1
|
Rashad WA, Sakr S, Domouky AM. Comparative study of oral versus parenteral crocin in mitigating acrolein-induced lung injury in albino rats. Sci Rep 2022; 12:10233. [PMID: 35715565 PMCID: PMC9205959 DOI: 10.1038/s41598-022-14252-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Acrolein (Ac) is the second most commonly inhaled toxin, produced in smoke of fires, tobacco smoke, overheated oils, and fried foods; and usually associated with lung toxicity. Crocin (Cr) is a natural carotenoid with a direct antioxidant capacity. Yet, oral administration of crocin as a natural rout is doubtful, because of poor absorbability. Therefore, the current study aimed to compare the potential protective effect of oral versus intraperitoneal (ip) crocin in mitigating Ac-induced lung toxicity. 50 Adult rats were randomly divided into 5 equal groups; Control (oral-saline and ip-saline) group, Cr (oral-Cr and ip-Cr) group, Ac group, oral-Cr/Ac group, and ip-Cr/Ac group; for biochemical, histopathological, and immunohistochemical investigations. Results indicated increased oxidative stress and inflammatory biomarkers in lungs of Ac-treated group. Histopathological and immunohistochemical examinations revealed lung edema, infiltration, fibrosis, and altered expression of apoptotic and anti-apoptotic markers. Compared to oral-Cr/Ac group, the ip-Cr/Ac group demonstrated remarkable improvement in the oxidative, inflammatory, and apoptotic biomarkers, as well as the histopathological alterations. In conclusion, intraperitoneal crocin exerts a more protective effect on acrolein-induced lung toxicity than the orally administered crocin.
Collapse
Affiliation(s)
- Walaa Abdelhaliem Rashad
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt.
| | - Samar Sakr
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt
| | - Ayat M Domouky
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt
| |
Collapse
|
2
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
3
|
Drinkwater N, Malcolm TR, McGowan S. M17 aminopeptidases diversify function by moderating their macromolecular assemblies and active site environment. Biochimie 2019; 166:38-51. [DOI: 10.1016/j.biochi.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/24/2022]
|
4
|
Naringin protects acrolein-induced pulmonary injuries through modulating apoptotic signaling and inflammation signaling pathways in mice. J Nutr Biochem 2018; 59:10-16. [DOI: 10.1016/j.jnutbio.2018.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/09/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022]
|
5
|
Abstract
Many potentially toxic electrophilic xenobiotics and some endogenous compounds are detoxified by conversion to the corresponding glutathione S-conjugate, which is metabolized to the N-acetylcysteine S-conjugate (mercapturate) and excreted. Some mercapturate pathway components, however, are toxic. Bioactivation (toxification) may occur when the glutathione S-conjugate (or mercapturate) is converted to a cysteine S-conjugate that undergoes a β-lyase reaction. If the sulfhydryl-containing fragment produced in this reaction is reactive, toxicity may ensue. Some drugs and halogenated workplace/environmental contaminants are bioactivated by this mechanism. On the other hand, cysteine S-conjugate β-lyases occur in nature as a means of generating some biologically useful sulfhydryl-containing compounds.
Collapse
|
6
|
Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione. Proc Natl Acad Sci U S A 2017; 114:E3233-E3242. [PMID: 28373563 DOI: 10.1073/pnas.1613736114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that Nit1-KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of Nit1-KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable "repair enzyme" to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in Escherichia coli and other glutathione-producing bacteria.
Collapse
|
7
|
Cappiello M, Spinelli M, Mormino M, Renzone G, Scaloni A, Moschini R, Balestri F, Mura U, Del-Corso A. Purification and characterization of a Cys-Gly hydrolase from the gastropod mollusk, Patella caerulea. J Enzyme Inhib Med Chem 2016; 31:1560-5. [PMID: 27541739 DOI: 10.3109/14756366.2016.1158170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A magnesium-dependent cysteinyl-glycine hydrolyzing enzyme from the gastropod mollusk Patella caerulea was purified to electrophoretic homogeneity through a simple and rapid purification protocol. The molecular masses of the native protein and the subunit suggest that the enzyme has a homohexameric structure. Structural data in combination with kinetic parameters determined with Cys-Gly and compared with Leu-Gly as a substrate, indicate that the purified enzyme is a member of the peptidase family M17. The finding that an enzyme of the peptidase family M17 is responsible also in mollusks for the breakdown of Cys-Gly confirms the important role of this peptidase family in the glutathione metabolism.
