1
|
Bülck C, Nyström EE, Koudelka T, Mannbar-Frahm M, Andresen G, Radhouani M, Tran F, Scharfenberg F, Schrell F, Armbrust F, Dahlke E, Zhao B, Vervaeke A, Theilig F, Rosenstiel P, Starkl P, Rosshart SP, Fickenscher H, Tholey A, Hansson GC, Becker-Pauly C. Proteolytic processing of galectin-3 by meprin metalloproteases is crucial for host-microbiome homeostasis. SCIENCE ADVANCES 2023; 9:eadf4055. [PMID: 37000885 PMCID: PMC10065446 DOI: 10.1126/sciadv.adf4055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The metalloproteases meprin α and meprin β are highly expressed in the healthy gut but significantly decreased in inflammatory bowel disease, implicating a protective role in mucosal homeostasis. In the colon, meprin α and meprin β form covalently linked heterodimers tethering meprin α to the plasma membrane, therefore presenting dual proteolytic activity in a unique enzyme complex. To unravel its function, we applied N-terminomics and identified galectin-3 as the major intestinal substrate for meprin α/β heterodimers. Galectin-3-deficient and meprin α/β double knockout mice show similar alterations in their microbiome in comparison to wild-type mice. We further demonstrate that meprin α/β heterodimers differentially process galectin-3 upon bacterial infection, in germ-free, conventionally housed (specific pathogen-free), or wildling mice, which in turn regulates the bacterial agglutination properties of galectin-3. Thus, the constitutive cleavage of galectin-3 by meprin α/β heterodimers may play a key role in colon host-microbiome homeostasis.
Collapse
Affiliation(s)
- Cynthia Bülck
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | | | - Tomas Koudelka
- Institute of Experimental Medicine, University of Kiel, 24188 Kiel, Germany
| | - Michael Mannbar-Frahm
- Institute of Infection Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24015 Kiel, Germany
| | - Gerrit Andresen
- Institute of Infection Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24015 Kiel, Germany
| | - Mariem Radhouani
- Division of Infection Biology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | | | | | - Fred Armbrust
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Eileen Dahlke
- Institute of Anatomy, University of Kiel, 24118 Kiel, Germany
| | - Bei Zhao
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alex Vervaeke
- Division of Infection Biology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Philipp Starkl
- Division of Infection Biology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Stephan P. Rosshart
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Helmut Fickenscher
- Institute of Infection Medicine, University of Kiel and University Medical Center Schleswig-Holstein, 24015 Kiel, Germany
| | - Andreas Tholey
- Institute of Experimental Medicine, University of Kiel, 24188 Kiel, Germany
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | |
Collapse
|
2
|
Werny L, Grogro A, Bickenbach K, Bülck C, Armbrust F, Koudelka T, Pathak K, Scharfenberg F, Sammel M, Sheikhouny F, Tholey A, Linder S, Becker-Pauly C. MT1-MMP and ADAM10/17 exhibit a remarkable overlap of shedding properties. FEBS J 2023; 290:93-111. [PMID: 35944080 DOI: 10.1111/febs.16586] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/20/2022] [Accepted: 07/28/2022] [Indexed: 01/14/2023]
Abstract
Membrane-type-I matrix metalloproteinase (MT1-MMP) is one of six human membrane-bound MMPs and is responsible for extracellular matrix remodelling by degrading several substrates like fibrillar collagens, including types I-III, or fibronectin. Moreover, MT1-MMP was described as a key player in cancer progression and it is involved in various inflammatory processes, as well as in the pathogenesis of Alzheimer's disease (AD). The membrane-tethered metalloprotease meprin β as well as a disintegrin and metalloproteinase 10 (ADAM10) and ADAM17 are also associated with these diseases. Interestingly, meprin β, ADAM10/17 and MT1-MMP also have a shared substrate pool including the interleukin-6 receptor and the amyloid precursor protein. We investigated the interaction of these proteases, focusing on a possible connection between MT1-MMP and meprin β, to elucidate the potential mutual regulations of both enzymes. Herein, we show that besides ADAM10/17, MT1-MMP is also able to shed meprin β from the plasma membrane, leading to the release of soluble meprin β. Mass spectrometry-based cleavage site analysis revealed that the cleavage of meprin β by all three proteases occurs between Pro602 and Ser603 , N-terminal of the EGF-like domain. Furthermore, only inactive human pro-meprin β is shed by MT1-MMP, which is again in accordance with the shedding capability observed for ADAM10/17. Vice versa, meprin β also appears to shed MT1-MMP, indicating a complex regulatory network. Further studies will elucidate this well-orchestrated proteolytic web under distinct conditions in health and disease and will possibly show whether the loss of one of the above-mentioned sheddases can be compensated by the other enzymes.
Collapse
Affiliation(s)
- Ludwig Werny
- Institute of Biochemistry, University of Kiel, Germany
| | | | | | - Cynthia Bülck
- Institute of Biochemistry, University of Kiel, Germany
| | - Fred Armbrust
- Institute of Biochemistry, University of Kiel, Germany
| | - Tomas Koudelka
- Institute of Experimental Medicine, AG Proteomics & Bioanalytics, University of Kiel, Germany
| | - Kriti Pathak
- Institute of Biochemistry, University of Kiel, Germany
| | | | - Martin Sammel
- Institute of Biochemistry, University of Kiel, Germany
| | | | - Andreas Tholey
- Institute of Experimental Medicine, AG Proteomics & Bioanalytics, University of Kiel, Germany
| | - Stefan Linder
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | | |
Collapse
|
3
|
Bayly-Jones C, Lupton CJ, Fritz C, Venugopal H, Ramsbeck D, Wermann M, Jäger C, de Marco A, Schilling S, Schlenzig D, Whisstock JC. Helical ultrastructure of the metalloprotease meprin α in complex with a small molecule inhibitor. Nat Commun 2022; 13:6178. [PMID: 36261433 PMCID: PMC9581967 DOI: 10.1038/s41467-022-33893-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The zinc-dependent metalloprotease meprin α is predominantly expressed in the brush border membrane of proximal tubules in the kidney and enterocytes in the small intestine and colon. In normal tissue homeostasis meprin α performs key roles in inflammation, immunity, and extracellular matrix remodelling. Dysregulated meprin α is associated with acute kidney injury, sepsis, urinary tract infection, metastatic colorectal carcinoma, and inflammatory bowel disease. Accordingly, meprin α is the target of drug discovery programs. In contrast to meprin β, meprin α is secreted into the extracellular space, whereupon it oligomerises to form giant assemblies and is the largest extracellular protease identified to date (~6 MDa). Here, using cryo-electron microscopy, we determine the high-resolution structure of the zymogen and mature form of meprin α, as well as the structure of the active form in complex with a prototype small molecule inhibitor and human fetuin-B. Our data reveal that meprin α forms a giant, flexible, left-handed helical assembly of roughly 22 nm in diameter. We find that oligomerisation improves proteolytic and thermal stability but does not impact substrate specificity or enzymatic activity. Furthermore, structural comparison with meprin β reveal unique features of the active site of meprin α, and helical assembly more broadly.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Claudia Fritz
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, 3800, VIC, Australia
| | - Daniel Ramsbeck
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | - Michael Wermann
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | | | - Alex de Marco
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Stephan Schilling
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
- Hochschule Anhalt, University of Applied Sciences, Köthen, Germany
| | - Dagmar Schlenzig
- Department for Drug Design and Target Validation (IZI-MWT), Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany.
| | - James C Whisstock
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.
