1
|
Bendixen L, Jensen TI, Bak RO. CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi. Mol Ther 2023; 31:1920-1937. [PMID: 36964659 PMCID: PMC10362391 DOI: 10.1016/j.ymthe.2023.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
The CRISPR-Cas system is commonly known for its ability to cleave DNA in a programmable manner, which has democratized gene editing and facilitated recent breakthroughs in gene therapy. However, newer iterations of the technology using nuclease-disabled Cas enzymes have spurred a variety of different types of genetic engineering platforms such as transcriptional modulation using the CRISPR activation (CRISPRa) and CRISPR interference (CRISPRi) systems. This review introduces the creation of these programmable transcriptional modulators, various methods of delivery utilized for these systems, and recent technological developments. CRISPRa and CRISPRi have also been implemented in genetic screens for interrogating gene function and discovering genes involved in various biological pathways. We describe recent compelling examples of how these tools have become powerful means to unravel genetic networks and uncovering important information about devastating diseases. Finally, we provide an overview of preclinical studies in which transcriptional modulation has been used therapeutically, and we discuss potential future directions of these novel modalities.
Collapse
Affiliation(s)
- Louise Bendixen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Trine I Jensen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
2
|
Scherf M, Danquah BD, Koy C, Lorenz P, Steinbeck F, Neamtu A, Thiesen H, Glocker MO. Epitope Fine Mapping by Mass Spectrometry: Investigations of Immune Complexes Consisting of Monoclonal Anti-HpTGEKP Antibody and Zinc Finger Protein Linker Phospho-Hexapeptides. Chembiochem 2022; 23:e202200390. [PMID: 35950614 PMCID: PMC9826235 DOI: 10.1002/cbic.202200390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Indexed: 01/11/2023]
Abstract
Accurate formation of antibody-antigen complexes has been relied on in both, multitudes of scientific projects and ample therapeutic and diagnostic applications. Mass spectrometrically determined dissociation behavior of immune complexes with the anti-HpTGEKP antibody revealed that the ten most frequently occurring phospho-hexapeptide linker sequences from C2H2 zinc finger proteins could be divided into two classes: orthodox binders, where strong noncovalent interactions developed as anticipated, and unorthodox binders with deviating structures and weaker binding. Phosphorylation of threonine was compulsory for antibody binding in an orthodox manner. Gas phase dissociation energy determinations of seven C2H2 zinc finger protein linker phospho-hexapeptides with orthodox binding properties revealed a bipolar binding motif of the antibody paratope. Epitope peptides, which in addition to the negatively charged phospho-threonine residue were C-terminally flanked by positively charged residues provided stronger binding, i. e. dissociation was endothermic, than peptides with acidic amino acid residues at these positions, for which dissociation was exothermic.
Collapse
Affiliation(s)
- Maximilian Scherf
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| | - Bright D. Danquah
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| | - Cornelia Koy
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| | - Peter Lorenz
- Institute of ImmunologyUniversity Medicine RostockSchillingallee 7018059RostockGermany
| | - Felix Steinbeck
- Institute of ImmunologyUniversity Medicine RostockSchillingallee 7018059RostockGermany,Gesellschaft für Individualisierte Medizin mbH (IndyMed)Industriestrasse 1518069RostockGermany
| | - Andrei Neamtu
- Department of PhysiologyGr. T. Popa University of Medicine and Pharmacy of IasiStr. Universitatii nr. 16Iasi Jud.Romania
| | - Hans‐Jürgen Thiesen
- Institute of ImmunologyUniversity Medicine RostockSchillingallee 7018059RostockGermany,Gesellschaft für Individualisierte Medizin mbH (IndyMed)Industriestrasse 1518069RostockGermany
| | - Michael O. Glocker
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| |
Collapse
|
3
|
Expression of ZNF695 Transcript Variants in Childhood B-Cell Acute Lymphoblastic Leukemia. Genes (Basel) 2019; 10:genes10090716. [PMID: 31527520 PMCID: PMC6771147 DOI: 10.3390/genes10090716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/17/2019] [Accepted: 09/10/2019] [Indexed: 11/17/2022] Open
Abstract
B-cell acute lymphoblastic leukemia is the most commonly diagnosed childhood malignancy worldwide; more than 50% of these cases are diagnosed in Mexico. Although the five-year survival rate is >80%, 30% of patients experience relapse with poor prognosis. Cancer-associated gene expression profiles have been identified in several malignancies, and some transcripts have been used to predict disease prognosis. The human transcriptome is incompletely elucidated; moreover, more than 80% of transcripts can be processed via alternative splicing (AS), which increases transcript and protein diversity. The human transcriptome is divided; coding RNA accounts for 2%, and the remaining 98% is noncoding RNA. Noncoding RNA can undergo AS, promoting the diversity of noncoding transcripts. We designed specific primers to amplify previously reported alternative transcript variants of ZNF695 and showed that six ZNF695 transcript variants are co-expressed in cancer cell lines. The amplicons were sequenced and identified. Additionally, we analyzed the expression of these six transcript variants in bone marrow from B-cell acute lymphoblastic leukemia patients and observed that ZNF695 transcript variants one and three were the predominant variants expressed in leukemia. Moreover, our results showed the co-expression of coding and long noncoding RNA. Finally, we observed that long noncoding RNA ZNF695 expression predicted survival rates.