Collapse
Affiliation(s)
- Mario Cappiello
- a Biology-Biochemistry Unit, University of Pisa , Pisa , Italy and
| | - Matteo Spinelli
- a Biology-Biochemistry Unit, University of Pisa , Pisa , Italy and
| | - Maurizio Mormino
- a Biology-Biochemistry Unit, University of Pisa , Pisa , Italy and
| | - Giovanni Renzone
- b ISPAAM-Proteomics & Mass Spectrometry Laboratory, National Research Council , Naples , Italy
| | - Andrea Scaloni
- b ISPAAM-Proteomics & Mass Spectrometry Laboratory, National Research Council , Naples , Italy
| | - Roberta Moschini
- a Biology-Biochemistry Unit, University of Pisa , Pisa , Italy and
| | | | - Umberto Mura
- a Biology-Biochemistry Unit, University of Pisa , Pisa , Italy and
| | | |
Collapse
|
8
|
Dose-dependent metabolic alterations in human cells exposed to gamma irradiation. PLoS One 2014; 9:e113573. [PMID: 25419661 PMCID: PMC4242643 DOI: 10.1371/journal.pone.0113573] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/25/2014] [Indexed: 11/25/2022] Open
Abstract
Radiation exposure is a threat to public health because it causes many diseases, such as cancers and birth defects, due to genetic modification of cells. Compared with the past, a greater number of people are more frequently exposed to higher levels of radioactivity today, not least due to the increased use of diagnostic and therapeutic radiation-emitting devices. In this study, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS)-based metabolic profiling was used to investigate radiation- induced metabolic changes in human fibroblasts. After exposure to 1 and 5 Gy of γ-radiation, the irradiated fibroblasts were harvested at 24, 48, and 72 h and subjected to global metabolite profiling analysis. Mass spectral peaks of cell extracts were analyzed by pattern recognition using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The results showed that the cells irradiated with 1 Gy returned to control levels at 72 h post radiation, whereas cells irradiated with 5 Gy were quite unlike the controls; therefore, cells irradiated with 1 Gy had recovered, whereas those irradiated with 5 Gy had not. Lipid and amino acid levels increased after the higher-level radiation, indicating degradation of membranes and proteins. These results suggest that MS-based metabolite profiling of γ-radiation-exposed human cells provides insight into the global metabolic alterations in these cells.
Collapse
|
9
|
Vorwerk H, Mohr J, Huber C, Wensel O, Schmidt-Hohagen K, Gripp E, Josenhans C, Schomburg D, Eisenreich W, Hofreuter D. Utilization of host-derived cysteine-containing peptides overcomes the restricted sulphur metabolism of Campylobacter jejuni. Mol Microbiol 2014; 93:1224-45. [PMID: 25074326 DOI: 10.1111/mmi.12732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 12/12/2022]
Abstract
The non-glycolytic food-borne pathogen Campylobacter jejuni successfully colonizes the intestine of various hosts in spite of its restricted metabolic properties. While several amino acids are known to be used by C. jejuni as energy sources, none of these have been found to be essential for growth. Here we demonstrated through phenotype microarray analysis that cysteine utilization increases the metabolic activity of C. jejuni. Furthermore, cysteine was crucial for its growth as C. jejuni was unable to synthesize it from sulphate or methionine. Our study showed that C. jejuni compensates this limited anabolic capacity by utilizing sulphide, thiosulphate, glutathione and the dipeptides γGlu-Cys, Cys-Gly and Gly-Cys as sulphur sources and cysteine precursors. A panel of C. jejuni mutants in putative peptidases and peptide transporters were generated and tested for their participation in the catabolism of the cysteine-containing peptides, and the predicted transporter protein CJJ81176_0236 was discovered to facilitate the growth with the dipeptide Cys-Gly, Ile-Arg and Ile-Trp. It was named Campylobacter peptide transporter A (CptA) and is the first representative of the oligopeptide transporter OPT family demonstrated to participate in the glutathione-derivative Cys-Gly catabolism in prokaryotes. Our study provides new insights into how host- and microbiota-derived substrates like sulphide, thiosulphate and short peptides are used by C. jejuni to compensate its restricted metabolic capacities.