- EMBL Australia, Monash University, Melbourne, VIC, 3800, Australia.
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
4
|
Rahn S, Becker-Pauly C. Meprin and ADAM proteases as triggers of systemic inflammation in sepsis. FEBS Lett 2022; 596:534-556. [PMID: 34762736 DOI: 10.1002/1873-3468.14225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
Systemic inflammatory disorders (SIDs) comprise a broad range of diseases characterized by dysregulated excessive innate immune responses. Severe forms of SIDs can lead to organ failure and death, and their increasing incidence represents a major issue for the healthcare system. Protease-mediated ectodomain shedding of cytokines and their receptors represents a central mechanism in the regulation of inflammatory responses. The metalloprotease A disintegrin and metalloproteinase (ADAM) 17 is the best-characterized ectodomain sheddase capable of releasing TNF-α and soluble IL-6 receptor, which are decisive factors of systemic inflammation. Recently, meprin metalloproteases were also identified as IL-6 receptor sheddases and activators of the pro-inflammatory cytokines IL-1β and IL-18. In different mouse models of SID, particularly those mimicking a sepsis-like phenotype, ADAM17 and meprins have been found to promote disease progression. In this review, we summarize the role of ADAM10, ADAM17, and meprins in the onset and progression of sepsis and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Sascha Rahn
- Biochemical Institute, Christian-Albrechts-University Kiel, Germany
| | | |
Collapse
|
5
|
Regulation of meprin metalloproteases in mucosal homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119158. [PMID: 34626680 DOI: 10.1016/j.bbamcr.2021.119158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
Mucus is covering the entire epithelium of the gastrointestinal tract (GIT), building the interface for the symbiosis between microorganisms and their host. Hence, a disrupted mucosal barrier or alterations of proper mucus composition, including the gut microbiota, can cause severe infection and inflammation. Meprin metalloproteases are well-known to cleave various pro-inflammatory molecules, contributing to the onset and progression of pathological conditions including sepsis, pulmonary hypertension or inflammatory bowel disease (IBD). Moreover, meprins have an impact on migration and infiltration of immune cells like monocytes or leukocytes during intestinal inflammation by cleaving tight junction proteins or cell adhesion molecules, thereby disrupting epithelial cell barrier and promoting transendothelial cell migration. Interestingly, both meprin α and meprin β are susceptibility genes for IBD. However, both genes are significantly downregulated in inflamed intestinal tissue in contrast to healthy donors. Therefore, a detailed understanding of the underlying molecular mechanisms is the basis for developing new and effective therapies against manifold pathologies like IBD. This review focuses on the regulation of meprin metalloproteases and its impact on physiological and pathological conditions related to mucosal homeostasis.
Collapse
|
6
|
Peters F, Rahn S, Mengel M, Scharfenberg F, Otte A, Koudelka T, Wagner EF, Wunderlich FT, Haase M, Naumann R, Tholey A, Becker-Pauly C. Syndecan-1 shedding by meprin β impairs keratinocyte adhesion and differentiation in hyperkeratosis. Matrix Biol 2021; 102:37-69. [PMID: 34508852 DOI: 10.1016/j.matbio.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
Dysregulation of proteolytic enzymes has huge impact on epidermal homeostasis, which can result in severe pathological conditions such as fibrosis or Netherton syndrome. The metalloprotease meprin β was found to be upregulated in hyperproliferative skin diseases. AP-1 transcription factor complex has been reported to induce Mep1b expression. Since AP-1 and its subunit fos-related antigen 2 (fra-2) are associated with the onset and progression of psoriasis, we wanted to investigate if this could partially be attributed to increased meprin β activity. Here, we demonstrate that fra-2 transgenic mice show increased meprin β expression and proteolytic activity in the epidermis. To avoid influence by other fra-2 regulated genes, we additionally generated a mouse model that enabled tamoxifen-inducible expression of meprin β under the Krt5-promotor to mimic the pathological condition. Interestingly, induced meprin β expression in the epidermis resulted in hyperkeratosis, hair loss and mottled pigmentation of the skin. Employing N-terminomics revealed syndecan-1 as a substrate of meprin β in skin. Shedding of syndecan-1 at the cell surface caused delayed calcium-induced differentiation and impaired adhesion of keratinocytes, which was blocked by the meprin β inhibitor fetuin-B.
Collapse
Affiliation(s)
- Florian Peters
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany; Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, Zurich 8952, Switzerland
| | - Sascha Rahn
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Marion Mengel
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Franka Scharfenberg
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Anna Otte
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Tomas Koudelka
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Dermatology and Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - F Thomas Wunderlich
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Michael Haase
- Department of Pediatric Surgery, Medical Faculty, Dresden University, Dresden 01307, Germany
| | - Ronald Naumann
- MPI of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Andreas Tholey
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | | |
Collapse
|
7
|
The crystal structure of a 250-kDa heterotetrameric particle explains inhibition of sheddase meprin β by endogenous fetuin-B. Proc Natl Acad Sci U S A 2021; 118:2023839118. [PMID: 33782129 DOI: 10.1073/pnas.2023839118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Meprin β (Mβ) is a multidomain type-I membrane metallopeptidase that sheds membrane-anchored substrates, releasing their soluble forms. Fetuin-B (FB) is its only known endogenous protein inhibitor. Herein, we analyzed the interaction between the ectodomain of Mβ (MβΔC) and FB, which stabilizes the enzyme and inhibits it with subnanomolar affinity. The MβΔC:FB crystal structure reveals a ∼250-kDa, ∼160-Å polyglycosylated heterotetrameric particle with a remarkable glycan structure. Two FB moieties insert like wedges through a "CPDCP trunk" and two hairpins into the respective peptidase catalytic domains, blocking the catalytic zinc ions through an "aspartate switch" mechanism. Uniquely, the active site clefts are obstructed from subsites S4 to S10', but S1 and S1' are spared, which prevents cleavage. Modeling of full-length Mβ reveals an EGF-like domain between MβΔC and the transmembrane segment that likely serves as a hinge to transit between membrane-distal and membrane-proximal conformations for inhibition and catalysis, respectively.