Collapse
|
4
|
The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1. PLoS One 2014; 9:e87609. [PMID: 24498343 PMCID: PMC3912051 DOI: 10.1371/journal.pone.0087609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-associated box (KRAB) domain interacts with the nuclear hub protein TRIM28 to initiate or mediate chromatin-dependent processes like transcriptional repression, imprinting or suppression of endogenous retroviruses. The prototype KRAB domain initially identified in ZNF10/KOX1 encompasses two subdomains A and B that are found in hundreds of zinc finger transcription factors studied in human and murine genomes. Here we demonstrate for the first time transcriptional repressor activity of an amphibian KRAB domain. After sequence correction, the updated KRAB-AB domain of zinc finger protein XFIN from the frog Xenopus laevis was found to confer transcriptional repression in reporter assays in Xenopus laevis A6 kidney cells as well as in human HeLa, but not in the minnow Pimephales promelas fish cell line EPC. Binding of the XFIN KRAB-AB domain to human TRIM28 was demonstrated in a classical co-immunoprecipitation approach and visualized in a single-cell compartmentalization assay. XFIN-AB displayed reduced potency in repression as well as lower strength of interaction with TRIM28 compared to ZNF10 KRAB-AB. KRAB-B subdomain swapping between the two KRAB domains indicated that it was mainly the KRAB-B subdomain of XFIN that was responsible for its lower capacity in repression and binding to human TRIM28. In EPC fish cells, ZNF10 and XFIN KRAB repressor activity could be partially restored to low levels by adding exogenous human TRIM28. In contrast to XFIN, we did not find any transcriptional repression activity for the KRAB-like domain of human PRDM9 in HeLa cells. PRDM9 is thought to harbor an evolutionary older domain related to KRAB whose homologs even occur in invertebrates. Our results support the notion that functional bona fide KRAB domains which confer transcriptional repression and interact with TRIM28 most likely co-evolved together with TRIM28 at the beginning of tetrapode evolution.
Collapse
|
5
|
Narayan V, Halada P, Hernychová L, Chong YP, Žáková J, Hupp TR, Vojtesek B, Ball KL. A multiprotein binding interface in an intrinsically disordered region of the tumor suppressor protein interferon regulatory factor-1. J Biol Chem 2011; 286:14291-303. [PMID: 21245151 DOI: 10.1074/jbc.m110.204602] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.
Collapse
Affiliation(s)
- Vikram Narayan
- CRUK Interferon and Cell Signalling Group, Cell Signalling Unit, Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Krüppel-type or C2H2 zinc fingers represent a dominant DNA-binding motif in eukaryotic transcription factor (TF) proteins. In Krüppel-type (KZNF) TFs, KZNF motifs are arranged in arrays of three to as many as 40 tandem units, which cooperate to define the unique DNA recognition properties of the protein. Each finger contains four amino acids located at specific positions, which are brought into direct contact with adjacent nucleotides in the DNA sequence as the KZNF array winds around the major groove of the alpha helix. This arrangement creates an intimate and potentially predictable relationship between the amino acid sequence of KZNF arrays and the nucleotide sequence of target binding sites. The large number of possible combinations and arrangements of modular KZNF motifs, and the increasing lengths of KZNF arrays in vertebrate species, has created huge repertoires of functionally unique TF proteins. The properties of this versatile DNA-binding motif have been exploited independently many times over the course of evolution, through attachment to effector motifs that confer activating, repressing or other activities to the proteins. Once created, some of these novel inventions have expanded in specific evolutionary clades, creating large families of TFs that are lineage- or species-unique. This chapter reviews the properties and their remarkable evolutionary history of eukaryotic KZNF TF proteins, with special focus on large families that dominate the TF landscapes in different metazoan species.
