488072 DOI: 10.1016/s0378-1135(02)00347-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Four Bartonella species have been isolated from domestic cats, of which two serotypes/genotypes of Bartonella henselae and possibly B. clarridgeiae are human pathogens, causing cat scratch disease (CSD).Our objectives were to evaluate infection and potential cross-protection during re-infection in domestic cats with various Bartonella species or types.Thirty-six cats were primarily inoculated with B. henselae type I (n=16), B. henselae type II (n=10), B. clarridgeiae (n=6) or B. koehlerae (n=4). They were challenged with B. henselae type I (n=15), B. henselae type II (n=13) or B. clarridgeiae (n=8). All 36 cats became bacteremic (1.25x10(2)-1.44x10(6)CFU/ml) and bacteremia lasted from 37 to 582 days. Duration of bacteremia for cats inoculated with B. henselae type I was shorter than for cats inoculated with either B. henselae type II (P=0.025) or B. clarridgeiae (P=0.011). After challenge, 26 cats became bacteremic. Among the nine cats primarily inoculated with B. henselae type I and challenged with B. henselae type II, six cats stayed abacteremic. The three bacteremic cats had a transient low-level bacteremia. No bacteremia was observed in three cats primarily inoculated with B. henselae type I and challenged with another strain of B. henselae type I. Bacteremia levels in the 26 cats were significantly lower than for primary inoculation (P=0.022) and its duration was shorter (P=0.012). Among the eight cats challenged with B. clarridgeiae, duration of bacteremia in the four cats primarily inoculated with B. henselae type I was shorter than in the four cats primarily inoculated with B. henselae type II (P=0.01). Bartonella clarridgeiae inoculated cats were more likely to have relapses for both primary and secondary infections. This is the first demonstration of cross-protection, evidenced by absence of bacteremia, in cats primarily infected with B. henselae type I and challenged with B. henselae type II, whereas no cross-protection was previously shown for cats primarily infected with B. henselae type II and challenged with B. henselae type I. Such results are of major importance for future feline Bartonella vaccine development.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Pasetti MF, Levine MM, Sztein MB. Animal models paving the way for clinical trials of attenuated Salmonella enterica serovar Typhi live oral vaccines and live vectors. Vaccine 2003; 21:401-18. [PMID: 12531639 DOI: 10.1016/s0264-410x(02)00472-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Attenuated Salmonella enterica serovar Typhi (S. Typhi) strains can serve as safe and effective oral vaccines to prevent typhoid fever and as live vectors to deliver foreign antigens to the immune system, either by the bacteria expressing antigens through prokaryotic expression plasmids or by delivering foreign genes carried on eukaryotic expression systems (DNA vaccines). The practical utility of such live vector vaccines relies on achieving a proper balance between minimizing the vaccine's reactogenicity and maximizing its immunogenicity. To advance to clinical trials, vaccine candidates need to be pre-clinically evaluated in relevant animal models that attempt to predict what their safety and immunogenicity profile will be when administered to humans. Since S. Typhi is a human-restricted pathogen, a major obstacle that has impeded the progress of vaccine development has been the shortcomings of the animal models available to assess vaccine candidates. In this review, we summarize the usefulness of animal models in the assessment of the degree of attenuation and immunogenicity of novel attenuated S. Typhi strains as vaccine candidates for the prevention of typhoid fever and as live vectors in humans.
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Room 480, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
38
|
Pogonka T, Klotz C, Kovács F, Lucius R. A single dose of recombinant Salmonella typhimurium induces specific humoral immune responses against heterologous Eimeria tenella antigens in chicken. Int J Parasitol 2003; 33:81-8. [PMID: 12547349 DOI: 10.1016/s0020-7519(02)00251-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salmonella typhimurium vaccine strains were used as antigen delivery system for oral immunisation of chickens against two antigens of the coccidian parasite Eimeria tenella. The cDNAs of the known E. tenella proteins, SO7 and TA4, were isolated from total RNA and subcloned into the expression vectors pQE30 and pTECH2. Subcutaneous immunisation of chickens with Escherichia coli-expressed SO7 and TA4 revealed that both proteins were immunogenic. Both cDNAs were subcloned into plasmids of the pTECH2 vector system, which allows them to be expressed as fusion proteins with the highly immunogenic fragment C of the tetanus toxin under control of the anaerobically inducible nirB promoter. Plasmids were introduced into the S. typhimurium vaccine strains SL3261, C5aroD and C5htrA. SDS-PAGE and Western blot analysis revealed expression of both fusion proteins in all strains under anaerobic culture conditions. Three-week-old white leghorn chickens were orally immunised with 10(9) CFU per animal. The stability of the recombinant bacteria was revealed by recovery of viable Salmonella containing the respective plasmids from the liver of the immunised chickens at day 3 after inoculation. Specific serum IgG antibodies against the SO7-or TA4-antigens were detectable by ELISA 2 weeks after oral immunisation and remained for at least 6 weeks, while specific IgA antibodies were restricted to the bile of the birds. All chickens produced serum IgG and IgA to S. typhimurium lipopolysaccharides. Our data show that a single oral inoculation with recombinant S. typhimurium SL3261, C5aroD and C5htrA can induce specific antibody responses to heterologous Eimeria antigens in chickens, suggesting that recombinant Salmonella are a suitable delivery system for vaccines against Eimeria infections.
Collapse
Affiliation(s)
- Thomas Pogonka
- Molecular Parasitology Department, Humboldt University Berlin, Philippstrasse 13, Germany.
| | | | | | | |
Collapse
|
39
|
Hindle Z, Chatfield SN, Phillimore J, Bentley M, Johnson J, Cosgrove CA, Ghaem-Maghami M, Sexton A, Khan M, Brennan FR, Everest P, Wu T, Pickard D, Holden DW, Dougan G, Griffin GE, House D, Santangelo JD, Khan SA, Shea JE, Feldman RG, Lewis DJM. Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun 2002; 70:3457-67. [PMID: 12065485 PMCID: PMC128087 DOI: 10.1128/iai.70.7.3457-3467.2002] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The attenuation and immunogenicity of two novel Salmonella vaccine strains, Salmonella enterica serovar Typhi (Ty2 Delta aroC Delta ssaV, designated ZH9) and S. enterica serovar Typhimurium (TML Delta aroC Delta ssaV, designated WT05), were evaluated after their oral administration to volunteers as single escalating doses of 10(7), 10(8), or 10(9) CFU. ZH9 was well tolerated, not detected in blood, nor persistently excreted in stool. Six of nine volunteers elicited anti-serovar Typhi lipopolysaccharide (LPS) immunoglobulin A (IgA) antibody-secreting cell (ASC) responses, with three of three vaccinees receiving 10(8) and two of three receiving 10(9) CFU which elicited high-titer LPS-specific serum IgG. WT05 was also well tolerated with no diarrhea, although the administration of 10(8) and 10(9) CFU resulted in shedding in stools for up to 23 days. Only volunteers immunized with 10(9) CFU of WT05 mounted detectable serovar Typhimurium LPS-specific ASC responses and serum antibody responses were variable. These data indicate that mutations in type III secretion systems may provide a route to the development of live vaccines in humans and highlight significant differences in the potential use of serovars Typhimurium and Typhi.
Collapse
Affiliation(s)
- Zoë Hindle
- Microscience, Wokingham Berkshire RG41 5TU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|