Collapse
Affiliation(s)
- Hanne Vorwerk
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Poon JCH, Josephy PD. Hydrolysis of S-aryl-cysteinylglycine conjugates catalyzed by porcine kidney cortex membrane dipeptidase. Xenobiotica 2012; 42:1178-86. [DOI: 10.3109/00498254.2012.700427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Kaur H, Ganguli D, Bachhawat AK. Glutathione degradation by the alternative pathway (DUG pathway) in Saccharomyces cerevisiae is initiated by (Dug2p-Dug3p)2 complex, a novel glutamine amidotransferase (GATase) enzyme acting on glutathione. J Biol Chem 2012; 287:8920-31. [PMID: 22277648 DOI: 10.1074/jbc.m111.327411] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recently identified, fungi-specific alternative pathway of glutathione degradation requires the participation of three genes, DUG1, DUG2, and DUG3. Dug1p has earlier been shown to function as a Cys-Gly-specific dipeptidase. In the present study, we describe the characterization of Dug2p and Dug3p. Dug3p has a functional glutamine amidotransferase (GATase) II domain that is catalytically important for glutathione degradation as demonstrated through mutational analysis. Dug2p, which has an N-terminal WD40 and a C-terminal M20A peptidase domain, has no peptidase activity. The previously demonstrated Dug2p-Dug3p interaction was found to be mediated through the WD40 domain of Dug2p. Dug2p was also shown to be able to homodimerize, and this was mediated by its M20A peptidase domain. In vitro reconstitution assays revealed that Dug2p and Dug3p were required together for the cleavage of glutathione into glutamate and Cys-Gly. Purification through gel filtration chromatography confirmed the formation of a Dug2p-Dug3p complex. The functional complex had a molecular weight that corresponded to (Dug2p-Dug3p)(2) in addition to higher molecular weight oligomers and displayed Michaelis-Menten kinetics. (Dug2p-Dug3p)(2) had a K(m) for glutathione of 1.2 mm, suggesting a novel GATase enzyme that acted on glutathione. Dug1p activity in glutathione degradation was found to be restricted to its Cys-Gly peptidase activity, which functioned downstream of the (Dug2p-Dug3p)(2) GATase. The DUG2 and DUG3 genes, but not DUG1, were derepressed by sulfur limitation. Based on these studies and the functioning of GATases, a mechanism is proposed for the functioning of the Dug proteins in the degradation of glutathione.
Collapse
Affiliation(s)
- Hardeep Kaur
- Institute of Microbial Technology, Chandigarh, India
| | | | | |
Collapse
|
12
|
Chen SH, Cao MJ, Su WJ, Wu GP. Purification and characterization of a novel leucine aminopeptidase from the earthworm Eisenia foetida. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Affiliation(s)
- Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| | | |
Collapse
|
14
|
Lewerenz J, Maher P. Control of redox state and redox signaling by neural antioxidant systems. Antioxid Redox Signal 2011; 14:1449-65. [PMID: 20812872 DOI: 10.1089/ars.2010.3600] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The glutathione/glutathione disulfide (GSH/GSSG) redox pair forms the major redox couple in cells and as such plays a critical role in regulating redox-dependent cellular functions. Not only does GSH act as an antioxidant but it can also modulate the activity of a variety of different proteins. An impairment in GSH status is thought to be the precipitating event in a wide range of neurological disorders. Therefore, understanding how to maintain GSH in the CNS could provide a valuable therapeutic approach. Intracellular GSH levels are regulated by a complex series of pathways that include substrate transport and availability, rates of synthesis and regeneration, GSH utilization, and GSH efflux. To date, the most effective approaches for maintaining GSH levels in the CNS include enhancing cyst(e)ine uptake both directly and indirectly via transcriptional upregulation of system x(c)(-), increasing GSH synthesis via transcriptional upregulation of the rate limiting enzyme in GSH biosynthesis, and decreasing GSH utilization. Among the transcription factors that play critical roles in GSH metabolism are NF-E2-related factor 2 (Nrf2) and activating transcription factor 4 (ATF4). Thus, compounds that can upregulate these transcription factors may be particularly useful in promoting the functional maintenance of the CNS through their effects on GSH metabolism.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department for Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
15
|
Pícha J, Liboska R, Buděšínský M, Jiráček J, Pawełczak M, Mucha A. Unusual activity pattern of leucine aminopeptidase inhibitors based on phosphorus containing derivatives of methionine and norleucine. J Enzyme Inhib Med Chem 2010; 26:155-61. [PMID: 20578976 DOI: 10.3109/14756366.2010.482047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ligands containing bulky aliphatic P1 residues exhibit a high affinity towards cytosolic leucine aminopeptidase, a bizinc protease of biomedical significance. According to this specificity, a series of phosphonic and phosphinic compounds have been put forward as novel putative inhibitors of the enzyme. These phosphonic and phosphinic compounds were derivatives of methionine and norleucine as both single amino acids and dipeptides. The designed inhibitors were synthesised and tested towards the peptidase isolated from porcine kidneys using an improved separation procedure affording superior homogeneity. Unexpectedly, organophosphorus derivatives of methionine and norleucine exhibited moderate activity with K(i) values in the micromolar range.