Collapse
Affiliation(s)
- Lisa Stubbs
- Department of Cell and Developmental Biology, Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA,
| | | | | |
Collapse
|
7
|
Growth inhibition of HeLa cells is a conserved feature of high-risk human papillomavirus E8^E2C proteins and can also be achieved by an artificial repressor protein. J Virol 2010; 85:2918-26. [PMID: 21191025 DOI: 10.1128/jvi.01647-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Infections with certain human papillomaviruses (HPV), such as type 16 (HPV16), 18, or 31, are a necessary risk factor for the development of cervical cancer. Transcript analyses of several HPV revealed that the viral E2 gene encodes both the E2 regulator protein and the E8∧E2C protein, which differ in their amino termini. Up to now, functional studies have focused on HPV31 E8∧E2C and demonstrated that it is a potent repressor of viral transcription and replication. However, recent analyses of HPV16 genomes have suggested that E8∧E2C proteins may differ in their activities. Therefore, we performed a comparative analysis of E8∧E2C proteins of HPV16, -18, and -31. All E8∧E2C proteins potently inhibited HPV E6/E7 oncogene promoters, and also displayed long-distance transcriptional-repression activities. Furthermore, the expression of all E8∧E2C proteins inhibited the growth of HeLa cells. Expression of E8∧E2C proteins rapidly increased the protein levels of the E6 and E7 targets p53 and p21, consistent with the repression of the endogenous HPV18 E6/E7 promoter. All E8∧E2C proteins induced G(1) arrest more efficiently than E2 proteins and activated senescence markers. Furthermore, we demonstrate that the 31E8 domain can be functionally replaced by the KRAB repression domain derived from KOX1. The KRAB-E2C fusion protein possesses long-distance transcriptional-repression activity and inhibits the growth of HeLa cells comparably to E8∧E2C. Taken together, our results suggest that the E8∧E2C proteins of HPV16, -18, and -31 are highly conserved transcriptional repressors that inhibit the growth of HeLa cells by repression of E6/E7 transcription but do not have proapoptotic activities.
Collapse
|
8
|
Deng Y, Liu B, Fan X, Wang Y, Tang M, Mo X, Li Y, Ying Z, Wan Y, Luo N, Zhou J, Wu X, Yuan W. ZNF552, a novel human KRAB/C2H2 zinc finger protein, inhibits AP-1- and SRE-mediated transcriptional activity. BMB Rep 2010; 43:193-8. [PMID: 20356460 DOI: 10.5483/bmbrep.2010.43.3.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we report the identification and characterization of a novel C2H2 zinc finger protein, ZNF552, from a human embryonic heart cDNA library. ZNF552 is composed of three exons and two introns and maps to chromosome 19q13.43. The cDNA of ZNF552 is 2.3 kb, encoding 407 amino acids with an amino-terminal KRAB domain and seven carboxyl-terminal C2H2 zinc finger motifs in the nucleus and cytoplasm. Northern blotting analysis indicated that a 2.3 kb transcript specific for ZNF552 was expressed in liver, lung, spleen, testis and kidney, especially with a higher level in the lung and testis in human adult tissues. Reporter gene assays showed that ZNF552 was a transcriptional repressor, and overexpression of ZNF552 in the COS-7 cells inhibited the transcriptional activities of AP-1 and SRE, which could be relieved through RNAi analysis. Deletion studies showed that the KRAB domain of ZNF552 may be involved in this inhibition.
Collapse
Affiliation(s)
- Yun Deng
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Inhibition of transcription and DNA replication by the papillomavirus E8-E2C protein is mediated by interaction with corepressor molecules. J Virol 2008; 82:5127-36. [PMID: 18353941 DOI: 10.1128/jvi.02647-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomavirus genomes replicate as nuclear plasmids at a low copy number in undifferentiated keratinocytes. Papillomaviruses encode the E1 and E2 proteins that bind to the origin of replication and are required for the activation of replication. In addition to E2, several papillomaviruses express an E8-E2C protein, which is generated by alternative splicing and functions as a transcriptional repressor and inhibitor of the E1/E2-dependent replication of the viral origin. Previous analyses suggested that the E8 domain functions as a transferable repression domain. In this report we present evidence that the E8 domain is responsible for the interaction with cellular corepressor molecules such as histone deacetylases, the histone methyltransferase SETDB1, and the TRIM28/KAP-1/TIF1beta/KRIP-1 protein. Whereas the interaction with histone deacetylases is involved only in transcriptional repression, the interaction with TRIM28/KAP-1/TIF1beta/KRIP-1 contributes to the inhibition of E1/E2-dependent replication. The corepressor TRIM28/KAP-1/TIF1beta/KRIP-1 has been described to be part of multicomponent complexes involved in transcriptional regulation and functions as a scaffold protein. Since neither histone deacetylases nor the histone methyltransferase SETDB1 appears to be involved in the inhibition of E1/E2-dependent replication, most likely the modification of non-histone proteins contributes to the replication repression activity of E8-E2C.
