1
|
Chen Y, Tang Y, Liu B, Wang J, Wang H, Li B, Liu S, Adeniran SO, Zheng P. Melatonin alleviates oxidative stress and inflammation of Leydig cells of Min pig through SIRT1 pathway. Theriogenology 2025; 233:112-122. [PMID: 39613495 DOI: 10.1016/j.theriogenology.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Inflammation responses and oxidative stress adversely affect testicular function, reducing fertility. Melatonin exhibits anti-inflammatory and antioxidant properties. However, the molecular mechanism by which melatonin alleviates inflammation and oxidative stress in Leydig cells of the Min pig testis remains unclear. To investigate this, primary Leydig cells were isolated from 7-day-ld Min pigs' testes and treated with LPS, H2O2 and melatonin, respectively. The results showed that co-treatment with melatonin and LPS significantly decreased the expression of TLR4, NF-κB, IL-6 and IL-1β compared to LPS group. Co-treatment with melatonin and H2O2 significantly mitigated reactive oxygen species and malondialdehyde levels. Melatonin also enhanced glutathione and superoxide dismutase levels and upregulated the mRNA expression levels of Nrf2, Keap1, HO-1 and NQO1. In the co-treatment group of melatonin, LPS, and SIRT1 inhibitor, the secretion of IL-6 and IL-1β and the mRNA expression levels of TLR4 and NF-κB were elevated significantly compared to the control group and the melatonin-LPS co-treatment group. In the combined treatment group of melatonin, H2O2 and a SIRT1 inhibitor, ROS levels increased significantly, while the expression of Nrf2, Keap1, HO-1 and NQO1 were decreased significantly compared to the control group and the melatonin-H2O2 co-treatment group. Furthermore, mRNA expression levels of testosterone synthesis-related genes StAR, CYP11A1, 3β-HSD, CYP17A1 and 17β-HSD significantly decreased following H2O2 treatment, which was alleviated by co-treatment with H2O2 and melatonin, but not by the addition of SIRT1 inhibitor. In conclusion, melatonin exhibits the capability to ameliorate inflammatory responses, oxidative stress and testosterone secretion in Leydig cells via the SIRT1 pathway.
Collapse
Affiliation(s)
- Yanru Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Tang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Bojing Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Junying Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hongzhang Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Shicheng Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Samson O Adeniran
- Biotechnology Unit, Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Ibafo, Ogun State, Nigeria
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Fujii J, Ochi H, Yamada S. A comprehensive review of peroxiredoxin 4, a redox protein evolved in oxidative protein folding coupled with hydrogen peroxide detoxification. Free Radic Biol Med 2025; 227:336-354. [PMID: 39643136 DOI: 10.1016/j.freeradbiomed.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Peroxiredoxin (PRDX) primarily employs electrons from thioredoxin in order to reduce peroxides. PRDX4 mainly resides either in the endoplasmic reticulum (ER) lumen or in extracellular spaces. Due to the usage of alternative promoters, a first exon is transcribed from different regions of the Prdx4 gene, which results in two types of mRNAs. The first type is designated as Prdx4. It is translated with a cleavable, hydrophobic signal sequence and is expressed in most cells throughout the body. The second type is designated as Prdx4t. The peroxidase activity of PRDX4 is involved in both the reduction of hydrogen peroxides and in the oxidative folding of nascent proteins in the ER. Prdx4 appears to have evolved from an ancestral gene in Eutherians simultaneously with the evolution of sperm protamine to cysteine-rich peptides, and, therefore, the testis-specific PRDX4t is likely involved in spermatogenesis through the oxidative folding of protamine. The dysfunction of PRDX4 leads to oxidative damage and ER stress, and is related to various diseases including diabetes and cancer. In this review article we refer to the results of biological and medical research in order to unveil the functional consequences of this unique member of the PRDX family.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sohsuke Yamada
- Departments of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
3
|
Alves FL, Oliveira MAF, de Morais ANP, Martins SD, de Sá NAR, Ceccatto VM, Watanabe YF, Araújo VR. Supraphysiological doses of nandrolone decanoate disrupts spermatogenesis but did not interfere on embryo rate. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4025-4034. [PMID: 37999756 DOI: 10.1007/s00210-023-02847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
The aim of this study was to investigate the effects of 10 mg/kg/week of nandrolone decanoate (DECA - Deca Durabolin®) on body composition, hormonal levels, spermatic parameters, redox status, and morphometric parameters of testicle and epididymis; furthermore, the fertility capacity of Wistar rats was measured thought in vitro fertilization (IVF). The animals (n = 16) were divided into two groups: control group (CTRL, n = 8), which received only vehicle composed by peanut oil and 10% of the benzoic alcohol and nandrolone decanoate group (DECA, n = 8), which received intramuscular injections of DECA for 8 weeks, both groups were treated for 8 weeks. The results demonstrate significative decrease in visceral fat, testosterone levels, and thiol content on epididymis, reduction on normal sperm parameters, and deleterious effect on testicles and epididymis tissue morphology showing reduction of germ height and luminal diameter on the DECA group. Thus, it can be concluded that high doses of nandrolone decanoate impairs male reproductive parameters.
Collapse
Affiliation(s)
- Fernanda Lima Alves
- Graduate Program in Physiological Sciences (PPGCF), Higher Institute of Biomedical Sciences (ISCB), State University of Ceará (UECE), Dr. Silas Munguba Avenue, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
| | - Maria Alice Felipe Oliveira
- Graduate Program in Biotechnology (PPGB), Federal University of Ceara, 100, Comandante Maurocélio Rocha Ponte Avenue, Sobral, CE, CEP 62041-040, Brazil
| | - Ana Normélia Pereira de Morais
- Graduate Program in Physiological Sciences (PPGCF), Higher Institute of Biomedical Sciences (ISCB), State University of Ceará (UECE), Dr. Silas Munguba Avenue, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - Solano Dantas Martins
- Graduate Program in Biotechnology (PPGB), Federal University of Ceara, 100, Comandante Maurocélio Rocha Ponte Avenue, Sobral, CE, CEP 62041-040, Brazil
| | - Naiza Arcângela Ribeiro de Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - Vânia Marilande Ceccatto
- Graduate Program in Physiological Sciences (PPGCF), Higher Institute of Biomedical Sciences (ISCB), State University of Ceará (UECE), Dr. Silas Munguba Avenue, 1700, Fortaleza, CE, CEP: 60714-903, Brazil
- Laboratory of Biochemistry and Gene Expression (LABIEX), Higher Institute of Biomedical Sciences (ISCB), State University of Ceará, Fortaleza, CE, Brazil
| | - Yeda Fumie Watanabe
- Vitrogen - YVF Biotech Ltda EPP, 203, Coronel Nogueira Terra Avenue, Cravinhos, SP, CEP: 14140-000, Brazil
| | - Valdevane Rocha Araújo
- Graduate Program in Physiological Sciences (PPGCF), Higher Institute of Biomedical Sciences (ISCB), State University of Ceará (UECE), Dr. Silas Munguba Avenue, 1700, Fortaleza, CE, CEP: 60714-903, Brazil.
- Undergraduate Course in Biological Sciences, Parnaíba Delta Federal University, 2819, São Sebastião Avenue, Parnaíba, PI, CEP: 64202-020, Brazil.
| |
Collapse
|
4
|
Lee SH, Lee S. Effects of Melatonin and Silymarin on Reactive Oxygen Species, Nitric Oxide Production, and Sperm Viability and Motility during Sperm Freezing in Pigs. Animals (Basel) 2023; 13:ani13101705. [PMID: 37238134 DOI: 10.3390/ani13101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Sperm during the freezing and thawing process is damaged by oxidative stress. Thus, its antioxidant scavenger is essential for sperm survival and death in frozen-thawed semen. We used melatonin and silymarin in experiments after the dose-dependent experiment. Our study aimed to identify the effect of melatonin and silymarin on the motility and viability of sperm, reactive oxygen species (ROS), and nitric oxide (NO) production in frozen-thawed boar semen. Melatonin and silymarin were treated alone and cotreated in the fresh boar semen. Boar semen was collected using the gloved-hand method from ten crossbred pigs, and samples were used in the experiments. We evaluated sperm viability using SYBR-14 and PI kit, and ROS and NO production were detected by DCF-DA and DAF-2, respectively. The sperm motility was not significantly different between non-treatment and treatment. ROS and NO production in frozen-thawed sperm were decreased by melatonin and silymarin. Moreover, silymarin significantly reduced NO production more than melatonin. Melatonin and silymarin enhanced the viability of sperm. We suggest that melatonin and silymarin are essential antioxidants in semen cryopreservation for protecting sperm damage and maintaining sperm viability. Melatonin and silymarin may be useful antioxidants in freezing boar sperm.