Collapse
Affiliation(s)
- Jan Pícha
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, V.V.I., Flemingovo Nám., Praha, Czech Republic
| | | | | | | | | | | |
Collapse
|
16
|
Kesinger NG, Langsdorf BL, Yokochi AF, Miranda CL, Stevens JF. Formation of a vitamin C conjugate of acrolein and its paraoxonase-mediated conversion into 5,6,7,8-tetrahydroxy-4-oxooctanal. Chem Res Toxicol 2010; 23:836-44. [PMID: 20353174 PMCID: PMC2858635 DOI: 10.1021/tx900452j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Vitamin C (ascorbic acid) has been reported to participate in Michael addition reactions in vitro to form vitamin C conjugates with alpha,beta-unsaturated aldehydes, such as acrolein. This study shows evidence for the formation and metabolism of the vitamin C conjugate of acrolein (AscACR) in cultured human monocytic THP-1 cells exposed to acrolein diacetate. By using (18)O and (13)C labeling in combination with liquid chromatography-tandem mass spectrometry, AscACR was shown to undergo hydrolytic conversion of the ascorbyl lactone into an intermediate carboxylic acid. Subsequent decarboxylation of the carboxylic acid yielded 5,6,7,8-tetrahydroxy-4-oxooctanal (THO). When THP-1 cells were pretreated with ascorbic acid (1 mM, 18 h) and then exposed to acrolein diacetate, THO was detected as its pentafluorobenzyl oxime derivative in the cell lysates and medium. Treatment of THP-1 cells with both ascorbic acid and acrolein diacetate was required for THO formation. The formation of THO from AscACR was facilitated by the lactonase enzymes, human recombinant paraoxonases 1 and 2. THP-1 cells exhibited PON activity, which explains the catalytic conversion of AscACR into THO in these cells. THO was formed in addition to metabolites of the glutathione conjugate of acrolein, indicating that THO formation contributes to the elimination of acrolein in a cellular environment.
Collapse
Affiliation(s)
- Nicholas G. Kesinger
- Linus Pauling Institute and the Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Brandi L. Langsdorf
- Linus Pauling Institute and the Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Alexandre F. Yokochi
- Department of Chemical Engineering, Oregon State University, Corvallis, Oregon 97331
| | - Cristobal L. Miranda
- Linus Pauling Institute and the Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Jan F. Stevens
- Linus Pauling Institute and the Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
17
|
Veiga-da-Cunha M, Tyteca D, Stroobant V, Courtoy PJ, Opperdoes FR, Van Schaftingen E. Molecular identification of NAT8 as the enzyme that acetylates cysteine S-conjugates to mercapturic acids. J Biol Chem 2010; 285:18888-98. [PMID: 20392701 DOI: 10.1074/jbc.m110.110924] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Our goal was to identify the reaction catalyzed by NAT8 (N-acetyltransferase 8), a putative N-acetyltransferase homologous to the enzyme (NAT8L) that produces N-acetylaspartate in brain. The almost exclusive expression of NAT8 in kidney and liver and its predicted association with the endoplasmic reticulum suggested that it was cysteinyl-S-conjugate N-acetyltransferase, the microsomal enzyme that catalyzes the last step of mercapturic acid formation. In agreement, HEK293T extracts of cells overexpressing NAT8 catalyzed the N-acetylation of S-benzyl-L-cysteine and leukotriene E(4), two cysteine conjugates, but were inactive on other physiological amines or amino acids. Confocal microscopy indicated that NAT8 was associated with the endoplasmic reticulum. Neither of the two frequent single nucleotide polymorphisms found in NAT8, E104K nor F143S, changed the enzymatic activity or the expression of the protein by >or=2-fold, whereas a mutation (R149K) replacing an extremely conserved arginine suppressed the activity. Sequencing of genomic DNA and EST clones corresponding to the NAT8B gene, which resulted from duplication of the NAT8 gene in the primate lineage, disclosed the systematic presence of a premature stop codon at codon 16. Furthermore, truncated NAT8B and NAT8 proteins starting from the following methionine (Met-25) showed no cysteinyl-S-conjugate N-acetyltransferase activity when transfected in HEK293T cells. Taken together, these findings indicate that NAT8 is involved in mercapturic acid formation and confirm that NAT8B is an inactive gene in humans. NAT8 homologues are found in all vertebrate genomes, where they are often encoded by multiple, tandemly repeated genes as many other genes encoding xenobiotic metabolism enzymes.