Collapse
|
10
|
Yang Z, Wood C. The transcriptional repressor K-RBP modulates RTA-mediated transactivation and lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2007; 81:6294-306. [PMID: 17409159 PMCID: PMC1900108 DOI: 10.1128/jvi.02648-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The replication and transcription activator (RTA) protein of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV)/human herpesvirus 8 functions as the key regulator to induce KSHV lytic replication from latency through activation of the lytic cascade of KSHV. Elucidation of the host factors involved in RTA-mediated transcriptional activation is pivotal for understanding the transition between viral latency and lytic replication. KSHV-RTA binding protein (K-RBP) was previously isolated as a cellular RTA binding protein of unknown function. Sequence analysis showed that K-RBP contains a Kruppel-associated box (KRAB) at the N terminus and 12 adjacent zinc finger motifs. In similarity to other KRAB-containing zinc finger proteins, K-RBP is a transcriptional repressor. Mutational analysis revealed that the KRAB domain is responsible for the transcriptional suppression activity of this protein and that the repression is histone deacetylase independent. K-RBP was found to repress RTA-mediated transactivation and interact with TIF1beta (transcription intermediary factor 1beta), a common corepressor of KRAB-containing protein, to synergize with K-RBP in repression. Overexpression and knockdown experiment results suggest that K-RBP is a suppressor of RTA-mediated KSHV reactivation. Our findings suggest that the KRAB-containing zinc finger protein K-RBP can suppress RTA-mediated transactivation and KSHV lytic replication and that KSHV utilizes this protein as a regulator to maintain a balance between latency and lytic replication.
Collapse
Affiliation(s)
- Zhilong Yang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, E249 Beadle Center, P.O. Box 880666, Lincoln, NE 68588-0666, USA
| | | |
Collapse
|
11
|
Mascle XH, Germain-Desprez D, Huynh P, Estephan P, Aubry M. Sumoylation of the transcriptional intermediary factor 1beta (TIF1beta), the Co-repressor of the KRAB Multifinger proteins, is required for its transcriptional activity and is modulated by the KRAB domain. J Biol Chem 2007; 282:10190-202. [PMID: 17298944 DOI: 10.1074/jbc.m611429200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) has emerged as a key post-translational modulator of protein functions. Here we show that TIF1beta, a developmental regulator proposed to act as a universal co-repressor for the large family of KRAB domain-containing zinc finger proteins, is a heavily SUMO-modified substrate. A combined analysis of deletion and punctual mutants identified TIF1beta as a multilysine acceptor for SUMO which specifically targets six lysine residues (Lys(554), Lys(575), Lys(676), Lys(750), Lys(779), and Lys(804)) within the TIF1beta C-terminal repressive region. Reporter gene assays indicate that TIF1beta requires SUMO-modification for its repressive activity. Indeed, sumoylation-less mutants failed to recapitulate TIF1beta-dependent repression. TIF1beta homodimerization properties and interaction with the KRAB domain are preserved in the mutants with lysine to arginine substitutions as confirmed by in vivo bioluminescence resonance energy transfer (BRET). Using histone deacetylase (HDAC) inhibitors, we also demonstrate that TIF1beta sumoylation is a prerequisite for the recruitment of HDAC and that TIF1beta SUMO-dependent repressive activity involves both HDAC-dependent and HDAC-independent components. Finally, we report that, in addition to relying on the integrity of its PHD finger and on its self-oligomerization, TIF1beta sumoylation is positively regulated by its interaction with KRAB domain-containing proteins. Altogether, our results provide new mechanistic insights into TIF1beta transcriptional repression and suggest that KRAB multifinger proteins not only recruit TIF1beta co-repressor to target genes but also increase its repressive activity through enhancement of its sumoylation.
Collapse
Affiliation(s)
- Xavier H Mascle
- Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
12
|
Koczan D, Thiesen HJ. Survey of microarray technologies suitable to elucidate transcriptional networks as exemplified by studying KRAB zinc finger gene families. Proteomics 2006; 6:4704-15. [PMID: 16933337 DOI: 10.1002/pmic.200600010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Current microarray systems are suitable to monitor genome-wide expression patterns, to detect single-nucleotide polymorphisms (SNP), to identify target genes of transcription factors and DNA-protein interaction sites thereof as well as to determine genomic sites that are modified by methylation of CpG islands. In this review, advantages and limitations of individual microarray technologies are presented as well as experiences from ongoing studies on KRAB zinc finger gene families are taken to exemplify how different microarray approaches are applicable to elucidate complex transcriptional networks of gene regulation. However, bioinformaticians should be aware that each microarray technology has limitations in its sensitivity and selectivity that has to be taken into account once data mining on comprehensive genome-wide microarray data is conducted. In many cases, microarray results are the initial step to identify target genes of interest and to study the molecular regulation of biological processes thereof followed and validated by complementary proteome, metabolome or toponome analysis. Thus, microarray technologies can be considered a reliable approach for determining gene functions that might be modulated by electromagnetic fields.