Collapse
Affiliation(s)
- Sang-Hee Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
5
|
Mondal S, Bandyopadhyay A. From oxidative imbalance to compromised standard sperm parameters: Toxicological aspect of phthalate esters on spermatozoa. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104085. [PMID: 36841271 DOI: 10.1016/j.etap.2023.104085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The exponential rise in global male infertility and subfertility-related issues raises severe concern. One of the major contributors is phthalate esters, typical endocrine disruptors affecting millions of lives. The inevitable exposure to phthalates due to their universal application as plasticizers leaves the human population vulnerable to this silent threat. This review explicitly deals with the spermiotoxic effects of different phthalate esters on in vivo and in vitro models and on surveyed human populations to find the most plausible link between global usage of phthalates and poor sperm health. As the free radicals in spermatozoa are prerequisites for their standard structure and functioning, the precise regulation and phthalate-mediated impairment of pro-oxidant:anti-oxidant balance with subsequent loss of structural and functional integrity have also been critically discussed. Furthermore, we also provided future directives, which, if addressed, will fill the still-existing lacunae in phthalate-mediated male reproductive toxicity research.
Collapse
Affiliation(s)
- Shirsha Mondal
- Department of Zoology, Govt College Dhimarkheda (Rani Durgavati Vishwavidyalaya), Katni, Madhya Pradesh 483332, India.
| | - Arindam Bandyopadhyay
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India.
| |
Collapse
|
6
|
Vyas R, Kesari KK, Slama P, Roychoudhury S, Sisodia R. Differential Activity of Antioxidants in Testicular Tissues Following Administration of Chlorophytum borivilianum in Gamma-Irradiated Swiss Albino Mice. Front Pharmacol 2022; 12:774444. [PMID: 35111049 PMCID: PMC8802459 DOI: 10.3389/fphar.2021.774444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Oxidative stress induced by radiation causes variable expression of antioxidant enzymes in a tissue-specific manner. Testicular tissues carry out the complex process of spermatogenesis, and studies indicate that testicular damages due to irradiation require long-term recovery before complete resumption. Ionizing radiation also causes oxidative stress in tissues, leading to testicular damage. Aims and Objectives: This study measured differential expression of antioxidant enzymes following administration of C. borivilianum root extract (CRB) in response to irradiation-induced oxidative stress. The activity of various important endogenous enzymatic defense systems was evaluated and correlated for strength of association. Materials and method: Two forms of C. borivilianum (CB) extracts [CB alone and CB-silver nanoparticles (AgNPs)] were administered at a dose of 50 mg/kg body weight to Swiss albino male mice for 7 consecutive days. After that, they were irradiated with 6 Gy irradiation and further used to study various parameters of antioxidant enzymes. Results: Results indicate a significant increase in the level of glutathione (GSH) and the activity of GSH-related antioxidant enzymes in irradiated mice treated with CRE and CRE-AgNPs (silver nanoparticles biosynthesized using C. borivilianum root extract) in comparison to non-pretreated ones (groups I and II). Reciprocal elevation was observed in related enzymes, that is, glutathione S-transferase activity (GST), glutathione reductase (GR), and glutathione peroxidase activity (GPx). Elevation in the activity of catalase (CAT) and superoxide dismutase (SOD) was also evident in both the irradiated groups pretreated with CRE-AgNPs. However, expression of CAT in the CRE-treated irradiated group was similar to that of the non-treated irradiated group. Higher association among CAT-SOD, CAT-GPx, and GR-GST was observed. Conclusion: Overall, it was observed that testicular cells post-irradiation in all groups go through intense oxidative stress; however, groups pretreated with CRE or CRE-AgNPs indicated better toleration and resumption of antioxidant capacity. CRE or CRE-AgNPs pretreated non-irradiated groups mostly remained within the control range indicating stimulated expression of antioxidants.
Collapse
Affiliation(s)
- Ruchi Vyas
- Department of Zoology, S.S Jain Subodh PG College, Jaipur, India.,Department of Zoology, University of Rajasthan, Jaipur, India
| | | | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | | | - Rashmi Sisodia
- Department of Zoology, University of Rajasthan, Jaipur, India
| |
Collapse
|
7
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Imam SS, Alshehri S, Kazmi I. Novelkaraya gum micro-particles loaded Ganoderma lucidum polysaccharide regulate sex hormones, oxidative stress and inflammatory cytokine levels in cadmium induced testicular toxicity in experimental animals. Int J Biol Macromol 2022; 194:338-346. [PMID: 34800521 DOI: 10.1016/j.ijbiomac.2021.11.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/31/2021] [Accepted: 11/11/2021] [Indexed: 11/05/2022]
Abstract
Presented research aimed to develop a spray drying process without the use of organic solvents for the preparation of novel Karaya gum polymer microparticles (MPs) of Ganoderma lucidum polysaccharide (GLP). The prepared microparticles were characterized and evaluated. Prepared novel karaya gum micro-particles loaded Ganoderma lucidum polysaccharide (GLP MPs) were observed an effect on cadmium (CAD) induced testicular toxicity. A total of 40 rats (male) was divided into 4 groups viz. 1. Control group, 2. GLP MPs (250 mg/kg, 60 days of b.w per day), 3. CAD (60 days of 30 mg/l/day), 4. GLP MPs + CAD. CAD was responsible for altering the sex hormones, oxidative stress and inflammatory cytokines. Furthermore, elevated levels of indicator of oxidative stress, malondialdehyde, and a reduced action of SOD, GSH, and CAT (antioxidant enzymes), were observed in the tissues of the testicles of CAD- treated group. Such harmful occurrences were followed by an up-regulation in proinflammatory cytokines (TNF-α, IL-1β) levels, protein expression of Nrf2, and HO-1 expression was decreased. GLP MPs pre-treatment significantly abrogated these toxic effects which were confirmed histologically. This study concluded that pre-treatment with GLP MPs exerts a protective effect against CAD-induced male reproductive testicular toxicity.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
8
|
Bisconti M, Simon JF, Grassi S, Leroy B, Martinet B, Arcolia V, Isachenko V, Hennebert E. Influence of Risk Factors for Male Infertility on Sperm Protein Composition. Int J Mol Sci 2021; 22:13164. [PMID: 34884971 PMCID: PMC8658491 DOI: 10.3390/ijms222313164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Male infertility is a common health problem that can be influenced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. These effects have been largely demonstrated on sperm parameters (e.g., motility, numeration, vitality, DNA integrity). In addition, several studies showed the deregulation of sperm proteins in relation to some of these factors. This review inventories the literature related to the identification of sperm proteins showing abundance variations in response to the four risk factors for male infertility that are the most investigated in this context: obesity, diabetes, tobacco smoking, and exposure to bisphenol-A (BPA). First, we provide an overview of the techniques used to identify deregulated proteins. Then, we summarise the main results obtained in the different studies and provide a compiled list of deregulated proteins in relation to each risk factor. Gene ontology analysis of these deregulated proteins shows that oxidative stress and immune and inflammatory responses are common mechanisms involved in sperm alterations encountered in relation to the risk factors.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Jean-François Simon
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Sarah Grassi
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium;
| | - Baptiste Martinet
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger, CP 160/12, 1000 Brussels, Belgium;
| | - Vanessa Arcolia
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Vladimir Isachenko
- Department of Obstetrics and Gynecology, University of Cologne, Kerpener Strasse 34, 50931 Cologne, Germany
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| |
Collapse
|
9
|
Does methylphenidate use affect sperm parameters in patients undergoing infertility investigation? A retrospective analysis of 9769 semen samples. Arch Gynecol Obstet 2021; 304:539-546. [PMID: 33433701 DOI: 10.1007/s00404-020-05938-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Methylphenidate (MPH) is the most widely prescribed therapy for attention deficit hyperactivity disorder. Animal studies have shown a potential adverse effect of MPH exposure on male fertility. We examined the impact of MPH on human male sperm parameters. DESIGN Sperm parameters of 9769 samples from patients 18 years of age or older, collected as part of the basic evaluation of couples referred to the Infertility Clinic were analyzed retrospectively. We divided the study population into three groups according to MPH purchasing information: MPH purchased ≤ 90 days prior to sperm analysis-current users (n = 83), MPH purchased > 90 days prior to sperm analysis-past users (n = 293), and MPH-naïve patients (n = 9393). METHODS All sperm samples were analyzed by the same laboratory technician team for the following routine parameters: semen volume, sperm concentration, percentage of motile sperm, and percentage of normal morphology according to World Health Organization. The analysis of the samples was completed by evaluation of total sperm count, total sperm motility, and percentage of fast and slow motile cells. Sperm morphology was evaluated by a laboratory technician using methodological examination according to the strict Kruger-Tygerberg criteria. RESULTS Methylphenidate exposure did not affect sperm morphology but was associated with increased sperm concentration as well as increased total sperm count and total sperm motility among current and past users compared with MPH-naïve patients. In particular, progressive motility and total motile sperm count were significantly increased following MPH use. A multivariate analysis adjusting for age and current smoking was conducted, further supporting a positive correlation between current MPH use and increased values of total sperm count and total sperm motility. LIMITATIONS Our study has several inherent weaknesses, foremost of which is its retrospective nature. Another notable weakness is that medication purchasing data may not accurately reflect MPH exposure in the study population. Patients may be purchasing MPH and not taking it as prescribed. CONCLUSIONS In the present study, we could not demonstrate a negative impact of methylphenidate treatment on sperm parameters in adults with ADHD. Hence, we may assume that methylphenidate does not negatively affect male fertility.