Collapse
Affiliation(s)
- Maria Veiga-da-Cunha
- Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Many potentially toxic electrophiles react with glutathione to form glutathione S-conjugates in reactions catalyzed or enhanced by glutathione S-transferases. The glutathione S-conjugate is sequentially converted to the cysteinylglycine-, cysteine- and N-acetyl-cysteine S-conjugate (mercapturate). The mercapturate is generally more polar and water soluble than the parent electrophile and is readily excreted. Excretion of the mercapturate represents a detoxication mechanism. Some endogenous compounds, such as leukotrienes, prostaglandin (PG) A2, 15-deoxy-Δ12,14-PGJ2, and hydroxynonenal can also be metabolized to mercapturates and excreted. On occasion, however, formation of glutathione S- and cysteine S-conjugates are bioactivation events as the metabolites are mutagenic and/or cytotoxic. When the cysteine S-conjugate contains a strong electron-withdrawing group attached at the sulfur, it may be converted by cysteine S-conjugate β-lyases to pyruvate, ammonium and the original electrophile modified to contain an –SH group. If this modified electrophile is highly reactive then the enzymes of the mercapturate pathway together with the cysteine S-conjugate β-lyases constitute a bioactivation pathway. Some endogenous halogenated environmental contaminants and drugs are bioactivated by this mechanism. Recent studies suggest that coupling of enzymes of the mercapturate pathway to cysteine S-conjugate β-lyases may be more common in nature and more widespread in the metabolism of electrophilic xenobiotics than previously realized.
Collapse
|
19
|
Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009; 390:191-214. [PMID: 19166318 DOI: 10.1515/bc.2009.033] [Citation(s) in RCA: 739] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and as a result, disturbances in GSH homeostasis are implicated in the etiology and/or progression of a number of human diseases, including cancer, diseases of aging, cystic fibrosis, and cardiovascular, inflammatory, immune, metabolic, and neurodegenerative diseases. Owing to the pleiotropic effects of GSH on cell functions, it has been quite difficult to define the role of GSH in the onset and/or the expression of human diseases, although significant progress is being made. GSH levels, turnover rates, and/or oxidation state can be compromised by inherited or acquired defects in the enzymes, transporters, signaling molecules, or transcription factors that are involved in its homeostasis, or from exposure to reactive chemicals or metabolic intermediates. GSH deficiency or a decrease in the GSH/glutathione disulfide ratio manifests itself largely through an increased susceptibility to oxidative stress, and the resulting damage is thought to be involved in diseases, such as cancer, Parkinson's disease, and Alzheimer's disease. In addition, imbalances in GSH levels affect immune system function, and are thought to play a role in the aging process. Just as low intracellular GSH levels decrease cellular antioxidant capacity, elevated GSH levels generally increase antioxidant capacity and resistance to oxidative stress, and this is observed in many cancer cells. The higher GSH levels in some tumor cells are also typically associated with higher levels of GSH-related enzymes and transporters. Although neither the mechanism nor the implications of these changes are well defined, the high GSH content makes cancer cells chemoresistant, which is a major factor that limits drug treatment. The present report highlights and integrates the growing connections between imbalances in GSH homeostasis and a multitude of human diseases.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Kaur H, Kumar C, Junot C, Toledano MB, Bachhawat AK. Dug1p Is a Cys-Gly peptidase of the gamma-glutamyl cycle of Saccharomyces cerevisiae and represents a novel family of Cys-Gly peptidases. J Biol Chem 2009; 284:14493-502. [PMID: 19346245 DOI: 10.1074/jbc.m808952200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GSH metabolism in yeast is carried out by the gamma-glutamyl cycle as well as by the DUG complex. One of the last steps in the gamma-glutamyl cycle is the cleavage of Cys-Gly by a peptidase to the constitutent amino acids. Saccharomyces cerevisiae extracts carry Cys-Gly dipeptidase activity, but the corresponding gene has not yet been identified. We describe the isolation and characterization of a novel Cys-Gly dipeptidase, encoded by the DUG1 gene. Dug1p had previously been identified as part of the Dug1p-Dug2p-Dug3p complex that operates as an alternate GSH degradation pathway and has also been suggested to function as a possible di- or tripeptidase based on genetic studies. We show here that Dug1p is a homodimer that can also function in a Dug2-Dug3-independent manner as a dipeptidase with high specificity for Cys-Gly and no activity toward tri- or tetrapeptides in vitro. This activity requires zinc or manganese ions. Yeast cells lacking Dug1p (dug1Delta) accumulate Cys-Gly. Unlike all other Cys-Gly peptidases, which are members of the metallopeptidase M17, M19, or M1 families, Dug1p is the first to belong to the M20A family. We also show that the Dug1p Schizosaccharomyces pombe orthologue functions as the exclusive Cys-Gly peptidase in this organism. The human orthologue CNDP2 also displays Cys-Gly peptidase activity, as seen by complementation of the dug1Delta mutant and by biochemical characterization, which revealed a high substrate specificity and affinity for Cys-Gly. The results indicate that the Dug1p family represents a novel class of Cys-Gly dipeptidases.