Collapse
Affiliation(s)
- Dirk Koczan
- Institute for Immunology/Proteome Center Rostock, University of Rostock, Rostock, Germany
| | | |
Collapse
|
13
|
Xiang Z, Yuan W, Luo N, Wang Y, Tan K, Deng Y, Zhou X, Zhu C, Li Y, Liu M, Wu X, Li Y. A novel human zinc finger protein ZNF540 interacts with MVP and inhibits transcriptional activities of the ERK signal pathway. Biochem Biophys Res Commun 2006; 347:288-96. [PMID: 16815308 DOI: 10.1016/j.bbrc.2006.06.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 06/14/2006] [Indexed: 11/26/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes in cell signal transduction. Previous studies revealed that zinc finger proteins are involved in the regulation of the MAPK signaling pathways. Here we report the identification and characterization of a novel human zinc finger protein, ZNF540. The cDNA of ZNF540 is 3.3kb, encoding 660 amino acids in the nucleus and the cytoplasm. Northern blot analysis indicates that ZNF540 is expressed in most of the fetal tissues. Overexpression of FLAG-ZNF540 in COS-7 cells represses the transcriptional activities of SRE and ELK-1, which can be relieved by siRNA. MVP, one of MAPK scaffold proteins, is identified as a potential ZNF540-binding protein. This interaction is detected by a yeast two-hybrid assay, reporter gene assays, and co-immunoprecipitation. Taken together, these results suggest that ZNF540 may act as a transcriptional repressor in MAPK signaling pathway to mediate cellular functions.
Collapse
Affiliation(s)
- Zhiming Xiang
- The Center for Heart Development, Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qi X, Li Y, Xiao J, Yuan W, Yan Y, Wang Y, Liang S, Zhu C, Chen Y, Liu M, Wu X. Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641. Biochem Biophys Res Commun 2006; 339:1155-64. [PMID: 16343441 DOI: 10.1016/j.bbrc.2005.11.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Accepted: 11/15/2005] [Indexed: 11/30/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes in cell signal transduction connecting cell-surface receptors to critical regulatory targets within cells and control cell survival, adaptation, and proliferation. Previous studies revealed that zinc-finger proteins are involved in the regulation of the MAPK signaling pathways. Here, we report the identification and characterization of a novel human zinc-finger protein, ZNF641. The cDNA of ZNF641 is 4.9kb, encoding 438 amino acids in the nucleus. The protein is highly conserved in evolution across different vertebrate species from mouse to human. Northern blot analysis indicates that ZNF641 is expressed in most of the examined human tissues, with a high level in skeletal muscle. Overexpression of pCMV-Tag2B-ZNF641 in the COS-7 cells activates the transcriptional activities of AP-1 and SRE. Deletion analysis indicates that the linker between KRAB box and C(2)H(2)-type zinc-fingers represents the basal activation domain. These results suggest that ZNF641 may be a positive regulator in MAPK-mediated signaling pathways that lead to the activation of AP-1 and SRE.
Collapse
Affiliation(s)
- Xingzhu Qi
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Oliva J, El Messaoudi S, Pellestor F, Fuentes M, Georget V, Balaguer P, Cavaillès V, Vignon F, Badia E. Involvement of HP1alpha protein in irreversible transcriptional inactivation by antiestrogens in breast cancer cells. FEBS Lett 2005; 579:4278-86. [PMID: 16051232 DOI: 10.1016/j.febslet.2005.06.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 06/23/2005] [Accepted: 06/27/2005] [Indexed: 12/28/2022]
Abstract
Resistance to 4-hydroxy-tamoxifen (OHT), which appears in breast cancer cells after long-term antiestrogen treatment, may involve irreversible changes of gene expression. We previously developed a MCF-7 derived cell line (MVLN), in which OHT rapidly and irreversibly inactivates the expression of an estrogen-regulated luciferase transgene (Vit-tk-luciferase). In chromatin immunoprecipitation experiments, heterochromatin protein 1 (HP1alpha) was found to be associated with the Vit-tk-luciferase transgene, only when it was inactivated by OHT treatment. Chimeras composed of either HP1alpha or the Krupple-associated box (KRAB) module of KOX-1 protein (known to repress gene expression by recruitment of HP1 proteins), fused to the estrogen receptor (ER)-DNA binding domain (DBD) and the androgen receptor (AR)-ligand binding domain (LBD) were generated and appeared as potent transcriptional repressors. In stably transfected MVLN cells, irreversible inactivation of the luciferase transgene expression obtained with HP1alpha-ER(DBD)-AR(LBD) was partial, whereas inactivation obtained with KRAB-ER(DBD)-AR(LBD) was comparable to that obtained with OHT, although with a slower kinetics. Altogether, these data suggest that HP1alpha is involved in the silencing effects associated with long-term OHT treatments.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Chromatin Immunoprecipitation