Collapse
|
10
|
Baskaran S, Finelli R, Agarwal A, Henkel R. Reactive oxygen species in male reproduction: A boon or a bane? Andrologia 2020; 53:e13577. [PMID: 32271474 DOI: 10.1111/and.13577] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) are free radicals derived from oxygen during normal cellular metabolism. ROS play a crucial role in the physiological processes and signalling pathways associated with male fertility. At physiological concentrations, ROS act as molecular mediators of signal transduction pathways involved in the regulation of the hypothalamic-pituitary-gonadal axis, spermatogenesis and steroidogenesis. They also trigger the morphological changes required for sperm maturation, such as DNA compaction and flagellar modification. Furthermore, ROS modulate crucial processes involved in the attainment of sperm fertilising ability such as capacitation, hyperactivation, acrosome reaction and sperm-oocyte fusion. Conversely, oxidative stress prevails when the concentration of ROS overwhelms the body's antioxidant defence. Various endogenous and exogenous factors enhance the synthesis of ROS resulting in the disruption of structural and functional integrity of spermatozoa through the induction of apoptotic pathway and oxidation of molecules, such as lipids, proteins and DNA. Therefore, maintenance of a balanced redox state is critical for normal male reproductive functions. This article discusses the dual role of ROS in male reproduction, highlighting the physiological role as well as their pathological implications on male fertility.
Collapse
Affiliation(s)
- Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
11
|
Kianifard D, Ehsani A, Zeinolabedini Daneshgar P, Akbari G, Maysam Mousavi Shoar Ph D Candidate S. Effect of monosodium glutamate on testicular tissue of paclitaxel-treated mice: An experimental study. Int J Reprod Biomed 2019; 17:819-830. [PMID: 31911964 PMCID: PMC6906872 DOI: 10.18502/ijrm.v17i10.5492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/26/2019] [Accepted: 07/10/2019] [Indexed: 11/24/2022] Open
Abstract
Background Paclitaxel (PTX), a chemotherapeutic agent, and monosodium glutamate (MSG) have oxidative effects on testicular tissue. Objective In this study, the effects of MSG administration on the exacerbation of testicular tissue alterations related to PTX treatment were evaluated. Materials and Methods MSG (30 & 60 mg/kg i.p.) was administrated to six groups (n = 8/each) of adult mice before or after PTX treatment: control, PTX-treated, MSG30 + PTX, MSG60 + PTX, PTX + MSG30, and PTX + MSG60. Following the euthanizing, the body weight measurement, pituitary-testicular axis hormonal analysis and serum lipid peroxidation index assessment was prepared, testicular histomorphometry (tubular diameter and germinal epithelium height), immunohistochemistry of p53 was completed. Microscopic indices of spermatogenesis (tubular differentiation, spermiogenesis and repopulation indices) were studied. Results Body weight was not changed significantly. The levels of testosterone (p = 0.0001), follicle stimulating hormone (p = 0.019), and luteinizing hormone (p = 0.08) were decreased while the level of lipid peroxidation index was increased (p = 0.208) in the treated groups. The histomorphometry indices (p < 0.0001 and p = 0.001, respectively), germ cells population (p < 0.05) and microscopic indices of spermatogenesis (p = 0.001, p = 0.005, p < 0.0001, respectively) were significantly reduced in all treated groups. The administration of MSG before PTX treatment induces more changes. The most positive reaction to p53 was observed in MSG30 or 60 + PTX groups compared to other groups. Conclusion The administration of MSG could intensify testicular tissue alterations related to PTX chemotherapy.
Collapse
Affiliation(s)
- Davoud Kianifard
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ghasem Akbari
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
12
|
Kruk J, Aboul-Enein HY, Kładna A, Bowser JE. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res 2019; 53:497-521. [PMID: 31039624 DOI: 10.1080/10715762.2019.1612059] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The body of evidence from the past three decades demonstrates that oxidative stress can be involved in several diseases. This study aims to summarise the current state of knowledge on the association between oxidative stress and the pathogenesis of some characteristic to the biological systems diseases and aging process. This review also presents the effect of physical activity on redox homeostasis. There is strong evidence from studies for participation of reactive oxygen and nitrogen species in pathogenesis of acute and chronic diseases based on animal models and human studies. Elevated levels of pro-oxidants and various markers of the oxidative stress and cells and tissues damage linked with pathogenesis of cancer, atherosclerosis, neurodegenerative diseases hypertension, diabetes mellitus, cardiovascular disease, atherosclerosis, reproductive system diseases, and aging were reported. Evidence confirmed that inflammation contributes widely to multiple chronic diseases and is closely linked with oxidative stress. Regular moderate physical activity regulates oxidative stress enhancing cellular antioxidant defence mechanisms, whereas acute exercise not preceded by training can alter cellular redox homeostasis towards higher level of oxidative stress. Future studies are needed to clarify the multifaceted effects of reactive oxygen/nitrogen species on cells and tissues and to continue study on the biochemical roles of antioxidants and physical activity in prevention of oxidative stress-related tissue injury.
Collapse
Affiliation(s)
- Joanna Kruk
- a Faculty of Physical Culture and Health Promotion , University of Szczecin , Cukrowa 12 , Szczecin , Poland
| | - Hassan Y Aboul-Enein
- b Department of National Pharmaceutical and Medicinal Chemistry, Division of Pharmaceutical and Drug Industries Research , National Research Centre , Dokki , Egypt
| | - Aleksandra Kładna
- c Faculty of Medicine, Biotechnology and Laboratory Medicine , Pomeranian Medical University , Szczecin , Poland
| | - Jacquelyn E Bowser
- d John Hazen White College of Arts & Sciences , Johnson & Wales University , Providence , USA
| |
Collapse
|
13
|
Cai Z, An J, Liu Y, Yie S, Zhang Y, Li F, Chen J, Wang X, Morrell J, Hou R. Single layer centrifugation improves the quality of frozen-thawed sperm of giant panda (Ailuropoda melanoleuca). Anim Reprod Sci 2018; 195:58-64. [DOI: 10.1016/j.anireprosci.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
|
14
|
Steves AN, Turry A, Gill B, Clarkson-Townsend D, Bradner JM, Bachli I, Caudle WM, Miller GW, Chan AWS, Easley CA. Per- and polyfluoroalkyl substances impact human spermatogenesis in a stem-cell-derived model. Syst Biol Reprod Med 2018; 64:225-239. [PMID: 29911897 DOI: 10.1080/19396368.2018.1481465] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) represent a highly ubiquitous group of synthetic chemicals used in products ranging from water and oil repellents and lubricants to firefighting foam. These substances can enter and accumulate in multiple tissue matrices in up to 100% of people assessed. Though animal models strongly identify these compounds as male reproductive toxicants, with exposed rodents experiencing declines in sperm count, alterations in hormones, and DNA damage in spermatids, among other adverse outcomes, human studies report conflicting conclusions as to the reproductive toxicity of these chemicals. Using an innovative, human stem-cell-based model of spermatogenesis, we assessed the effects of the PFASs perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and a mixture of PFOS, PFOA, and PFNA for their impacts on human spermatogenesis in vitro under conditions relevant to the general and occupationally exposed populations. Here, we show that PFOS, PFOA, PFNA, and a mixture of PFOS, PFOA, and PFNA do not decrease in vitro germ cell viability, consistent with reports from human studies. These compounds do not affect mitochondrial membrane potential or increase reactive oxygen species generation, and they do not decrease cell viability of spermatogonia, primary spermatocytes, secondary spermatocytes, or spermatids in vitro under the conditions examined. However, exposure to PFOS, PFOA, and PFNA reduces expression of markers for spermatogonia and primary spermatocytes. While not having direct effects on germ cell viability, these effects suggest the potential for long-term impacts on male fertility through the exhaustion of the spermatogonial stem cell pool and abnormalities in primary spermatocytes. ABBREVIATIONS CDC: Centers for Disease Control; DMSO: dimethyl sulfoxide; GHR: growth hormone receptor; hESCs: human embryonic stem cells; PFASs: per- and polyfluoroalkyl substances; PFCs: perfluorinated compounds; PFNA: perfluorononanoic acid; PFOS: perfluorooctanesulfonic acid; PFOA: perfluorooctanoic acid; PLZF: promyelocytic leukemia zinc finger; ROS: reactive oxygen species; HILI: RNA-mediated gene silencing 2; SSC: spermatogonial stem cell.