Collapse
Affiliation(s)
- Hardeep Kaur
- Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036, India
| | | | | | | | | |
Collapse
|
21
|
Hanigan MH, Townsend DM, Cooper AJL. Metabolism of cisplatin to a nephrotoxin. Toxicology 2008; 257:174-5; author reply 176-7. [PMID: 19135119 DOI: 10.1016/j.tox.2008.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 11/30/2022]
|
22
|
Lap4, a vacuolar aminopeptidase I, is involved in cadmium-glutathione metabolism. Biometals 2008; 22:243-9. [DOI: 10.1007/s10534-008-9160-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
|
23
|
Zhang L, Perdomo G, Kim DH, Qu S, Ringquist S, Trucco M, Dong HH. Proteomic analysis of fructose-induced fatty liver in hamsters. Metabolism 2008; 57:1115-24. [PMID: 18640390 PMCID: PMC2553352 DOI: 10.1016/j.metabol.2008.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 03/18/2008] [Indexed: 01/19/2023]
Abstract
High fructose consumption is associated with the development of fatty liver and dyslipidemia with poorly understood mechanisms. We used a matrix-assisted laser desorption/ionization-based proteomics approach to define the molecular events that link high fructose consumption to fatty liver in hamsters. Hamsters fed high-fructose diet for 8 weeks, as opposed to regular-chow-fed controls, developed hyperinsulinemia and hyperlipidemia. High-fructose-fed hamsters exhibited fat accumulation in liver. Hamsters were killed, and liver tissues were subjected to matrix-assisted laser desorption/ionization-based proteomics. This approach identified a number of proteins whose expression levels were altered by >2-fold in response to high fructose feeding. These proteins fall into 5 different categories including (1) functions in fatty acid metabolism such as fatty acid binding protein and carbamoyl-phosphate synthase; (2) proteins in cholesterol and triglyceride metabolism such as apolipoprotein A-1 and protein disulfide isomerase; (3) molecular chaperones such as GroEL, peroxiredoxin 2, and heat shock protein 70, whose functions are important for protein folding and antioxidation; (4) enzymes in fructose catabolism such as fructose-1,6-bisphosphatase and glycerol kinase; and (5) proteins with housekeeping functions such as albumin. These data provide insight into the molecular basis linking fructose-induced metabolic shift to the development of metabolic syndrome characterized by hepatic steatosis and dyslipidemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - H. Henry Dong
- Correspondence should be addressed to: Dr. Dong, Rangos Research Center, Children’s Hospital of Pittsburgh, 3460 5th Avenue, Rm 5140, Pittsburgh, PA 15213, Tel: +1 (412) 692-6324, Fax: +1 (412) 692-5809,
| |
Collapse
|
24
|
Chu L, Lai Y, Xu X, Eddy S, Yang S, Song L, Kolodrubetz D. A 52-kDa leucyl aminopeptidase from treponema denticola is a cysteinylglycinase that mediates the second step of glutathione metabolism. J Biol Chem 2008; 283:19351-8. [PMID: 18482986 PMCID: PMC2443665 DOI: 10.1074/jbc.m801034200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/28/2008] [Indexed: 11/06/2022] Open
Abstract
The metabolism of glutathione by the periodontal pathogen Treponema denticola produces hydrogen sulfide, which may play a role in the host tissue destruction seen in periodontitis. H2S production in this organism has been proposed to occur via a three enzyme pathway, gamma-glutamyltransferase, cysteinylglycinase (CGase), and cystalysin. In this study, we describe the purification and characterization of T. denticola CGase. Standard approaches were used to purify a 52-kDa CGase activity from T. denticola, and high pressure liquid chromatography electrospray ionization tandem mass spectrometry analysis of this molecule showed that it matches the amino acid sequence of a predicted 52-kDa protein in the T. denticola genome data base. A recombinant version of this protein was overexpressed in and purified from Escherichia coli and shown to catalyze the hydrolysis of cysteinylglycine (Cys-Gly) with the same kinetics as the native protein. Surprisingly, because sequence homology indicates that this protein is a member of a family of metalloproteases called M17 leucine aminopeptidases, the preferred substrate for the T. denticola protein is Cys-Gly (k cat/Km of 8.2 microm(-1) min(-1)) not l-Leu-p-NA (k cat/Km of 1.1 microm(-1) min(-1)). The activity of CGase for Cys-Gly is optimum at pH 7.3 and is enhanced by Mn2+, Co2+, or Mg2+ but not by Zn2+ or Ca2+. Importantly, in combination with the two other previously purified T. denticola enzymes, gamma-glutamyltransferase and cystalysin, CGase mediates the in vitro degradation of glutathione into the expected end products, including H2S. These results prove that T. denticola contains the entire three-step pathway to produce H2S from glutathione, which may be important for pathogenesis.