- Chromobox Protein Homolog 5
- Chromosomal Proteins, Non-Histone/metabolism
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm/genetics
- Estrogen Antagonists/pharmacology
- Gene Silencing
- Humans
- Kruppel-Like Transcription Factors
- Luciferases/analysis
- Luciferases/genetics
- Protein Isoforms/metabolism
- Receptors, Androgen/analysis
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/analysis
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Recombinant Fusion Proteins/analysis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins/analysis
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Tamoxifen/analogs & derivatives
- Tamoxifen/pharmacology
- Transcription, Genetic/drug effects
- Transgenes
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Joan Oliva
- Institut National de la Santé et de la Recherche Médicale U540, Endocrinologie Moléculaire et Cellulaire des Cancers and Université de Montpellier I, 60 rue de Navacelles, 34090 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cao L, Wang Z, Zhu C, Zhao Y, Yuan W, Li J, Wang Y, Ying Z, Li Y, Yu W, Wu X, Liu M. ZNF383, a novel KRAB-containing zinc finger protein, suppresses MAPK signaling pathway. Biochem Biophys Res Commun 2005; 333:1050-9. [PMID: 15964543 DOI: 10.1016/j.bbrc.2005.05.193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 05/31/2005] [Indexed: 12/28/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are major components of pathways controlling embryogenesis, cell differentiation, cell proliferation, and cell death. One of the most explored functions of MAPK signaling is the regulation of gene expression by direct or indirect phosphorylation and subsequent activation of transcription factors. In this article, we isolated a novel KRAB-related zinc finger gene named ZNF383 from an early embryo heart cDNA library. The cDNA of ZNF383 is 2220bp, encoding a protein of 475 amino acids. The protein is conserved in evolution across different species. Northern blot analysis indicates that a 2.2kb transcript specific for ZNF383 is detected in most of the examined human adult and embryonic tissues with a higher level in skeletal muscle. In COS-7 cells, ZNF383 protein is localized to nucleus and cytoplasm. ZNF383 is a transcription repressor when fused to Gal-4 DNA-binding domain and cotransfected with VP-16. Deletion analysis indicates that the KRAB box of ZNF383 is responsible for the transcriptional repressor activity. Overexpression of ZNF383 in cells inhibits the transcriptional activities of AP-1 and SRE, suggesting that ZNF383 may act as a negative regulator in MAPK-mediated signaling pathways.
Collapse
Affiliation(s)
- Lei Cao
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rutherford S, Hampton GM, Frierson HF, Moskaluk CA. Mapping of candidate tumor suppressor genes on chromosome 12 in adenoid cystic carcinoma. J Transl Med 2005; 85:1076-85. [PMID: 16025147 DOI: 10.1038/labinvest.3700314] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) is a common malignancy of salivary glands, for which the underlying genetic mechanisms of tumorigenesis are poorly understood. Prior studies in ACC have identified deletions in chromosome 12. To further characterize these changes, we performed an extensive LOH analysis in 58 ACC using a panel of 28 microsatellite markers. Results show 66% overall genetic loss. Three markers (D12S1713, D12S2196, D12S398) are contiguous and define a 6.84 Mb region of deletion at 12q13.11-q13.13. Two other markers (D12S2078, D12S1628) are also contiguous and define a 4.5 Mb region of deletion at 12q24.32-q24.33. The three remaining markers, D12S1056 at 12q14.1, D12S1051 at 12q23.1 and D12S1636 at 12q23.3 define smaller regions of deletion. An analysis of microarray gene expression profiling data available for ACC shows several genes with significant transcriptional downregulation that map to these areas of genetic deletion. This combined genetic and genomic analysis provides several candidate genes to test for functional tumor suppressor activity in ACC.