Collapse
Affiliation(s)
- Alyse N Steves
- a Genetics and Molecular Biology Program , Laney Graduate School, Emory University , Atlanta , GA , USA
| | - Adam Turry
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | - Brittany Gill
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | | | - Joshua M Bradner
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Ian Bachli
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | - W Michael Caudle
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Gary W Miller
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Anthony W S Chan
- e Division of Neuropharmacology and Neurologic Diseases , Yerkes National Primate Research Center , Atlanta , GA , USA.,f Department of Human Genetics , Emory University , Atlanta , GA , USA
| | - Charles A Easley
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA.,e Division of Neuropharmacology and Neurologic Diseases , Yerkes National Primate Research Center , Atlanta , GA , USA
| |
Collapse
|
15
|
Steves AN, Bradner JM, Fowler KL, Clarkson-Townsend D, Gill BJ, Turry AC, Caudle WM, Miller GW, Chan AWS, Easley CA. Ubiquitous Flame-Retardant Toxicants Impair Spermatogenesis in a Human Stem Cell Model. iScience 2018; 3:161-176. [PMID: 29901031 PMCID: PMC5994764 DOI: 10.1016/j.isci.2018.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Sperm counts have rapidly declined in Western males over the past four decades. This rapid decline remains largely unexplained, but exposure to environmental toxicants provides one potential explanation for this decline. Flame retardants are highly prevalent and persistent in the environment, but many have not been assessed for their effects on human spermatogenesis. Using a human stem cell-based model of spermatogenesis, we evaluated two major flame retardants, hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA), under acute conditions simulating occupational-level exposures. Here we show that HBCDD and TBBPA are human male reproductive toxicants in vitro. Although these toxicants do not specifically affect the survival of haploid spermatids, they affect spermatogonia and primary spermatocytes through mitochondrial membrane potential perturbation and reactive oxygen species generation, ultimately causing apoptosis. Taken together, these results show that HBCDD and TBBPA affect human spermatogenesis in vitro and potentially implicate this highly prevalent class of toxicants in the decline of Western males' sperm counts.
Collapse
Affiliation(s)
- Alyse N Steves
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Joshua M Bradner
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kristen L Fowler
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Danielle Clarkson-Townsend
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Brittany J Gill
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Adam C Turry
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - W Michael Caudle
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Anthony W S Chan
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, GA 30322, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, GA 30322, USA.
| |
Collapse
|
16
|
Easley CA, Bradner JM, Moser A, Rickman CA, McEachin ZT, Merritt MM, Hansen JM, Caudle WM. Assessing reproductive toxicity of two environmental toxicants with a novel in vitro human spermatogenic model. Stem Cell Res 2015; 14:347-55. [PMID: 25863443 DOI: 10.1016/j.scr.2015.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 11/26/2022] Open
Abstract
Environmental influences and insults by reproductive toxicant exposure can lead to impaired spermatogenesis or infertility. Understanding how toxicants disrupt spermatogenesis is critical for determining how environmental factors contribute to impaired fertility. While current animal models are available, understanding of the reproductive toxic effects on human fertility requires a more robust model system. We recently demonstrated that human pluripotent stem cells can differentiate into spermatogonial stem cells/spermatogonia, primary and secondary spermatocytes, and haploid spermatids; a model that mimics many aspects of human spermatogenesis. Here, using this model system, we examine the effects of 2-bromopropane (2-BP) and 1,2,dibromo-3-chloropropane (DBCP) on in vitro human spermatogenesis. 2-BP and DBCP are non-endocrine disrupting toxicants that are known to impact male fertility. We show that acute treatment with either 2-BP or DBCP induces a reduction in germ cell viability through apoptosis. 2-BP and DBCP affect viability of different cell populations as 2-BP primarily reduces spermatocyte viability, whereas DBCP exerts a much greater effect on spermatogonia. Acute treatment with 2-BP or DBCP also reduces the percentage of haploid spermatids. Both 2-BP and DBCP induce reactive oxygen species (ROS) formation leading to an oxidized cellular environment. Taken together, these results suggest that acute exposure with 2-BP or DBCP causes human germ cell death in vitro by inducing ROS formation. This system represents a unique platform for assessing human reproductive toxicity potential of various environmental toxicants in a rapid, efficient, and unbiased format.
Collapse
Affiliation(s)
- Charles A Easley
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Joshua M Bradner
- Department of Environmental Health, Rollins School of Public Heath, Emory University, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amber Moser
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chelsea A Rickman
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zachary T McEachin
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, GA 30332, USA
| | - Megan M Merritt
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jason M Hansen
- Division of Pulmonology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Heath, Emory University, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Asker ME, Hassan WA, El-Kashlan AM. Experimentally induced hyperthyroidism influences oxidant and antioxidant status and impairs male gonadal functions in adult rats. Andrologia 2014; 47:644-54. [PMID: 25220112 DOI: 10.1111/and.12312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2014] [Indexed: 01/06/2023] Open
Abstract
The objective of the present experiment was to study the effect of hyperthyroidism on male gonadal functions and oxidant/antioxidant biomarkers in testis of adult rats. Induction of hyperthyroidism by L-thyroxine (L-T4, 300 μg kg(-1) body weight) treatment once daily for 3 or 8 weeks caused a decrease in body weight gain as well as in absolute genital sex organs weight. The epididymal sperm counts and their motility were significantly decreased in a time-dependent manner following L-T4 treatment. Significant decline in serum levels of luteinising hormone, follicle stimulating hormone and testosterone along with significant increase in serum estradiol level was observed in hyperthyroid rats compared with euthyroid ones. Significant increase in malondialdehyde and nitric oxide concentration associated with significant decrease in superoxide dismutase and catalase activity was also noticed following hyperthyroidism induction. Both reduced glutathione content and glutathione peroxidase activity were increased in hyperthyroid rats compared with control rats. Marked histopathological alterations were observed in testicular section of hyperthyroid rats. These results provide evidence that hypermetabolic state induced by excess level of thyroid hormones may be a causative factor for the impairment of testicular physiology as a consequence of oxidative stress.
Collapse
Affiliation(s)
- M E Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - W A Hassan
- Hormone Evaluation Department, National Organization for Drug Control and Research, Giza, Egypt
| | - A M El-Kashlan
- Hormone Evaluation Department, National Organization for Drug Control and Research, Giza, Egypt
| |
Collapse
|
18
|
Upregulation and nuclear translocation of testicular ghrelin protects differentiating spermatogonia from ionizing radiation injury. Cell Death Dis 2014; 5:e1248. [PMID: 24853426 PMCID: PMC4047875 DOI: 10.1038/cddis.2014.223] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/13/2014] [Accepted: 04/18/2014] [Indexed: 11/13/2022]
Abstract
Proper control of apoptotic signaling is important for maintenance of testicular homeostasis after ionizing radiation (IR). Herein, we challenged the hypothesis that ghrelin, a pleiotropic modulator, is potentially involved in IR-induced germ cell injury. Lower body exposure to 2 Gy of IR induced a notable increase of ghrelin expression in the nuclear of differentiating spermatogonia at defined stages, with an impairment in the Leydig cells (LCs)-expressing ghrelin. Unexpectedly, inhibition of the ghrelin pathway by intraperitoneal injection of a specific GHS-R1α antagonist enhanced spermatogonia elimination by apoptosis during the early recovery following IR, and thereafter resulted in impaired male fertility, suggesting that the anti-apoptotic effects of evoked ghrelin, although transient along testicular IR injury, have a profound influence on the post-injury recovery. In addition, inhibition of ghrelin signaling resulted in a significant increase in the intratesticular testosterone (T) level at the end of 21 days after IR, which should stimulate the spermatogenic recovery from surviving spermatogonia to a certain extent during the late stage. We further demonstrated that the upregulation and nuclear trafficking of ghrelin, elaborately regulated by IR-elicited antioxidant system in spermatogonia, may act through a p53-dependent mechanism. The elicitation of ghrelin expression by IR stress, the regulation of ghrelin expression by IR-induced oxidative stress and the interaction between p53 and ghrelin signaling during IR injury were confirmed in cultured spermatogonia. Hence, our results represent the first evidence in support of a radioprotective role of ghrelin in the differentiating spermatogonia. The acutely, delicate regulation of local-produced ghrelin appears to be a fine-tune mechanism modulating the balance between testicular homeostasis and early IR injury.