Collapse
|
8
|
Lückstädt W, Bub S, Koudelka T, Pavlenko E, Peters F, Somasundaram P, Becker-Pauly C, Lucius R, Zunke F, Arnold P. Cell Surface Processing of CD109 by Meprin β Leads to the Release of Soluble Fragments and Reduced Expression on Extracellular Vesicles. Front Cell Dev Biol 2021; 9:622390. [PMID: 33738281 PMCID: PMC7960916 DOI: 10.3389/fcell.2021.622390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Cluster of differentiation 109 (CD109) is a glycosylphosphatidylinositol (GPI)-anchored protein expressed on primitive hematopoietic stem cells, activated platelets, CD4+ and CD8+ T cells, and keratinocytes. In recent years, CD109 was also associated with different tumor entities and identified as a possible future diagnostic marker linked to reduced patient survival. Also, different cell signaling pathways were proposed as targets for CD109 interference including the TGFβ, JAK-STAT3, YAP/TAZ, and EGFR/AKT/mTOR pathways. Here, we identify the metalloproteinase meprin β to cleave CD109 at the cell surface and thereby induce the release of cleavage fragments of different size. Major cleavage was identified within the bait region of CD109 residing in the middle of the protein. To identify the structural localization of the bait region, homology modeling and single-particle analysis were applied, resulting in a molecular model of membrane-associated CD109, which allows for the localization of the newly identified cleavage sites for meprin β and the previously published cleavage sites for the metalloproteinase bone morphogenetic protein-1 (BMP-1). Full-length CD109 localized on extracellular vesicles (EVs) was also identified as a release mechanism, and we can show that proteolytic cleavage of CD109 at the cell surface reduces the amount of CD109 sorted to EVs. In summary, we identified meprin β as the first membrane-bound protease to cleave CD109 within the bait region, provide a first structural model for CD109, and show that cell surface proteolysis correlates negatively with CD109 released on EVs.
Collapse
Affiliation(s)
- Wiebke Lückstädt
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Simon Bub
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Tomas Koudelka
- Systematic Proteomics and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Egor Pavlenko
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Florian Peters
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Prasath Somasundaram
- Systematic Proteomics and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Ralph Lucius
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
9
|
Hou S, Diez J, Wang C, Becker-Pauly C, Fields GB, Bannister T, Spicer TP, Scampavia LD, Minond D. Discovery and Optimization of Selective Inhibitors of Meprin α (Part I). Pharmaceuticals (Basel) 2021; 14:ph14030203. [PMID: 33671080 PMCID: PMC8000592 DOI: 10.3390/ph14030203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Meprin α and β are zinc-dependent proteinases implicated in multiple diseases including cancers, fibrosis, and Alzheimer’s. However, until recently, only a few inhibitors of either meprin were reported and no inhibitors are in preclinical development. Moreover, inhibitors of other metzincins developed in previous years are not effective in inhibiting meprins suggesting the need for de novo discovery effort. To address the paucity of tractable meprin inhibitors we developed ultrahigh-throughput assays and conducted parallel screening of >650,000 compounds against each meprin. As a result of this effort, we identified five selective meprin α hits belonging to three different chemotypes (triazole-hydroxyacetamides, sulfonamide-hydroxypropanamides, and phenoxy-hydroxyacetamides). These hits demonstrated a nanomolar to micromolar inhibitory activity against meprin α with low cytotoxicity and >30-fold selectivity against meprin β and other related metzincincs. These selective inhibitors of meprin α provide a good starting point for further optimization.
Collapse
Affiliation(s)
- Shurong Hou
- Department of Molecular Medicine, The Scripps Research Molecular Screening Center, Scripps Research, Jupiter, FL 33458, USA; (S.H.); (C.W.); (T.B.); (T.P.S.); (L.D.S.)
| | - Juan Diez
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA;
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Molecular Screening Center, Scripps Research, Jupiter, FL 33458, USA; (S.H.); (C.W.); (T.B.); (T.P.S.); (L.D.S.)
| | - Christoph Becker-Pauly
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Rudolf-Höber-Str.1, 24118 Kiel, Germany;
| | - Gregg B. Fields
- Department of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA;
| | - Thomas Bannister
- Department of Molecular Medicine, The Scripps Research Molecular Screening Center, Scripps Research, Jupiter, FL 33458, USA; (S.H.); (C.W.); (T.B.); (T.P.S.); (L.D.S.)
| | - Timothy P. Spicer
- Department of Molecular Medicine, The Scripps Research Molecular Screening Center, Scripps Research, Jupiter, FL 33458, USA; (S.H.); (C.W.); (T.B.); (T.P.S.); (L.D.S.)
| | - Louis D. Scampavia
- Department of Molecular Medicine, The Scripps Research Molecular Screening Center, Scripps Research, Jupiter, FL 33458, USA; (S.H.); (C.W.); (T.B.); (T.P.S.); (L.D.S.)
| | - Dmitriy Minond
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA;
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA
- Correspondence:
| |
Collapse
|
10
|
Abstract
Enzymes are a class of protein that catalyze a wide range of chemical reactions, including the cleavage of specific peptide bonds. They are expressed in all cell types, play vital roles in tissue development and homeostasis, and in many diseases, such as cancer. Enzymatic activity is tightly controlled through the use of inactive pro-enzymes, endogenous inhibitors and spatial localization. Since the presence of specific enzymes is often correlated with biological processes, and these proteins can directly modify biomolecules, they are an ideal biological input for cell-responsive biomaterials. These materials include both natural and synthetic polymers, cross-linked hydrogels and self-assembled peptide nanostructures. Within these systems enzymatic activity has been used to induce biodegradation, release therapeutic agents and for disease diagnosis. As technological advancements increase our ability to quantify the expression and nanoscale organization of proteins in cells and tissues, as well as the synthesis of increasingly complex and well-defined biomaterials, enzyme-responsive biomaterials are poised to play vital roles in the future of biomedicine.
Collapse
Affiliation(s)
- E. Thomas Pashuck
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Science, Lehigh University Bethlehem Pennsylvania USA
| |
Collapse
|
11
|
Yang X, Geng J, Meng H. Glucocorticoid receptor modulates dendritic cell function in ulcerative colitis. Histol Histopathol 2020; 35:1379-1389. [PMID: 32706033 DOI: 10.14670/hh-18-241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ulcerative colitis (UC) is a serious form of inflammatory bowel disease (IBD) occurring worldwide. Although anti-TNF therapy is found to be effective in over 70% of patients with UC, nearly one-third are still deprived of effective treatment. Because glucocorticoids (GC) can effectively inhibit granulocyte-recruitment into the mucosa, cytokine secretion and T cell activation, they are used widely in the treatment of UC. However, remission is observed in only 55% of the patients after one year of steroid use due to a condition known as steroid response. Additionally, it has been noted that 20%-40% of the patients with UC do not respond to GC treatment. Researchers have revealed that the number of dendritic cells (DCs) in patients with UC tends to increase in the colonic mucosa. Many studies have determined that the removal of peripheral DCs through the adsorption and separation of granulocytes and monocytes could improve tolerance of the intestine to its symbiotic flora. Based on these results, further insights regarding the beneficial effects of Adacolumn apheresis in patients subjected to this treatment could be revealed. GC can effectively inhibit the activation of DCs by reducing the levels of major histocompatibility complex class II (MHC II) molecules, which is critical for controlling the recruitment of granulocytes. Therefore, alternative biological and new individualized therapies based on these approaches need to be evaluated to counter UC. In this review, progress in research associated with the regulatory effect of glucocorticoid receptors on DCs under conditions of UC is discussed, thus providing insights and identifying potential targets which could be employed in the treatment strategies against UC.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Pathology, Harbin Medical University, Harbin, China.