Collapse
Affiliation(s)
- Lianrui Chu
- Department of Orthodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Stevens JF, Maier CS. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res 2008; 52:7-25. [PMID: 18203133 PMCID: PMC2423340 DOI: 10.1002/mnfr.200700412] [Citation(s) in RCA: 494] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acrolein (2-propenal) is ubiquitously present in (cooked) foods and in the environment. It is formed from carbohydrates, vegetable oils and animal fats, amino acids during heating of foods, and by combustion of petroleum fuels and biodiesel. Chemical reactions responsible for release of acrolein include heat-induced dehydration of glycerol, retro-aldol cleavage of dehydrated carbohydrates, lipid peroxidation of polyunsaturated fatty acids, and Strecker degradation of methionine and threonine. Smoking of tobacco products equals or exceeds the total human exposure to acrolein from all other sources. The main endogenous sources of acrolein are myeloperoxidase-mediated degradation of threonine and amine oxidase-mediated degradation of spermine and spermidine, which may constitute a significant source of acrolein in situations of oxidative stress and inflammation. Acrolein is metabolized by conjugation with glutathione and excreted in the urine as mercapturic acid metabolites. Acrolein forms Michael adducts with ascorbic acid in vitro, but the biological relevance of this reaction is not clear. The biological effects of acrolein are a consequence of its reactivity towards biological nucleophiles such as guanine in DNA and cysteine, lysine, histidine, and arginine residues in critical regions of nuclear factors, proteases, and other proteins. Acrolein adduction disrupts the function of these biomacromolecules which may result in mutations, altered gene transcription, and modulation of apoptosis.
Collapse
Affiliation(s)
- Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA.
| | | |
Collapse
|
26
|
Abstract
Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Several other proteins, including cPLA2α (cytosolic phospholipase A2α) and FLAP (5-LO-activating protein) also assemble at the perinuclear region before production of LTA4. LTC4 synthase is an integral membrane protein that is present at the nuclear envelope; however, LTA4 hydrolase remains cytosolic. Biologically active LTB4 is metabolized by ω-oxidation carried out by specific cytochrome P450s (CYP4F) followed by β-oxidation from the ω-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase that forms a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a γ-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before ω-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease.
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, Mail Stop 8303, University of Colorado at Denver and Health Sciences Center, 12801 E. 17th Avenue, P.O. Box 6511, Aurora, CO 80045-0511, USA
| | | |
Collapse
|
27
|
Vassiliou S, Xeilari M, Yiotakis A, Grembecka J, Pawełczak M, Kafarski P, Mucha A. A synthetic method for diversification of the P1' substituent in phosphinic dipeptides as a tool for exploration of the specificity of the S1' binding pockets of leucine aminopeptidases. Bioorg Med Chem 2007; 15:3187-200. [PMID: 17337192 DOI: 10.1016/j.bmc.2007.02.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 02/13/2007] [Accepted: 02/20/2007] [Indexed: 11/21/2022]
Abstract
A novel, general, and versatile method of diversification of the P1' position in phosphinic pseudodipeptides, presumable inhibitors of proteolytic enzymes, was elaborated. The procedure was based on parallel derivatization of the amino group in the suitably protected phosphinate building blocks with appropriate alkyl and aryl halides. This synthetic strategy represents an original approach to phosphinic dipeptide chemistry. Its usefulness was confirmed by obtaining a series of P1' modified phosphinic dipeptides, inhibitors of cytosolic leucine aminopeptidase, through computer-aided design basing on the structure of homophenylalanyl-phenylalanine analogue (hPheP[CH(2)]Phe) bound in the enzyme active site as a lead structure. In this approach novel interactions between inhibitor P1' fragment and the S1' region of the enzyme, particularly hydrogen bonding involving Asn330 and Asp332 enzyme residues, were predicted. The details of the design, synthesis, and activity evaluation toward cytosolic leucine aminopeptidase and aminopeptidase N are discussed. Although the potency of the lead compound has not been improved, marked selectivity of the synthesized inhibitors toward both studied enzymes was observed.