Collapse
|
19
|
He X, Song W, Liu C, Chen S, Hua J. Rapamycin inhibits acrolein-induced apoptosis by alleviating ROS-driven mitochondrial dysfunction in male germ cells. Cell Prolif 2014; 47:161-71. [PMID: 24483236 DOI: 10.1111/cpr.12091] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/20/2013] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Acrolein (Acr) is a highly reactive α, β-unsaturated aldehyde, which can induce reactive oxygen species (ROS) generation. Several factors, including lipid peroxidation, clinical use of cyclophosphamide, fried foods, automobile exhausts, smoking and aging can increase its concentration in blood serum. Mounting evidence has suggested that Acr-induced ROS might reduce quality of sperm. Thus, the aim of this study was to examine reproductive toxicity of Acr-caused ROS in vitro and find a means to alleviate it. MATERIALS AND METHODS We investigated the effects of Acr on male germ cell (MGC)-derived GC-1 cells in vitro. Dihydroethidium and DCFH-DA fluorescent dyes were used to determine generation of intracellular ROS. RESULTS We found that Acr induced ROS generation, which was accompanied by reduced Bcl2/Bax ratio, substantial decline in mitochondrial membrane potential, and further promoted apoptosis of MGCs. Furthermore, Rapamycin was capable of alleviating Acr-induced ROS, reducing ROS-induced apoptosis by increasing ratio of Bcl2/Bax mRNA and proteins, and protecting MGC mitochondrial membranes. CONCLUSION Rapamycin inhibited Acr-induced apoptosis by alleviating ROS-driven mitochondrial dysfunction in MGCs.
Collapse
Affiliation(s)
- X He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | | | | | | | | |
Collapse
|
20
|
Parillo F, Sylla L, Palombi C, Monaci M, Stradaioli G. Immunocytochemical Localisation of Phospholipid Hydroperoxide Glutathione Peroxidase in Bull’s Spermatogenic Cells. ITALIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4081/ijas.2014.3483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Modulation of redox homeostasis by Lamiaceae herbs in seminal vesicles of Lumbricus terrestris. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.fra.2013.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Wegener J, Zschörnig K, Onischke K, Fuchs B, Schiller J, Müller K. Conservation of honey bee (Apis mellifera) sperm phospholipids during storage in the bee queen--a TLC/MALDI-TOF MS study. Exp Gerontol 2012; 48:213-22. [PMID: 23279974 DOI: 10.1016/j.exger.2012.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 12/18/2012] [Accepted: 12/22/2012] [Indexed: 01/09/2023]
Abstract
The honey bee (Apis mellifera) is characterized by a high degree of phenotypic plasticity of senescence-related processes, and has therefore become a model organism of gerontological research. Sperm of honey bee drones can remain fertile for several years within the storage organ of queens. The reason for this longevity is unknown, but the suppression of lipid peroxidation seems to play a decisive role. Here, we examined the questions of whether spermatheca- and in vitro-stored honey bee sperm are indeed resistant to lipid peroxidation, and whether the nature of sperm lipids could explain this resistance. The lipid composition of bee sperm was determined by matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) combined with thin-layer chromatography (TLC). The positive ion mass spectra of drone sperm lipids are dominated by two glycerophosphocholine (GPC) species, although small amounts of sphingomyelins (SM) and glycerophosphoethanolamines (GPE) are also detectable after TLC. Alkyl/acyl and alkenyl/acyl compounds of GPC, and alkyl/acyl as well as diacyl compounds of GPE were detected containing oleyl, oleoyl, palmityl and palmitoyl as the most abundant residues. Assignments of all compounds have been additionally verified by enzymatic digestion and exposition to HCl. During incubation of sperm in the presence of air, characteristic lipid oxidation products such as lysophosphatidylcholine (LPC) appear. Inside the spermatheca, however, sperm lipids are obviously protected from oxidation and their composition does not change, even if they are stored over years. Our data support the view that the membrane composition of honey bee sperm could help to explain the extraordinary longevity of these cells.
Collapse
Affiliation(s)
- Jakob Wegener
- Institute for Bee Research, Friedrich-Engels-Strasse 32, D-16540 Hohen Neuendorf, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Sharma P, Kanwar SS, Sanyal SN. Effect of cationic ionophore monensin on the lipid composition and fluidity of rat epididymal spermatozoal membrane. Drug Chem Toxicol 2012; 36:79-87. [PMID: 22320440 DOI: 10.3109/01480545.2011.650174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study was aimed at exploring the effect of monensin, an antibiotic carboxylic polyether ionophore specific for Na(+), on the structural, chemical, and physiological changes of the epididymal sperm of Wistar rats. Animals received monensin at the dose of 3.5 mg/kg body weight daily orally for 70 days, a treatment duration that corresponds to the spermatogenic cycle in rats. At the end of the treatment regime, three regions of the epididymis were separated and the spermatozoa were collected. The plasma membranes of the spermatozoa were isolated and lipid composition, such total lipid, phospholipid, cholesterol, and ganglioside-sialic acid, was studied. Membrane dynamic behavior was investigated by lipid translational fluidity by pyrene excimer formation and rotational diffusion by diphenyl hexatriene polarization and anisotropy parameter. Structural changes in membrane were also evaluated by the dye-binding study with anilino naphthalene sulphonic acid. The results showed marked changes in lipid compositions, fluidity parameters, and kinetics of fluorescent dye binding in the epididymis, and it can be concluded that monensin, by interfering with normal physiological changes in spermatozoal maturation, may provide the basis of certain molecular intervention in the fertilizing capability of the epididymal spermatozoa and thereby may induce antifertility properties in male rats.
Collapse
Affiliation(s)
- Pinky Sharma
- Department of Biophysics, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
24
|
Pillai P, Pandya C, Bhatt N, Gupta SS. Biochemical and reproductive effects of gestational/lactational exposure to lead and cadmium with respect to testicular steroidogenesis, antioxidant system, endogenous sex steroid and cauda-epididymal functions. Andrologia 2011; 44:92-101. [DOI: 10.1111/j.1439-0272.2010.01109.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Yim SH, Kim YJ, Oh SY, Fujii J, Zhang Y, Gladyshev VN, Rhee SG. Identification and characterization of alternatively transcribed form of peroxiredoxin IV gene that is specifically expressed in spermatids of postpubertal mouse testis. J Biol Chem 2011; 286:39002-12. [PMID: 21835919 DOI: 10.1074/jbc.m111.257220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
2-Cysteine (Cys) peroxiredoxins (Prxs), which include mammalian Prxs I-IV, possess two conserved Cys residues that are readily oxidized by H(2)O(2) to form a disulfide. In the case of Prx I-III, the disulfide is reduced by thioredoxin, thus enabling these proteins to function as peroxidases. Prx IV was shown previously to be synthesized as a 31-kDa polypeptide with an NH(2)-terminal signal peptide that is subsequently cleaved to generate a 27-kDa form of the protein that is localized to the endoplasmic reticulum. A form of Prx IV, larger than 27 kDa revealed by immunoblot analysis was suggested to represent the unprocessed, 31-kDa form, but this larger form was detected only in spermatids of the postpubertal testis. We now show that the larger form of Prx IV (here designated Prx IV-L) detected in the testis is actually a product of alternative transcription of the Prx IV gene that is encoded by newly identified exon 1A together with exons 2-7 that are shared with the 27-kDa form (designated Prx IV-S). Prx IV-L was detected in spermatids but not in mature sperm, it could form disulfide-linked dimers but not higher order oligomers via oxidation, and it was resistant to hyperoxidation unless additional reductant was added, suggesting that its peroxidase activity is limited in vivo. Phylogenetic analysis showed that the Prx IV-S gene is present in all vertebrates examined, whereas the Prx IV-L gene was detected only in placental mammals. We suggest that Prx IV-L functions as an H(2)O(2) sensor that mediates protein thiol oxidation required for the maturation of spermatozoa in placental mammals.