| |
Collapse
|
12
|
Berner DK, Wessolowski L, Armbrust F, Schneppenheim J, Schlepckow K, Koudelka T, Scharfenberg F, Lucius R, Tholey A, Kleinberger G, Haass C, Arnold P, Becker‐Pauly C. Meprin β cleaves TREM2 and controls its phagocytic activity on macrophages. FASEB J 2020; 34:6675-6687. [DOI: 10.1096/fj.201902183r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 11/11/2022]
Affiliation(s)
| | - Luisa Wessolowski
- Unit for Degradomics of the Protease Web, Biochemical Institute University of Kiel Kiel Germany
| | - Fred Armbrust
- Unit for Degradomics of the Protease Web, Biochemical Institute University of Kiel Kiel Germany
| | | | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE) Munich Germany
| | - Tomas Koudelka
- Systematic Proteomics & Bioanalytics Institute for Experimental Medicine University of Kiel Kiel Germany
| | - Franka Scharfenberg
- Unit for Degradomics of the Protease Web, Biochemical Institute University of Kiel Kiel Germany
| | - Ralph Lucius
- Anatomical Institute University of Kiel Kiel Germany
| | - Andreas Tholey
- Systematic Proteomics & Bioanalytics Institute for Experimental Medicine University of Kiel Kiel Germany
| | - Gernot Kleinberger
- Biomedical Center, Biochemistry Ludwig‐Maximilians‐Universität Munich Munich Germany
- Munich Cluster for Systems Neurology Munich Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich Germany
- Biomedical Center, Biochemistry Ludwig‐Maximilians‐Universität Munich Munich Germany
- Munich Cluster for Systems Neurology Munich Germany
| | | | - Christoph Becker‐Pauly
- Unit for Degradomics of the Protease Web, Biochemical Institute University of Kiel Kiel Germany
| |
Collapse
|
13
|
Abstract
A crucial step for tumor cell extravasation and metastasis is the migration through the extracellular matrix, which requires proteolytic activity. Hence, proteases, particularly matrix metalloproteases (MMPs), have been discussed as therapeutic targets and their inhibition should diminish tumor growth and metastasis. The metalloproteases meprin α and meprin β are highly abundant on intestinal enterocytes and their expression was associated with different stages of colorectal cancer. Due to their ability to cleave extracellular matrix (ECM) components, they were suggested as pro-tumorigenic enzymes. Additionally, both meprins were shown to have pro-inflammatory activity by cleaving cytokines and their receptors, which correlates with chronic intestinal inflammation and associated conditions. On the other hand, meprin β was identified as an essential enzyme for the detachment and renewal of the intestinal mucus, important to prevent bacterial overgrowth and infection. Considering this, it is hard to estimate whether high activity of meprins is generally detrimental or if these enzymes have also protective functions in certain cancer types. For instance, for colorectal cancer, patients with high meprin β expression in tumor tissue exhibit a better survival prognosis, which is completely different to prostate cancer. This demonstrates that the very same enzyme may have contrary effects on tumor initiation and growth, depending on its tissue and subcellular localization. Hence, precise knowledge about proteolytic enzymes is required to design the most efficient therapeutic options for cancer treatment. In this review, we summarize the current findings on meprins' functions, expression, and cancer-associated variants with possible implications for tumor progression and metastasis.
Collapse
|
14
|
Scharfenberg F, Helbig A, Sammel M, Benzel J, Schlomann U, Peters F, Wichert R, Bettendorff M, Schmidt-Arras D, Rose-John S, Moali C, Lichtenthaler SF, Pietrzik CU, Bartsch JW, Tholey A, Becker-Pauly C. Degradome of soluble ADAM10 and ADAM17 metalloproteases. Cell Mol Life Sci 2020; 77:331-350. [PMID: 31209506 PMCID: PMC11105009 DOI: 10.1007/s00018-019-03184-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/10/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Disintegrin and metalloproteinases (ADAMs) 10 and 17 can release the extracellular part of a variety of membrane-bound proteins via ectodomain shedding important for many biological functions. So far, substrate identification focused exclusively on membrane-anchored ADAM10 and ADAM17. However, besides known shedding of ADAM10, we identified ADAM8 as a protease capable of releasing the ADAM17 ectodomain. Therefore, we investigated whether the soluble ectodomains of ADAM10/17 (sADAM10/17) exhibit an altered substrate spectrum compared to their membrane-bound counterparts. A mass spectrometry-based N-terminomics approach identified 134 protein cleavage events in total and 45 common substrates for sADAM10/17 within the secretome of murine cardiomyocytes. Analysis of these cleavage sites confirmed previously identified amino acid preferences. Further in vitro studies verified fibronectin, cystatin C, sN-cadherin, PCPE-1 as well as sAPP as direct substrates of sADAM10 and/or sADAM17. Overall, we present the first degradome study for sADAM10/17, thereby introducing a new mode of proteolytic activity within the protease web.
Collapse
Affiliation(s)
- Franka Scharfenberg
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany.
| | - Andreas Helbig
- Systematic Proteomics and Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel, Germany
| | - Martin Sammel
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | - Julia Benzel
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Florian Peters
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | - Rielana Wichert
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | - Maximilian Bettendorff
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | | | | | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, 69367, Lyon, France
| | - Stefan F Lichtenthaler
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Institute for Advanced Study, Technical University Munich, Munich, Germany
- Munich Center for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Andreas Tholey
- Systematic Proteomics and Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel, Germany
| | - Christoph Becker-Pauly
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany.
| |
Collapse
|
15
|
Guevara T, Körschgen H, Cuppari A, Schmitz C, Kuske M, Yiallouros I, Floehr J, Jahnen-Dechent W, Stöcker W, Gomis-Rüth FX. The C-terminal region of human plasma fetuin-B is dispensable for the raised-elephant-trunk mechanism of inhibition of astacin metallopeptidases. Sci Rep 2019; 9:14683. [PMID: 31604990 PMCID: PMC6789097 DOI: 10.1038/s41598-019-51095-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023] Open
Abstract
Human fetuin-B plays a key physiological role in human fertility through its inhibitory action on ovastacin, a member of the astacin family of metallopeptidases. The inhibitor consists of tandem cystatin-like domains (CY1 and CY2), which are connected by a linker containing a "CPDCP-trunk" and followed by a C-terminal region (CTR) void of regular secondary structure. Here, we solved the crystal structure of the complex of the inhibitor with archetypal astacin from crayfish, which is a useful model of human ovastacin. Two hairpins from CY2, the linker, and the tip of the "legumain-binding loop" of CY1 inhibit crayfish astacin following the "raised-elephant-trunk mechanism" recently reported for mouse fetuin-B. This inhibition is exerted by blocking active-site cleft sub-sites upstream and downstream of the catalytic zinc ion, but not those flanking the scissile bond. However, contrary to the mouse complex, which was obtained with fetuin-B nicked at a single site but otherwise intact, most of the CTR was proteolytically removed during crystallization of the human complex. Moreover, the two complexes present in the crystallographic asymmetric unit diverged in the relative arrangement of CY1 and CY2, while the two complexes found for the mouse complex crystal structure were equivalent. Biochemical studies in vitro confirmed the differential cleavage susceptibility of human and mouse fetuin-B in front of crayfish astacin and revealed that the cleaved human inhibitor blocks crayfish astacin and human meprin α and β only slightly less potently than the intact variant. Therefore, the CTR of animal fetuin-B orthologs may have a function in maintaining a particular relative orientation of CY1 and CY2 that nonetheless is dispensable for peptidase inhibition.