Collapse
Affiliation(s)
- Sue Rutherford
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908-0708, USA
| | | | | | | |
Collapse
|
18
|
Gentry JJ, Rutkoski NJ, Burke TL, Carter BD. A Functional Interaction between the p75 Neurotrophin Receptor Interacting Factors, TRAF6 and NRIF. J Biol Chem 2004; 279:16646-56. [PMID: 14960584 DOI: 10.1074/jbc.m309209200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurotrophin signaling through the p75 receptor regulates apoptosis within the nervous system both during development and in response to injury. Whereas a number of p75 interacting factors have been identified, how these upstream factors function in a coordinated manner to mediate receptor signaling is still unclear. Here, we report a functional interaction between TRAF6 and the neurotrophin receptor interacting factor (NRIF), two proteins known to associate with the intracellular domain of the p75 neurotrophin receptor. The association between NRIF and TRAF6 was direct and occurred with both endogenous and ectopically expressed proteins. A KRAB repressor domain of NRIF and the carboxyl-terminal, receptor-binding region of TRAF6 were required for the interaction. Co-expression of TRAF6 increased the levels of NRIF protein and induced its nuclear translocation. Reciprocally, NRIF enhanced TRAF6-mediated activation of the c-Jun NH2-terminal kinase (JNK) by 3-fold, while only modestly increasing the stimulation of NF-kappaB. The expression of both NRIF and TRAF6 was required for reconstituting p75 activation of JNK in HEK293 cells, whereas NRIF mutants lacking the TRAF6 interaction domain were unable to substitute for the full-length protein in facilitating activation of the kinase. These results suggest that NRIF and TRAF6 functionally interact to facilitate neurotrophin signaling through the p75 receptor.
Collapse
Affiliation(s)
- Jennifer J Gentry
- Department of Biochemistry and Center for Molecular Neuroscience, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
19
|
Senawong T, Peterson VJ, Avram D, Shepherd DM, Frye RA, Minucci S, Leid M. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. J Biol Chem 2003; 278:43041-50. [PMID: 12930829 PMCID: PMC2819354 DOI: 10.1074/jbc.m307477200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 (CTIP1 and CTIP2) enhance transcriptional repression mediated by COUP-TF II and have been implicated in hematopoietic cell development and malignancies. CTIP1 and CTIP2 are also sequence-specific DNA-binding proteins that repress transcription through direct, COUP-TF-in-dependent binding to a GC-rich response element. CTIP1- and CTIP2-mediated transcriptional repression is insensitive to trichostatin A, an inhibitor of known class I and II histone deacetylases. However, chromatin immunoprecipitation assays revealed that expression of CTIP2 in mammalian cells resulted in deacetylation of histones H3 and/or H4 that were associated with the promoter region of a reporter gene. CTIP2-mediated transcriptional repression, as well as deacetylation of promoter-associated histones H3/H4 in CTIP2-transfected cells, was reversed by nicotinamide, an inhibitor of class III histone deacetylases such as the mammalian homologs of yeast Silent Information Regulator 2 (Sir2). The human homolog of yeast Sir2, SIRT1, was found to interact directly with CTIP2 and was recruited to the promoter template in a CTIP2-dependent manner. Moreover, SIRT1 enhanced the deacetylation of template-associated histones H3/H4 in CTIP2-transfected cells, and stimulated CTIP2-dependent transcriptional repression. Finally, endogenous SIRT1 and CTIP2 co-purified from Jurkat cell nuclear extracts in the context of a large (1-2 mDa) complex. These findings implicate SIRT1 as a histone H3/H4 deacetylase in mammalian cells and in transcriptional repression mediated by CTIP2.
Collapse
Affiliation(s)
- Thanaset Senawong
- Program in Molecular and Cellular Biology, Oregon State University, Corvallis, Oregon 97331
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Valerie J. Peterson
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Dorina Avram
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208
| | - David M. Shepherd
- Center for Environmental Health Sciences Department of Pharmaceutical Sciences, College of Pharmacy, The University of Montana, Missoula, Montana 59812
| | - Roy A. Frye
- Pittsburgh Veterans Affairs Medical Center (132L), Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15240
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Department of Physiology and Biochemistry, University of Milan, 20126 Milan, Italy
| | - Mark Leid
- Program in Molecular and Cellular Biology, Oregon State University, Corvallis, Oregon 97331
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
- Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331
- To whom correspondence should be addressed: Laboratory of Molecular Pharmacology, Dept. of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331. Tel.: 541-737-5809; Fax: 541-737-3999;
| |
Collapse
|
20
|
Hennemann H, Vassen L, Geisen C, Eilers M, Möröy T. Identification of a novel Krüppel-associated box domain protein, Krim-1, that interacts with c-Myc and inhibits its oncogenic activity. J Biol Chem 2003; 278:28799-811. [PMID: 12748187 DOI: 10.1074/jbc.m207196200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have used the Ras recruitment system to screen for proteins that interact with the N-terminally located transactivation domain of c-Myc. The Ras recruitment system is based on the activation of the mitogenic RAS signaling pathway in yeast by the mammalian GTPase Ha-Ras. This screen led to the identification of two novel nuclear proteins termed Krim-1A and Krim-1B that both contain an N-terminal KRAB box domain and 12 or 9 Krüppel C2H2 type zinc fingers at the C terminus, respectively. We found that sequences covering the Myc box II homology region are essential for the interaction with the Krim-1 proteins and that the second N-terminal zinc finger of Krim-1 is essential for Myc binding. Both Krim-1A and -B genes appear to be expressed ubiquitously with highest levels in spleen and lymph nodes. In particular, Krim-1B and, to a lesser extent, Krim-1A are able to decrease E-box-dependent transcriptional transactivation by c-Myc-Max complexes and also the ability of Myc to malignantly transform primary rat embryo fibroblasts, which is consistent with the functional repressive properties of their KRAB domains. The transcriptional corepressor Tif-1beta is a binding partner for Krim-1 and stabilizes the protein. Our findings suggest that Myc-mediated functions can be negatively regulated by Krim-1, potentially in a complex with Tif-1beta.