Collapse
Affiliation(s)
- Sun Hee Yim
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea.
| | | | | | | | | | | | | |
Collapse
|
26
|
Liu F, Li XL, Lin T, He DW, Wei GH, Liu JH, Li LS. The cyclophosphamide metabolite, acrolein, induces cytoskeletal changes and oxidative stress in Sertoli cells. Mol Biol Rep 2011; 39:493-500. [PMID: 21553225 DOI: 10.1007/s11033-011-0763-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 04/27/2011] [Indexed: 12/28/2022]
Abstract
The aim of this study is to explore the mechanism by which acrolein (ACR), a metabolite of cyclophosphamide (CP), induces immature Sertoli cell cytoskeletal changes. Sertoli cells obtained from rats were cultivated and treated with 50 and 100 μM ACR. XTT assays were performed to detect cell viability. Activities of superoxide dismutase (SOD), glutathione peroxidases (GSH-Px), and catalase (CAT), as well as total anti-oxidation competence (T-AOC) were examined. Superoxide anion levels were detected by a fluorescent probe. Cell ultrastructure changes were observed by transmission fluorescent microscope. Actin filament (F-actin) distribution was detected by immunofluorescence, and ERK and p38MAPK expression were detected by western blot analysis. ACR significantly decreased the viability of Sertoli cells in a dose- and time-dependent manner. T-AOC and the antioxidant activity of SOD, CAT and GSH-Px, were decreased in ACR-treated groups compared with the control group. The levels of reactive oxygen species (ROS) in ACR-treated Sertoli cells were increased. In addition, characteristics of cell apoptosis such as mitochondrial swelling, aggregated chromatin, condensed cytoplasm, nuclei splitting, and nuclei vacuolization were observed in ACR-treated cells. Furthermore, ACR-treatment also induced microfilament aggregation, marginalization and regionalization. The expression levels of ERK and p38MAPK were also increased in ACR-treated cells in a dose- and time-dependent manner. ACR, a major CP metabolite, impairs the cytoskeleton which is likely caused by induction of the oxidative stress response through up-regulation of ERK and p38MAPK expression.
Collapse
Affiliation(s)
- Feng Liu
- The Department of Pediatric Urology, Ministry of Education, Key Laboratory of Child Development and Disorders, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 RD, Yuzhong District, Chongqing, 400014, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
GALVÁN I, MØLLER AP, ERRITZØE J. Testicular melanization has evolved in birds with high mtDNA mutation rates. J Evol Biol 2011; 24:988-98. [DOI: 10.1111/j.1420-9101.2011.02231.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Sakai Y, Aminaka M, Takata A, Kudou Y, Yamauchi H, Aizawa Y, Sakagami H. Oxidative stress in mature rat testis and its developmental changes. Dev Growth Differ 2010; 52:657-63. [DOI: 10.1111/j.1440-169x.2010.01201.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Matsuo K, Ushioda N, Udoff LC. Parental aging synergistically decreases offspring sex ratio. J Obstet Gynaecol Res 2009; 35:164-8. [PMID: 19215565 DOI: 10.1111/j.1447-0756.2008.00836.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of parental age as a factor in the observed decline in the male to female birth ratio expressed as the offspring sex ratio (OSR). STUDY DESIGN A prospective multicenter study was conducted from August 2005 to February 2007 at five community-based hospitals in Osaka, Japan. Pregnant women in the first trimester were recruited at their first prenatal care visit and followed until delivery. Multiple pregnancies and assisted conceptions were excluded. Periconceptional parental ages were recorded. Neonatal information was obtained at the time of delivery. Proportional distribution of categorical variables was studied using the chi(2) or Fisher's exact tests (two-tailed). RESULTS Data on 3,049 deliveries were available for review. OSR for the largest paternal and maternal subgroup (both, age 30-34) were male dominant (1.17 and 1.12, respectively). Paternal age > or =40 showed a smaller OSR (0.75 vs 1.17, P = 0.001). Advanced maternal age was associated with smaller OSR: age 35-39, 0.87 versus 1.12, P = 0.02; and age > or =40, 0.63 versus 1.12, P = 0.047. Synergistic effects of increasing paternal and maternal age on the OSR were observed. OSR for parental ages > or =40 were significantly smaller than ages 30-34 (0.52 vs 1.17, P = 0.029). CONCLUSIONS Increasing paternal ages synergistically decrease the male to female birth ratio.
Collapse
Affiliation(s)
- Koji Matsuo
- Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
30
|
Ramamoorthi RV, Rossano MG, Paneth N, Gardiner JC, Diamond MP, Puscheck E, Daly DC, Potter RC, Wirth JJ. An application of multivariate ranks to assess effects from combining factors: metal exposures and semen analysis outcomes. Stat Med 2008; 27:3503-14. [PMID: 18314933 DOI: 10.1002/sim.3236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In studies of environmental effects on human health outcomes, it is often difficult to assess the effects of a group of exposure variables when the individual exposures do not appear to have statistically significant effects. To address this situation, we propose a method of U-scores applied to subsets of multivariate data. We illustrate the usefulness of this approach by applying it to data collected as part of a study on the effects of metal exposure on human semen parameters. In this analysis, profiles (pairs) of metals containing copper and/or manganese were negatively correlated with total motile sperm and profiles containing copper were negatively correlated with sperm morphology; profiles containing selenium and chromium were positively correlated with total motile sperm.
Collapse
Affiliation(s)
- R V Ramamoorthi
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jana K, Samanta PK, Manna I, Ghosh P, Singh N, Khetan RP, Ray BR. Protective effect of sodium selenite and zinc sulfate on intensive swimming-induced testicular gamatogenic and steroidogenic disorders in mature male rats. Appl Physiol Nutr Metab 2008; 33:903-14. [PMID: 18923565 DOI: 10.1139/h08-065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To investigate the ameliorative potential of sodium selenite and zinc sulfate on intensive-swimming-induced testicular disorders, 48 Wistar male rats (age, 4 months; mass, 146.2 ± 3.6 g) were randomly divided into 4 groups: the unexercised-control group (n = 12); the exercised group (n = 12); the control supplemented group (n = 12); and the exercised supplemented group (n = 12). For 10 weeks, the exercised rats underwent a protocol that consisted of 4 h·d–1swimming, for 6 d·week–1; the control rats did not exercise. For 10 weeks, both the supplemented groups received an oral daily dose of a combination of sodium selenite and zinc sulfate (6 and 3 mg·kg body mass–1, respectively). After 10 weeks, a significant reduction (p < 0.05) was seen in rats in the exercised group, compared with rats in both control groups, in paired testicular masses; in epididymal sperm count; in testicular Δ5, 3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD; in plasma levels of testosterone, luteinizing hormone, follicle-stimulating hormone, and prolactin; in the numbers of preleptotine spermatocytes, midpachytene spermatocytes, and stage 7 spermatids of the stage VII seminiferous epithelium cycle; and in fertility performance. As well, a significant increase (p < 0.05) was seen in the exercised group, compared with both control groups, in plasma corticosterone levels and in testicular content of malondialdehyde and catalase activity. At the same time, there was a significant reduction (p < 0.05) in the exercised group, compared with both control groups, in plasma concentrations of zinc and selenium; in the testicular content of glutathione (GSH), the glutathione and glutathione disulphide (GSSG) ratio, ascorbic acid, and α-tocopherol; and in testicular activities of superoxide dismutase, glutathione-peroxidase, and glutathione-S-transferase in the testes. No significant changes were seen in the number of spermatogonia-A from the stage VII seminiferous epithelium cycle or the testicular content of GSSG among the groups. Sodium selenite and zinc sulfate supplementation significantly protected against exercise-induced testicular gamatogenic and spermatogenic disorders, prevented testicular oxidative stress, and increased antioxidant status. It can be concluded that intensive-swimming-induced oxidative stress causes dysfunctions in the male reproductive system, which can be protected by the coadministration of sodium selenite and zinc sulfate.