Collapse
Affiliation(s)
- Tibisay Guevara
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| | - Hagen Körschgen
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - Anna Cuppari
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| | - Carlo Schmitz
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Michael Kuske
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - Julia Floehr
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
16
|
Wichert R, Scharfenberg F, Colmorgen C, Koudelka T, Schwarz J, Wetzel S, Potempa B, Potempa J, Bartsch JW, Sagi I, Tholey A, Saftig P, Rose-John S, Becker-Pauly C. Meprin β induces activities of A disintegrin and metalloproteinases 9, 10, and 17 by specific prodomain cleavage. FASEB J 2019; 33:11925-11940. [PMID: 31381863 DOI: 10.1096/fj.201801371r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Meprin β is a membrane-bound metalloprotease involved in extracellular matrix assembly and inflammatory processes in health and disease. A disintegrin and metalloproteinase (ADAM)10 and ADAM17 are physiologic relevant sheddases of inactive promeprin β, which influences its substrate repertoire and subsequent biologic functions. Proteomic analysis also revealed several ADAMs as putative meprin β substrates. Here, we demonstrate specific N-terminal processing of ADAM9, 10, and 17 by meprin β and identify cleavage sites within their prodomains. Because ADAM prodomains can act as specific inhibitors, we postulate a role for meprin β in the regulation of ADAM activities. Indeed, prodomain cleavage by meprin β caused increased ADAM protease activities, as observed by peptide-based cleavage assays and demonstrated by increased ectodomain shedding activity. Direct interaction of meprin β and ADAM proteases could be shown by immunofluorescence microscopy and immunoprecipitation experiments. As demonstrated by a bacterial activator of meprin β and additional measurement of TNF-α shedding on bone marrow-derived macrophages, meprin β/ADAM protease interactions likely influence inflammatory conditions. Thus, we identified a novel proteolytic pathway of meprin β with ADAM proteases to control protease activities at the cell surface as part of the protease web.-Wichert, R., Scharfenberg, F., Colmorgen, C., Koudelka, T., Schwarz, J., Wetzel, S., Potempa, B., Potempa, J., Bartsch, J. W., Sagi, I., Tholey, A., Saftig, P., Rose-John, S., Becker-Pauly, C. Meprin β induces activities of A disintegrin and metalloproteinases 9, 10, and 17 by specific prodomain cleavage.
Collapse
Affiliation(s)
- Rielana Wichert
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | | | | | - Tomas Koudelka
- Institute of Experimental Medicine, University of Kiel, Kiel, Germany
| | | | | | - Barbara Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland.,Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas Tholey
- Institute of Experimental Medicine, University of Kiel, Kiel, Germany
| | - Paul Saftig
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | | | | |
Collapse
|
17
|
Dholey Y, Chaudhuri A, Sen Chakraborty S. An integrated in silico approach to understand protein-protein interactions: human meprin-β with fetuin-A. J Biomol Struct Dyn 2019; 38:2080-2092. [PMID: 31184526 DOI: 10.1080/07391102.2019.1626284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human meprin-β, a zinc metalloprotease belonging to the astacin family, have been found to be associated with many pathological conditions like inflammatory bowel disease, fibrosis and neurodegenerative disease. The inhibition of meprin-β by various inhibitors, both macromolecular and small molecules, is crucial in the control of several diseases. Human fetuin-A, a negative acute phase protein involved in inflammatory disease, has recently been identified as an endogenous inhibitor for meprin-β. In this computational study, an integrated in silico approach was performed using existing structural information of meprin-β coupled with ab initio modelling of human fetuin-A to predict a rational model of the complex through protein-protein docking. Further, the models were optimized and validated to generate an ensemble of conformations through extensive molecular dynamics simulation. Virtual alanine scanning mutagenesis was explored to identify hotspot residues on both proteins significant for protein-protein interaction (PPI). The results of the study provide structural insight into PPI between meprin-β and fetuin-A which can be useful in designing molecules to modulate meprin-β activity. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuthika Dholey
- Department of Microbiology, West Bengal State University, Kolkata, West Bengal, India
| | - Ankur Chaudhuri
- Department of Microbiology, West Bengal State University, Kolkata, West Bengal, India
| | | |
Collapse
|
18
|
Karmilin K, Schmitz C, Kuske M, Körschgen H, Olf M, Meyer K, Hildebrand A, Felten M, Fridrich S, Yiallouros I, Becker-Pauly C, Weiskirchen R, Jahnen-Dechent W, Floehr J, Stöcker W. Mammalian plasma fetuin-B is a selective inhibitor of ovastacin and meprin metalloproteinases. Sci Rep 2019; 9:546. [PMID: 30679641 PMCID: PMC6346019 DOI: 10.1038/s41598-018-37024-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/28/2018] [Indexed: 11/29/2022] Open
Abstract
Vertebrate fetuins are multi-domain plasma-proteins of the cystatin-superfamily. Human fetuin-A is also known as AHSG, α2-Heremans-Schmid-glycoprotein. Gene-knockout in mice identified fetuin-A as essential for calcified-matrix-metabolism and bone-mineralization. Fetuin-B deficient mice, on the other hand, are female infertile due to zona pellucida ‘hardening’ caused by the metalloproteinase ovastacin in unfertilized oocytes. In wildtype mice fetuin-B inhibits the activity of ovastacin thus maintaining oocytes fertilizable. Here we asked, if fetuins affect further proteases as might be expected from their evolutionary relation to single-domain-cystatins, known as proteinase-inhibitors. We show that fetuin-A is not an inhibitor of any tested protease. In stark contrast, the closely related fetuin-B selectively inhibits astacin-metalloproteinases such as meprins and ovastacin, but not astacins of the tolloid-subfamily, nor any other proteinase. The analysis of fetuin-B expressed in various mammalian cell types, insect cells, and truncated fish-fetuin expressed in bacteria, showed that the cystatin-like domains alone are necessary and sufficient for inhibition. This report highlights fetuin-B as a specific antagonist of ovastacin and meprin-metalloproteinases. Control of ovastacin was shown to be indispensable for female fertility. Meprin inhibition, on the other hand, renders fetuin-B a potential key-player in proteolytic networks controlling angiogenesis, immune-defense, extracellular-matrix-assembly and general cell-signaling, with implications for inflammation, fibrosis, neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- Konstantin Karmilin
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Carlo Schmitz
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Michael Kuske
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Hagen Körschgen
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Mario Olf
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Katharina Meyer
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - André Hildebrand
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Matthias Felten
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Sven Fridrich
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry RWTH, 52074, Aachen, Germany
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Julia Floehr
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany.
| |
Collapse
|
19
|
Herzog C, Haun RS, Kaushal GP. Role of meprin metalloproteinases in cytokine processing and inflammation. Cytokine 2018; 114:18-25. [PMID: 30580156 DOI: 10.1016/j.cyto.2018.11.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 11/15/2022]
Abstract
Meprin metalloendopeptidases, comprising α and β isoforms, are widely expressed in mammalian cells and organs including kidney, intestines, lungs, skin, and bladder, and in a variety of immune cells and cancer cells. Meprins proteolytically process many inflammatory mediators, including cytokines, chemokines, and other bioactive proteins and peptides that control the function of immune cells. The knowledge of meprin-mediated processing of inflammatory mediators and other target substrates provides a pathophysiologic link for the involvement of meprins in the pathogenesis of many inflammatory disorders. Meprins are now known to play important roles in inflammatory diseases including acute kidney injury, sepsis, urinary tract infections, bladder inflammation, and inflammatory bowel disease. The proteolysis of epithelial and endothelial barriers including cell junctional proteins by meprins promotes leukocyte influx into areas of tissue damage to result in inflammation. Meprins degrade extracellular matrix proteins; this ability of meprins is implicated in the cell migration of leukocytes and the invasion of tumor cells that express meprins. Proteolytic processing and maturation of procollagens provides evidence that meprins are involved in collagen maturation and deposition in the fibrotic processes involved in the formation of keloids and hypertrophic scars and lung fibrosis. This review highlights recent progress in understanding the role of meprins in inflammatory disorders in both human and mouse models.