Collapse
Affiliation(s)
- Stamatia Vassiliou
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
28
|
Mucha A, Kunert A, Grembecka J, Pawełczak M, Kafarski P. A phosphonamidate containing aromatic N-terminal amino group as inhibitor of leucine aminopeptidase-design, synthesis and stability. Eur J Med Chem 2006; 41:768-72. [PMID: 16690170 DOI: 10.1016/j.ejmech.2006.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 01/31/2006] [Accepted: 03/02/2006] [Indexed: 11/28/2022]
Abstract
Fully deprotected phosphonamidate dipeptides, predicted as effective inhibitors of cytosolic leucine aminopeptidase, showed unexpected instability in water solution at pH below 12. Their hydrolysis rate was strictly correlated with basicity of the N-terminal amino group. To improve this feature a phosphonamidate analogue containing less basic, aromatic 2-aminophenylphosphonate residue in P1 position of the inhibitor was designed. The target compound was synthesised starting from diethyl 2-nitrophosphonate in several step procedure. The decrease in basicity of the terminal amino moiety of the modified analogue in fact resulted in satisfactory improvement of hydrolytic stability of the P-N bond. The developed phosphonamidate was proved to be fully resistant to hydrolysis above pH 7. Surprisingly, tested in enzymatic assays towards leucine aminopeptidase (optimum pH 8.5), it did not exhibit inhibition activity up to milimolar concentration. The explanation could be that diminishing the basic character of the terminal amino group may result in a change of its affinity towards the zinc ions.
Collapse
Affiliation(s)
- A Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | | | | | | | | |
Collapse
|
29
|
Li S, Whorton AR. Identification of stereoselective transporters for S-nitroso-L-cysteine: role of LAT1 and LAT2 in biological activity of S-nitrosothiols. J Biol Chem 2005; 280:20102-10. [PMID: 15769744 DOI: 10.1074/jbc.m413164200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many of the biological effects of nitric oxide are mediated by S-nitrosothiols. However, the mechanisms by which S-nitrosothiols transduce their activity across cell membranes are unclear. We show that the pathway responsible for the cellular effects of S-nitrosothiols is specific for S-nitrosocysteine (CSNO), is stereoselective, and requires direct uptake of intact L-CSNO. Transport is independent of extracellular sodium, competitively inhibited by leucine, and blocked by 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, a specific inhibitor of the system L amino acid transporter family. Other nitrosothiols such as S-nitrosoglutathione are not substrates for transport and require reaction with L-cysteine for activity. To show that system L family members mediate uptake, we expressed two members, LAT1 and LAT2, in Xenopus oocytes. Both LAT1 and LAT2, when co-expressed with 4F2 heavy chain, were found to efficiently transport L-CSNO. Mammalian cells were shown to express LAT1 and LAT2. A431 cells express both proteins, whereas T24 cells express only LAT1. Overexpression of LAT1 in T24 cells using recombinant adenoviruses led to increased uptake of L-CSNO, whereas knockdown using a specific small interfering RNA led to decreased uptake. These data definitively identify LAT1 and LAT2 as members of system L that mediate transmembrane movement of l-CSNO and suggest that system L family members are involved in the cellular activity of small molecular weight nitrosothiols.
Collapse
Affiliation(s)
- Sheng Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
30
|
Cappiello M, Lazzarotti A, Buono F, Scaloni A, D'Ambrosio C, Amodeo P, Méndez BL, Pelosi P, Del Corso A, Mura U. New role for leucyl aminopeptidase in glutathione turnover. Biochem J 2004; 378:35-44. [PMID: 14583094 PMCID: PMC1223929 DOI: 10.1042/bj20031336] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 10/22/2003] [Accepted: 10/29/2003] [Indexed: 11/17/2022]
Abstract
A manganese-dependent cysteinyl-glycine hydrolysing activity has been purified to electrophoretic homogeneity from bovine lens. The characterization of the purified enzyme (molecular mass of the native protein, molecular mass of the subunit and extensive primary structure analysis) allowed the unequivocal attribution of the cysteinyl-glycine hydrolysing activity, which is usually associated with alanyl aminopeptidase (EC 3.4.11.2) or membrane-bound dipeptidase (EC 3.4.13.19), to LAP (leucyl aminopeptidase; EC 3.4.11.1). Analysis of the pH dependence of Cys-Gly hydrolysis catalysed by LAP, supported by a molecular modelling approach to the enzyme-substrate conformation, gave insights into the ability of the enzyme to recognize Cys-Gly as a substrate. Due to the effectiveness of LAP in hydrolysing Cys-Gly (K(m)=0.57 mM, kcat=6.0x10(3) min(-1) at pH 7.4 and 25 degrees C) with respect to other dipeptide substrates, a new role for this enzyme in glutathione turnover is proposed.
Collapse
Affiliation(s)
- Mario Cappiello
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, via S. Maria 55, 56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|