Collapse
Affiliation(s)
- Kuladip Jana
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- West Bengal University of Animal and Fishery Sciences, 37 & 68, K.B. Sarani, Calcutta 700037, India
- Department of Physiology, Janki Medical College, Janakpur, Nepal
- Department of Physiology and Pathology, M.B. Kedia Dental College and Research Center, Birgunj, Nepal
- Nilratan Sarkar Medical College and Hospital, 138, A.J.C. Bose Road, Calcutta 700014, India
| | - Pravat K. Samanta
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- West Bengal University of Animal and Fishery Sciences, 37 & 68, K.B. Sarani, Calcutta 700037, India
- Department of Physiology, Janki Medical College, Janakpur, Nepal
- Department of Physiology and Pathology, M.B. Kedia Dental College and Research Center, Birgunj, Nepal
- Nilratan Sarkar Medical College and Hospital, 138, A.J.C. Bose Road, Calcutta 700014, India
| | - Indranil Manna
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- West Bengal University of Animal and Fishery Sciences, 37 & 68, K.B. Sarani, Calcutta 700037, India
- Department of Physiology, Janki Medical College, Janakpur, Nepal
- Department of Physiology and Pathology, M.B. Kedia Dental College and Research Center, Birgunj, Nepal
- Nilratan Sarkar Medical College and Hospital, 138, A.J.C. Bose Road, Calcutta 700014, India
| | - Prasanta Ghosh
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- West Bengal University of Animal and Fishery Sciences, 37 & 68, K.B. Sarani, Calcutta 700037, India
- Department of Physiology, Janki Medical College, Janakpur, Nepal
- Department of Physiology and Pathology, M.B. Kedia Dental College and Research Center, Birgunj, Nepal
- Nilratan Sarkar Medical College and Hospital, 138, A.J.C. Bose Road, Calcutta 700014, India
| | - Narendra Singh
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- West Bengal University of Animal and Fishery Sciences, 37 & 68, K.B. Sarani, Calcutta 700037, India
- Department of Physiology, Janki Medical College, Janakpur, Nepal
- Department of Physiology and Pathology, M.B. Kedia Dental College and Research Center, Birgunj, Nepal
- Nilratan Sarkar Medical College and Hospital, 138, A.J.C. Bose Road, Calcutta 700014, India
| | - Ramawatar P. Khetan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- West Bengal University of Animal and Fishery Sciences, 37 & 68, K.B. Sarani, Calcutta 700037, India
- Department of Physiology, Janki Medical College, Janakpur, Nepal
- Department of Physiology and Pathology, M.B. Kedia Dental College and Research Center, Birgunj, Nepal
- Nilratan Sarkar Medical College and Hospital, 138, A.J.C. Bose Road, Calcutta 700014, India
| | - Binoy R. Ray
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- West Bengal University of Animal and Fishery Sciences, 37 & 68, K.B. Sarani, Calcutta 700037, India
- Department of Physiology, Janki Medical College, Janakpur, Nepal
- Department of Physiology and Pathology, M.B. Kedia Dental College and Research Center, Birgunj, Nepal
- Nilratan Sarkar Medical College and Hospital, 138, A.J.C. Bose Road, Calcutta 700014, India
| |
Collapse
|
32
|
Abstract
Following the publication of the landmark trial of Clark et al. in 1996 that appeared to show that Se could reduce the risk of cancer, awareness of the importance of Se to human health has markedly increased. As a result, there is now much more aggressive marketing of Se supplements and functional foods, even in situations where additional consumption of Se is inappropriate. The present review addresses how Se gets into the food chain, the wide variability in Se content of foods and the very different levels of intake between countries and regions. Though it is clear that there are adverse consequences for health of both deficient and excessive intake, health effects at intermediate levels of intake are less certain. Thus it is difficult to define optimal intake which depends on a large number of factors, such as which functions of Se are most relevant to a particular disease state, which species of Se is most prominent in the Se source, which health condition is being considered, the adequacy or otherwise of intake of other nutrients, the presence of additional stressors, and lastly whether the ability to make selenoproteins may be compromised. These complexities need to be understood, particularly by policy makers, in order to make informed judgments. Potential solutions for increasing Se intake, where required, include agronomic biofortification and genetic biofortification or, for individuals, increased intake of naturally Se-rich foods, functional foods or supplements. The difficulties of balancing the risks and benefits in relation to Se intake are highlighted.
Collapse
|
33
|
Shalini S, Bansal MP. Dietary selenium deficiency as well as excess supplementation induces multiple defects in mouse epididymal spermatozoa: understanding the role of selenium in male fertility. ACTA ACUST UNITED AC 2008; 31:438-49. [PMID: 17651402 DOI: 10.1111/j.1365-2605.2007.00789.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selenium (Se) is essential for male fertility. The present study was carried out to observe the defects associated with Se deficiency as well as excess Se supplementation by analyzing the sperm ultrastructure and chromatin organization. Different Se status mice were generated viz. Se deficient (group I), Se adequate (group II) and Se excess (group III) by feeding the respective diets for a period of 4 (group Ia, IIa and IIIa) and 8 weeks (group Ib, IIb and IIIb). Reduction in sperm concentration, motility and percentage fertility was observed in Se deficient and Se excess groups. Electron microscopy revealed mitochondrial swelling and gaps between adjacent mitochondria in mice fed Se-deficient diet for 4 weeks. At 8 weeks, several abnormalities such as loose contact of the mitochondrial helix with the plasma membrane, loss of mitochondria, retention of cytoplasmic droplet, fracturing of outer dense fibres and presence of both the midpiece and the principal piece cross-sections in a common plasma membrane were observed. In Se excess group, the predominant defect was the frequent presence of equidistant, cross-sectioned midpieces of the tail embedded in a common cytoplasm. These defects are indicative of loss of sperm motility. Spermatozoa from Se-deficient mice had incompletely condensed chromatin and indicated an increase in occurrence of DNA strand breaks. The animals fed Se excess diet also indicated increase in DNA breaks but this was significantly less than the deficient diet fed groups. Our study reveals the defects associated with Se deficiency that result in loss of reproductive ability and also reflects its possible harmful effects on spermatozoa after prolonged consumption at supranutritional level.
Collapse
Affiliation(s)
- Sonia Shalini
- Department of Biophysics, Punjab University, Chandigarh, India
| | | |
Collapse
|
34
|
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245-313. [PMID: 17237347 DOI: 10.1152/physrev.00044.2005] [Citation(s) in RCA: 4999] [Impact Index Per Article: 277.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Collapse
Affiliation(s)
- Karen Bedard
- Biology of Ageing Laboratories, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
35
|
Maiorino M, Roveri A, Benazzi L, Bosello V, Mauri P, Toppo S, Tosatto SCE, Ursini F. Functional Interaction of Phospholipid Hydroperoxide Glutathione Peroxidase with Sperm Mitochondrion-associated Cysteine-rich Protein Discloses the Adjacent Cysteine Motif as a New Substrate of the Selenoperoxidase. J Biol Chem 2005; 280:38395-402. [PMID: 16159880 DOI: 10.1074/jbc.m505983200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial capsule is a selenium- and disulfide-rich structure enchasing the outer mitochondrial membrane of mammalian spermatozoa. Among the proteins solubilized from the sperm mitochondrial capsule, we confirmed, by using a proteomic approach, the presence of phospholipid hydroperoxide glutathione peroxidase (PHGPx) as a major component, and we also identified the sperm mitochondrion-associated cysteine-rich protein (SMCP) and fragments/aggregates of specific keratins that previously escaped detection (Ursini, F., Heim, S., Kiess, M., Maiorino, M., Roveri, A., Wissing, J., and Flohé, L. (1999) Science 285, 1393-1396). The evidence for a functional association between PHGPx, SMCP, and keratins is further supported by the identification of a sequence motif of regularly spaced Cys-Cys doublets common to SMCP and high sulfur keratin-associated proteins, involved in bundling hair shaft keratin by disulfide cross-linking. Following the oxidative polymerization of mitochondrial capsule proteins, catalyzed by PHGPx, two-dimensional redox electrophoresis analysis showed homo- and heteropolymers of SMCP and PHGPx, together with other minor components. Adjacent cysteine residues in SMCP peptides are oxidized to cystine by PHGPx. This unusual disulfide is known to drive, by reshuffling oxidative protein folding. On this basis we propose that oxidative polymerization of the mitochondrial capsule is primed by the formation of cystine on SMCP, followed by reshuffling. Occurrence of reshuffling is further supported by the calculated thermodynamic gain of the process. This study suggests a new mechanism where selenium catalysis drives the cross-linking of structural elements of the cytoskeleton via the oxidation of a keratin-associated protein.
Collapse
|
36
|
Guerriero G, Ferro R, Russo GL, Ciarcia G. Vitamin E in early stages of sea bass (Dicentrarchus labrax) development. Comp Biochem Physiol A Mol Integr Physiol 2005; 138:435-9. [PMID: 15369832 DOI: 10.1016/j.cbpb.2004.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 05/31/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
This study reports titration of vitamin E levels in the sea bass (Dicentrarchus labrax) using high-pressure liquid chromatography. The first part of the work is devoted to vitamin E detection in: (1) plasma of maturing females and males characterized by different body sizes; (2) seminal fluid and eggs; and (3) developing embryos of sea bass fed with vitamin E. In the second part of the study, variations of vitamin E levels during larval development are analyzed. The results show a direct correlation between plasma vitamin E content and body size for both adult male and female sea bass. High vitamin E levels were found in seminal fluid, in eggs before and after fertilization, and in embryos during development and at hatching, whereas vitamin E level was low in dead embryos and in embryos with limited survival. During larval development, the vitamin E content decreased slowly but steadily during the first four days of larval growth; subsequently, it progressively increased from day 9 to day 40. In teratogenic larvae, vitamin E content was significantly higher than in normal larvae. This study provides evidence on how vitamin E exerts an antioxidant defense in sea bass reproduction.