Collapse
Affiliation(s)
- Christian Herzog
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Department of Internal Medicine, Little Rock, AR, USA
| | - Randy S Haun
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, Little Rock, AR, USA
| | - Gur P Kaushal
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Department of Internal Medicine, Little Rock, AR, USA; Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Department of Biochemistry, Little Rock, AR, USA.
| |
Collapse
|
20
|
Boon L, Ugarte-Berzal E, Martens E, Vandooren J, Rybakin V, Colau D, Gordon-Alonso M, van der Bruggen P, Stöcker W, Becker-Pauly C, Witters P, Morava E, Jaeken J, Proost P, Opdenakker G. Propeptide glycosylation and galectin-3 binding decrease proteolytic activation of human proMMP-9/progelatinase B. FEBS J 2018; 286:930-945. [PMID: 30422384 PMCID: PMC7379967 DOI: 10.1111/febs.14698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/21/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are secreted as proenzymes, containing propeptides that interact with the catalytic zinc, thereby controlling MMP activation. The MMP‐9 propeptide is unique in the MMP family because of its post‐translational modification with an N‐linked oligosaccharide. ProMMP‐9 activation by MMP‐3 occurs stepwise by cleavage of the propeptide in an aminoterminal (pro‐AT) and carboxyterminal (pro‐CT) peptide. We chemically synthesized aglycosyl pro‐AT and pro‐CT and purified recombinant glycosylated pro‐ATSf−9. First, we report new cleavage sites in the MMP‐9 propeptide by MMP‐3 and neutrophil elastase. Additionally, we demonstrated with the use of western blot analysis a higher resistance of glycosylated versus aglycosyl pro‐AT against proteolysis by MMP‐3, MMP‐9, meprin α, neutrophil elastase and by protease‐rich synovial fluids from rheumatoid arthritis patients. Moreover, we investigated the effect of glycosylation on proteolytic activation of human proMMP‐9 with the use of zymography and dye‐quenched gelatin cleavage analysis. Compared to recombinant Sf‐9 proMMP‐9 glycoforms, larger oligosaccharides of human neutrophil proMMP‐9 increased resistance against proteolytic activation. Additionally, proMMP‐9 from Congenital Disorder of Glycosylation patients, compared to healthy controls, showed a higher activation rate by MMP‐3. Finally, we demonstrated that glycan‐galectin‐3 interactions reduced proMMP‐9 activation. In conclusion, modification of MMP‐9 propeptide glycosylation is a fine‐tuning mechanism and co‐determines the specific activity of MMP‐9 in physiology and pathology. Enzymes MMP‐9 EC 3.4.24.35, MMP‐3 EC 3.4.24.17, meprin α EC 3.4.24.18, neutrophil elastase EC 3.4.21.37, trypsin EC 3.4.21.4 and PNGase F EC 3.5.1.52.
Collapse
Affiliation(s)
- Lise Boon
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Belgium
| | | | - Erik Martens
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Vasily Rybakin
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Didier Colau
- Ludwig Institute for Cancer Research, Brussels, Belgium
| | | | | | - Walter Stöcker
- Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany
| | | | - Peter Witters
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Belgium
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, ON, USA
| | - Jaak Jaeken
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Belgium
| |
Collapse
|
21
|
Talantikite M, Lécorché P, Beau F, Damour O, Becker-Pauly C, Ho WB, Dive V, Vadon-Le Goff S, Moali C. Inhibitors of BMP-1/tolloid-like proteinases: efficacy, selectivity and cellular toxicity. FEBS Open Bio 2018; 8:2011-2021. [PMID: 30524951 PMCID: PMC6275283 DOI: 10.1002/2211-5463.12540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023] Open
Abstract
BMP‐1/tolloid‐like proteinases belong to the astacin family of human metalloproteinases, together with meprins and ovastacin. They represent promising targets to treat or prevent a wide range of diseases such as fibrotic disorders or cancer. However, the study of their pathophysiological roles is still impaired by the lack of well‐characterized inhibitors and the questions that remain regarding their selectivity and in vivo efficiency. As a first step towards the identification of suitable tools to be used in functional studies, we have undertaken a systematic comparison of seven molecules known to affect the proteolytic activity of human astacins including three hydroxamates (FG‐2575, UK383,367, S33A), the protein sizzled, a new phosphinic inhibitor (RXP‐1001) and broad‐spectrum protease inhibitors (GM6001, actinonin). Their efficacy in vitro, their cellular toxicity and efficacy in cell cultures were thoroughly characterized. We found that these molecules display very different potency and selectivity profiles, with hydroxamate FG‐2575 and the protein sizzled being very powerful and selective inhibitors of BMP‐1, whereas phosphinic peptide RXP‐1001 behaves as a broad‐spectrum inhibitor of astacins. Their use should therefore be carefully considered in agreement with the aim of the study to avoid result misinterpretation.
Collapse
Affiliation(s)
- Maya Talantikite
- Tissue Biology and Therapeutic Engineering Unit (LBTI) UMR5305, CNRS Univ Lyon Université Claude Bernard Lyon1 France
| | - Pascaline Lécorché
- CEA Saclay Institut Frédéric Joliot Direction de la recherche fondamentale SIMOPRO Gif-sur-Yvette France
| | - Fabrice Beau
- CEA Saclay Institut Frédéric Joliot Direction de la recherche fondamentale SIMOPRO Gif-sur-Yvette France
| | - Odile Damour
- Tissue Biology and Therapeutic Engineering Unit (LBTI) UMR5305, CNRS Univ Lyon Université Claude Bernard Lyon1 France.,Banque de Tissus et Cellules Hospices Civils de Lyon France
| | - Christoph Becker-Pauly
- Institute of Biochemistry Unit for Degradomics of the Protease Web Christian-Albrechts-University Kiel Germany
| | | | - Vincent Dive
- CEA Saclay Institut Frédéric Joliot Direction de la recherche fondamentale SIMOPRO Gif-sur-Yvette France
| | - Sandrine Vadon-Le Goff
- Tissue Biology and Therapeutic Engineering Unit (LBTI) UMR5305, CNRS Univ Lyon Université Claude Bernard Lyon1 France
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Unit (LBTI) UMR5305, CNRS Univ Lyon Université Claude Bernard Lyon1 France
| |
Collapse
|
22
|
Cancer-associated mutations in the canonical cleavage site do not influence CD99 shedding by the metalloprotease meprin β but alter cell migration in vitro. Oncotarget 2017; 8:54873-54888. [PMID: 28903388 PMCID: PMC5589627 DOI: 10.18632/oncotarget.18966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/17/2017] [Indexed: 01/22/2023] Open
Abstract
Transendothelial cell migration (TEM) is crucial for inflammation and metastasis. The adhesion molecule CD99 was shown to be important for correct immune cell extravasation and is highly expressed on certain cancer cells. Recently, we demonstrated that ectodomain shedding of CD99 by the metalloprotease meprin β promotes TEM in vitro. In this study, we employed an acute inflammation model (air pouch/carrageenan) and found significantly less infiltrated cells in meprin β knock-out animals validating the previously observed pro-inflammatory activity. To further analyze the impact of meprin β on CD99 shedding with regard to cell adhesion and proliferation we characterized two lung cancer associated CD99 variants (D92H, D92Y), carrying point mutations at the main cleavage site. Interestingly, ectodomain shedding of these variants by meprin β was still detectable. However the cleavage site shifted to adjacent positions. Nevertheless, expression of CD99 variants D92H and D92Y revealed partial misfolding and proteasomal degradation. A previously observed influence of CD99 on Src activation and increased proliferation could not be confirmed in this study, independent of wild-type CD99 or the variants D92H and D92Y. However, we identified meprin β as a potent inducer of Src phosphorylation. Importantly, we found significantly increased cell migration when expressing the cancer-associated CD99 variant D92H compared to the wild-type protein.