Collapse
Affiliation(s)
- Hanjo Hennemann
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Virchowstrasse 173, D-45122 Essen, Germany
| | | | | | | | | |
Collapse
|
21
|
Looman C, Abrink M, Mark C, Hellman L. KRAB zinc finger proteins: an analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution. Mol Biol Evol 2002; 19:2118-30. [PMID: 12446804 DOI: 10.1093/oxfordjournals.molbev.a004037] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Krüppel-related zinc finger proteins, with 564 members in the human genome, probably constitute the largest individual family of transcription factors in mammals. Approximately 30% of these proteins carry a potent repressor domain called the Krüppel associated box (KRAB). Depending on the structure of the KRAB domain, these proteins have been further divided into three subfamilies (A + B, A + b, and A only). In addition, some KRAB zinc finger proteins contain another conserved motif called SCAN. To study their molecular evolution, an extensive comparative analysis of a large panel of KRAB zinc finger genes was performed. The results show that both the KRAB A + b and the KRAB A subfamilies have their origin in a single member or a few closely related members of the KRAB A + B family. The KRAB A + B family is also the most prevalent among the KRAB zinc finger genes. Furthermore, we show that internal duplications of individual zinc finger motifs or blocks of several zinc finger motifs have occurred quite frequently within this gene family. However, zinc finger motifs are also frequently lost from the open reading frame, either by functional inactivation by point mutations or by the introduction of a stop codon. The introduction of a stop codon causes the exclusion of part of the zinc finger region from the coding region and the formation of graveyards of degenerate zinc finger motifs in the 3'-untranslated region of these genes. Earlier reports have shown that duplications of zinc finger genes commonly occur throughout evolution. We show that there is a relatively low degree of sequence conservation of the zinc finger motifs after these duplications. In many cases this may cause altered binding specificities of the transcription factors encoded by these genes. The repetitive nature of the zinc finger region and the structural flexibility within the zinc finger motif make these proteins highly adaptable. These factors may have been of major importance for their massive expansion in both number and complexity during metazoan evolution.
Collapse
Affiliation(s)
- Camilla Looman
- The Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
22
|
Jiao K, Zhou Y, Hogan BLM. Identification of mZnf8, a mouse Krüppel-like transcriptional repressor, as a novel nuclear interaction partner of Smad1. Mol Cell Biol 2002; 22:7633-44. [PMID: 12370310 PMCID: PMC135661 DOI: 10.1128/mcb.22.21.7633-7644.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2002] [Revised: 05/22/2002] [Accepted: 08/08/2002] [Indexed: 11/20/2022] Open
Abstract
To identify novel genes that play critical roles in mediating bone morphogenetic protein (BMP) signal pathways, we performed a yeast two-hybrid screen using Smad1 as bait. A novel mouse Krüppel-type zinc finger protein, mZnf8, was isolated. Interactions between mZnf8 and Smad proteins were further analyzed with various in vitro and in vivo approaches, including mammalian two-hybrid, in vitro glutathione S-transferase pulldown, and copurification assays. Results from functional analysis indicate that mZnf8 is a nuclear transcriptional repressor. Overexpression of mZnf8 represses activity of BMP and transforming growth factor beta (TGF-beta) reporters. Silencing the expression of endogenous mZnf8 with an RNA interference approach caused a significant increase in the expression of one BMP reporter. These results suggest that mZnf8 negatively regulates the TGF-beta/BMP signaling pathway in vivo. Transcription of mZnf8 is ubiquitous in mouse embryos, but high levels are specifically observed in adult mouse testes, with the same cell- and stage-specific transcription pattern as Smad1. Our data support the hypothesis that mZnf8 plays critical roles in mediating BMP signaling during spermatogenesis.
Collapse
Affiliation(s)
- Kai Jiao
- Howard Hughes Medical Institute and Department of Cell Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|