Collapse
Affiliation(s)
- G Guerriero
- Department of Zoology, Federico II University of Naples, Via Mezzocannone, 8-80134 Napoli, Italy.
| | | | | | | |
Collapse
|
37
|
Su D, Novoselov SV, Sun QA, Moustafa ME, Zhou Y, Oko R, Hatfield DL, Gladyshev VN. Mammalian Selenoprotein Thioredoxin-glutathione Reductase. J Biol Chem 2005; 280:26491-8. [PMID: 15901730 DOI: 10.1074/jbc.m503638200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thioredoxin reductases (TRs) are important redox regulatory enzymes, which control the redox state of thioredoxins. Mammals have cytosolic and mitochondrial TRs, which contain an essential selenocysteine residue and reduce cytosolic and mitochondrial thioredoxins. In addition, thioredoxin/glutathione reductase (TGR) was identified, which is a fusion of an N-terminal glutaredoxin domain and the TR module. Here we show that TGR is expressed at low levels in various tissues but accumulates in testes after puberty. The protein is particularly abundant in elongating spermatids at the site of mitochondrial sheath formation but is absent in mature sperm. We found that TGR can catalyze isomerization of protein and interprotein disulfide bonds and localized this function to its thiol domain. TGR targets include proteins that form structural components of the sperm, including glutathione peroxidase GPx4/PHGPx. Together, TGR and GPx4 can serve as a novel disulfide bond formation system. Both enzymes contain a catalytic selenocysteine consistent with the role of selenium in male reproduction.
Collapse
Affiliation(s)
- Dan Su
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Maiorino M, Mauri P, Roveri A, Benazzi L, Toppo S, Bosello V, Ursini F. Primary structure of the nuclear forms of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat spermatozoa. FEBS Lett 2005; 579:667-70. [PMID: 15670826 DOI: 10.1016/j.febslet.2004.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 12/10/2004] [Accepted: 12/13/2004] [Indexed: 11/17/2022]
Abstract
Phospholipid hydroperoxide glutathione peroxidase is a monomeric Se-peroxidase highly expressed in mammalian male germ cells. Its nuclear form, sperm nuclei glutathione peroxidase (snGPx), has been originally identified in maturating spermatozoa as a transcription product containing an alternative exon within the phospholipid hydroperoxide glutathione peroxidase gene. In this paper, we show that this form is inconstantly detectable in rat spermatozoa where a 20.0 and 25.9 kDa major forms are detected instead. These have been conclusively characterized. The N-terminus sequence of the 20.0 kDa form confirmed that the protein is identical to cytosolic form, suggesting diffusion into the nucleus. The 25.9 kDa protein represented a truncated form of the previously described nuclear snGPx, lacking the basic nuclear localization signal. This protein is present in two forms differing from each other by the presence of an N-terminal methionine. The presence of traces of the larger snGPx form suggests that exhaustive proteolytic processing of the precursor produces the 25.9 kDa enzyme, although the alternate use of a downstream ATG, at least in rodents, could not be unequivocally ruled out.
Collapse
Affiliation(s)
- Matilde Maiorino
- Department of Biological Chemistry, University of Padova, Viale G. Colombo 3, I-35121 Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Stradaioli G, Sylla L, Zelli R, Chiodi P, Monaci M. Effect of L-carnitine administration on the seminal characteristics of oligoasthenospermic stallions. Theriogenology 2004; 62:761-77. [PMID: 15226028 DOI: 10.1016/j.theriogenology.2003.11.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2003] [Revised: 11/26/2003] [Accepted: 11/29/2003] [Indexed: 11/21/2022]
Abstract
The effect of orally administered l-carnitine on the quality of semen obtained from stallions with different semen qualities was investigated. Four stallions with proven fertility (high motility group, HM) and with normal seminal characteristics (>50% progressive motility and > 80 x 10(6) spermatozoa/ml), and four questionable breeders (low motility group, LM) with <50% of sperm progressive motility and < 80 x 10(6) spermatozoa/ml, received p.o. 20 g of l-carnitine for 60 days. Blood and semen samples were collected before treatment (T0) and after 30 (T1) and 60 days (T2). Semen evaluation were performed on five consecutive daily ejaculates (n = 120 ejaculates) and conventional semen analysis was carried out on each ejaculate, both at collection and after refrigeration for 24, 48, and 72 h. Furthermore l-carnitine, acetylcarnitine, pyruvate, and lactate concentrations, and carnitine acetyltransferase activity (CAT) were determined both in raw semen and seminal plasma. There were an increase in progressive motile spermatozoa only in the LM group (26.8 +/- 12.9, 39.1 +/- 15.5, and 48.8 +/- 8.6 for T0, T1, and T2, respectively). Free seminal plasma carnitine concentration was higher in the LM group compared to the HM one. Both pyruvate and lactate were higher in the LM group. Raw semen and seminal plasma carnitine and acetylcarnitine levels correlate positively with both sperm concentration and progressive motility; moreover, acetylcarnitine content was positively correlated with total motile morphologically normal spermatozoa. In conclusion, oral administration of l-carnitine to stallions with questionable seminal characteristics may improve spermatozoa kinetics and morphological characteristics; whereas, it seem to be ineffective in normospermic animals.
Collapse
Affiliation(s)
- Giuseppe Stradaioli
- Department of Animal Production Science, University of Udine, via delle Scienze 208, 33100 Udine, Italy.
| | | | | | | | | |
Collapse
|
40
|
Mauri P, Benazzi L, Flohé L, Maiorino M, Pietta PG, Pilawa S, Roveri A, Ursini F. Versatility of selenium catalysis in PHGPx unraveled by LC/ESI-MS/MS. Biol Chem 2003; 384:575-88. [PMID: 12751787 DOI: 10.1515/bc.2003.065] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx; EC 1.11.1.12), a broad-spectrum thiol-dependent peroxidase, deserves renewed interest as a regulatory factor in various signaling cascades and as a structural protein in sperm cells. We present a first attempt to identify catalytic intermediates and derivatives of the selenoprotein by liquid chromatography coupled to electrospray tandem mass spectrometry (LC/ESI-MS/MS) and to explain observed specificities by molecular modeling. The ground state enzyme E proved to correspond to position 3-170 of the deduced porcine sequence with selenium being present as selenocysteine at position 46. The selenenic acid form, which is considered to be the first catalytic intermediate F formed by reaction with hydroperoxide, could not be identified. The second catalytic intermediate G was detected as Se-glutathionylated enzyme. This intermediate is generated in the reverse reaction where the active site selenol interacts with glutathione disulfide (GSSG). According to molecular models, specific binding of reduced glutathione (GSH) and of GSSG is inter alia facilitated by electrostatic attraction of Lys-48 and Lys-125. Polymerization of PHGPx is obtained under oxidizing conditions in the absence of low molecular weight thiols. Analysis of MS spectra revealed that the process is due to a selective reaction of Sec-46 with Cys-148' resulting in linear polymers representing dead-end intermediates (G'). FT Docking of PHGPx molecules allowed reactions of Sec-46 with either Cys-66', Cys-107', Cys-168' or Cys-148', the latter option being most likely as judged by the number of proposed intermediates with reasonable hydrogen bonds, interaction energies and interface areas. We conclude that the same catalytic principles, depending on the conditions, can drive the diverse actions of PHGPx, i.e. hydroperoxide reduction, GSSG reduction, S-derivatization and self-incorporation into biological structures.
Collapse
Affiliation(s)
- Pierluigi Mauri
- Institute for Biomedical Technologies, National Research Council, Viale F.lli Cervi 93, 1-20090 Segrate (Milano), Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jiménez A, Johansson C, Ljung J, Sagemark J, Berndt KD, Ren B, Tibbelin G, Ladenstein R, Kieselbach T, Holmgren A, Gustafsson JA, Miranda-Vizuete A. Human spermatid-specific thioredoxin-1 (Sptrx-1) is a two-domain protein with oxidizing activity. FEBS Lett 2002; 530:79-84. [PMID: 12387870 DOI: 10.1016/s0014-5793(02)03417-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spermatid-specific thioredoxin-1 (Sptrx-1) is the first member of the thioredoxin family of proteins with a tissue-specific expression pattern, found exclusively in the tail of elongating spermatids and spermatozoa. We describe here further biochemical characterization of human Sptrx-1 protein structure and enzymatic activity. In gel filtration chromatography human Sptrx-1 eluates as a 400 kDa protein consistent with either an oligomeric form, not maintained by intermolecular disulfide bonding, and/or a highly asymmetrical structure. Analysis of circular dichroism spectra of fragments 1-360 and 361-469 and comparison to spectra of full-length Sptrx-1 supports a two-domain organization with a largely unstructured N-terminal domain and a folded thioredoxin-like C-terminal domain. Functionally, Sptrx-1 behaves as an oxidant in vitro when using selenite, but not oxidized glutathione, as electron acceptor. This oxidizing enzymatic activity suggests that Sptrx-1 might govern the stabilization (by disulfide cross-linking) of the different structures in the developing tail of spermatids and spermatozoa.
Collapse
Affiliation(s)
- Alberto Jiménez
- Center for Biotechnology, Department of Biosciences at NOVUM, Karolinska Institutet, S-14157 Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|