Collapse
|
23
|
Meprin metalloproteases: Molecular regulation and function in inflammation and fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2096-2104. [PMID: 28502593 DOI: 10.1016/j.bbamcr.2017.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 01/03/2023]
Abstract
The zinc-endopeptidases meprin α and meprin β are extracellular proteases involved in connective tissue homeostasis, intestinal barrier function and immunological processes. Meprins are unique among other extracellular proteases with regard to cleavage specificity and structure. Meprin α and meprin β have a strong preference for negatively charged amino acids around the scissile bond, reflected by cleavage sites identified in procollagen I, the amyloid precursor protein (APP) and the interleukin-6 receptor (IL-6R). In this review we report on recent findings that summarize the complex molecular regulation of meprins, particular folding, activation and shedding. Dysregulation of meprin α and meprin β is often associated with pathological conditions such as neurodegeneration, inflammatory bowel disease and fibrosis. Based on mouse models and patient data we suggest meprins as possible key regulators in the onset and progression of fibrotic disorders, leading to severe diseases such as pulmonary hypertension. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
|
24
|
Arnold P, Boll I, Rothaug M, Schumacher N, Schmidt F, Wichert R, Schneppenheim J, Lokau J, Pickhinke U, Koudelka T, Tholey A, Rabe B, Scheller J, Lucius R, Garbers C, Rose-John S, Becker-Pauly C. Meprin Metalloproteases Generate Biologically Active Soluble Interleukin-6 Receptor to Induce Trans-Signaling. Sci Rep 2017; 7:44053. [PMID: 28276471 PMCID: PMC5343444 DOI: 10.1038/srep44053] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/03/2017] [Indexed: 12/27/2022] Open
Abstract
Soluble Interleukin-6 receptor (sIL-6R) mediated trans-signaling is an important pro-inflammatory stimulus associated with pathological conditions, such as arthritis, neurodegeneration and inflammatory bowel disease. The sIL-6R is generated proteolytically from its membrane bound form and A Disintegrin And Metalloprotease (ADAM) 10 and 17 were shown to perform ectodomain shedding of the receptor in vitro and in vivo. However, under certain conditions not all sIL-6R could be assigned to ADAM10/17 activity. Here, we demonstrate that the IL-6R is a shedding substrate of soluble meprin α and membrane bound meprin β, resulting in bioactive sIL-6R that is capable of inducing IL-6 trans-signaling. We determined cleavage within the N-terminal part of the IL-6R stalk region, distinct from the cleavage site reported for ADAM10/17. Interestingly, meprin β can be shed from the cell surface by ADAM10/17 and the observation that soluble meprin β is not capable of shedding the IL-6R suggests a regulatory mechanism towards trans-signaling. Additionally, we observed a significant negative correlation of meprin β expression and IL-6R levels on human granulocytes, providing evidence for in vivo function of this proteolytic interaction.
Collapse
Affiliation(s)
- Philipp Arnold
- Institute of Anatomy, University of Kiel, 24118 Kiel, Germany
| | - Inga Boll
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Michelle Rothaug
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Neele Schumacher
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | | | - Rielana Wichert
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | | | - Juliane Lokau
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Ute Pickhinke
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Tomas Koudelka
- Systematic Proteomics &Bioanalytics; Institute of Experimental Medicine; University of Kiel, 24105 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteomics &Bioanalytics; Institute of Experimental Medicine; University of Kiel, 24105 Kiel, Germany
| | - Björn Rabe
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Ralph Lucius
- Institute of Anatomy, University of Kiel, 24118 Kiel, Germany
| | | | - Stefan Rose-John
- Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | | |
Collapse
|
25
|
Bedau T, Peters F, Prox J, Arnold P, Schmidt F, Finkernagel M, Köllmann S, Wichert R, Otte A, Ohler A, Stirnberg M, Lucius R, Koudelka T, Tholey A, Biasin V, Pietrzik CU, Kwapiszewska G, Becker-Pauly C. Ectodomain shedding of CD99 within highly conserved regions is mediated by the metalloprotease meprin β and promotes transendothelial cell migration. FASEB J 2016; 31:1226-1237. [PMID: 28003343 DOI: 10.1096/fj.201601113r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/06/2016] [Indexed: 11/11/2022]
Abstract
The adhesion molecule CD99 is essential for the transendothelial migration of leukocytes. In this study, we used biochemical and cellular assays to show that CD99 undergoes ectodomain shedding by the metalloprotease meprin β and subsequent intramembrane proteolysis by γ-secretase. The cleavage site in CD99 was identified by mass spectrometry within an acidic region highly conserved through different vertebrate species. This finding fits perfectly to the unique cleavage specificity of meprin β with a strong preference for aspartate residues and suggests coevolution of protease and substrate. We hypothesized that limited CD99 cleavage by meprin β would alter cellular transendothelial migration (TEM) behavior in tissue remodeling processes, such as inflammation and cancer. Indeed, meprin β induced cell migration of Lewis lung carcinoma cells in an in vitro TEM assay. Accordingly, deficiency of meprin β in Mep1b-/- mice resulted in significantly increased CD99 protein levels in the lung. Therefore, meprin β could serve as a therapeutic target, given that in a proof-of-concept approach we showed accumulation of CD99 protein in lungs of meprin β inhibitor-treated mice.-Bedau, T., Peters, F., Prox, J., Arnold, P., Schmidt, F., Finkernagel, M., Köllmann, S., Wichert, R., Otte, A., Ohler, A., Stirnberg, M., Lucius, R., Koudelka, T., Tholey, A., Biasin, V., Pietrzik, C. U., Kwapiszewska, G., Becker-Pauly, C. Ectodomain shedding of CD99 within highly conserved regions is mediated by the metalloprotease meprin β and promotes transendothelial cell migration.
Collapse
Affiliation(s)
- Tillmann Bedau
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Florian Peters
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Johannes Prox
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | | | - Frederike Schmidt
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Malin Finkernagel
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Sandra Köllmann
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Rielana Wichert
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Anna Otte
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Anke Ohler
- Institute of Pathobiochemistry, University Medical Centre, Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Ralph Lucius
- Anatomical Institute, University of Kiel, Kiel, Germany
| | - Tomas Koudelka
- Institute of Experimental Medicine, University of Kiel, Kiel, Germany; and
| | - Andreas Tholey
- Institute of Experimental Medicine, University of Kiel, Kiel, Germany; and
| | - Valentina Biasin
- Ludwig Boltzmann Institute, Lung Vascular Research, Graz, Austria
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Centre, Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Christoph Becker-Pauly
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany;
| |
Collapse
|
26
|
Kalinin DV, Wagner S, Riemann B, Hermann S, Schmidt F, Becker-Pauly C, Rose-John S, Schäfers M, Holl R. Novel Potent Proline-Based Metalloproteinase Inhibitors: Design, (Radio)Synthesis, and First in Vivo Evaluation as Radiotracers for Positron Emission Tomography. J Med Chem 2016; 59:9541-9559. [PMID: 27696839 DOI: 10.1021/acs.jmedchem.6b01291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As dysregulation of matrix metalloproteinase (MMP) activity is associated with a wide range of pathophysiological processes like cancer, atherosclerosis, and arthritis, MMPs represent a valuable target for the development of new therapeutics and diagnostic tools. We herein present the chiral pool syntheses, in vitro evaluation, and SAR studies of a series of d- and l-proline- as well as of (4R)-4-hydroxy-l-proline-derived MMP inhibitors possessing general formula 1. Some of the synthesized hydroxamic acids were found to be potent MMP inhibitors with IC50 values in the nanomolar range, also demonstrating no off-target effects toward the other tested Zn2+-dependent metalloproteases (ADAMs and meprins). Utilizing the structure of the (2S,4S)-configured 4-hydroxyproline derivative 4, a selective picomolar inhibitor of MMP-13, the radiolabeled counterpart [18F]4 was successfully synthesized. The radiotracer's biodistribution in mice as well as its serum stability were evaluated for assessing its potential use as a MMP-13 targeting PET imaging agent.
Collapse
Affiliation(s)
- Dmitrii V Kalinin
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster , Corrensstraße 48, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster , 48149 Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster , Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Burkhard Riemann
- Department of Nuclear Medicine, University Hospital Münster , Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Sven Hermann
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster , 48149 Münster, Germany.,European Institute for Molecular Imaging, University of Münster , Waldeyerstraße 15, 48149 Münster, Germany
| | - Frederike Schmidt
- Biochemical Institute, Christian-Albrechts-University Kiel , 24098 Kiel, Germany
| | | | - Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-University Kiel , 24098 Kiel, Germany
| | - Michael Schäfers
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster , 48149 Münster, Germany.,European Institute for Molecular Imaging, University of Münster , Waldeyerstraße 15, 48149 Münster, Germany
| | - Ralph Holl
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster , Corrensstraße 48, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster , 48149 Münster, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel , 38124 Braunschweig, Germany
| |
Collapse
|
27
|
Madoux F, Tredup C, Spicer TP, Scampavia L, Chase PS, Hodder PS, Fields GB, Becker-Pauly C, Minond D. Development of high throughput screening assays and pilot screen for inhibitors of metalloproteases meprin α and β. Biopolymers 2016; 102:396-406. [PMID: 25048711 DOI: 10.1002/bip.22527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 12/18/2022]
Abstract
Zinc metalloproteinases meprin α and meprin β are implicated in a variety of diseases, such as fibrosis, inflammation and neurodegeneration, however, there are no selective small molecule inhibitors that would allow to study their role in these processes. To address this lack of molecular tools, we have developed high throughput screening assays to enable discovery of inhibitors of both meprin α and meprin β and screened a collection of well characterized pharmaceutical agents (library of pharmaceutically active compounds, n = 1,280 compounds). Two compounds (PPNDS, NF449) confirmed their activity and selectivity for meprin β. Kinetic studies revealed competitive (PPNDS) and mixed competitive/noncompetitive (NF449) inhibition mechanisms suggesting that binding occurs in meprin β active site. Both PPNDS and NF449 exhibited low nanomolar IC50 and Ki values making them the most potent and selective inhibitors of meprin β reported to the date. These results demonstrate the ability of meprin α and β assays to identify selective compounds and discard artifacts of primary screening.
Collapse
Affiliation(s)
- Franck Madoux
- Lead Identification Division, Translational Research Institute, The Scripps Research Institute, 130 Scripps Way, Jupiter, Fl, 34987
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fridrich S, Hahn SA, Linzmaier M, Felten M, Zwarg J, Lennerz V, Tuettenberg A, Stöcker W. How Soluble GARP Enhances TGFβ Activation. PLoS One 2016; 11:e0153290. [PMID: 27054568 PMCID: PMC4824412 DOI: 10.1371/journal.pone.0153290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/25/2016] [Indexed: 11/18/2022] Open
Abstract
GARP (glycoprotein A repetitions predominant) is a cell surface receptor on regulatory T-lymphocytes, platelets, hepatic stellate cells and certain cancer cells. Its described function is the binding and accommodation of latent TGFβ (transforming growth factor), before the activation and release of the mature cytokine. For regulatory T cells it was shown that a knockdown of GARP or a treatment with blocking antibodies dramatically decreases their immune suppressive capacity. This confirms a fundamental role of GARP in the basic function of regulatory T cells. Prerequisites postulated for physiological GARP function include membrane anchorage of GARP, disulfide bridges between the propeptide of TGFβ and GARP and connection of this propeptide to αvβ6 or αvβ8 integrins of target cells during mechanical TGFβ release. Other studies indicate the existence of soluble GARP complexes and a functionality of soluble GARP alone. In order to clarify the underlying molecular mechanism, we expressed and purified recombinant TGFβ and a soluble variant of GARP. Surprisingly, soluble GARP and TGFβ formed stable non-covalent complexes in addition to disulfide-coupled complexes, depending on the redox conditions of the microenvironment. We also show that soluble GARP alone and the two variants of complexes mediate different levels of TGFβ activity. TGFβ activation is enhanced by the non-covalent GARP-TGFβ complex already at low (nanomolar) concentrations, at which GARP alone does not show any effect. This supports the idea of soluble GARP acting as immune modulator in vivo.
Collapse
Affiliation(s)
- Sven Fridrich
- Cell and Matrix Biology, Institute of Zoology, JGU Mainz, Mainz, Germany
| | | | - Marion Linzmaier
- Cell and Matrix Biology, Institute of Zoology, JGU Mainz, Mainz, Germany
| | - Matthias Felten
- Cell and Matrix Biology, Institute of Zoology, JGU Mainz, Mainz, Germany
| | - Jenny Zwarg
- University Hospital Mainz, 3rd medical center, Mainz, Germany
| | - Volker Lennerz
- University Hospital Mainz, 3rd medical center, Mainz, Germany
| | | | - Walter Stöcker
- Cell and Matrix Biology, Institute of Zoology, JGU Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
29
|
Schönherr C, Bien J, Isbert S, Wichert R, Prox J, Altmeppen H, Kumar S, Walter J, Lichtenthaler SF, Weggen S, Glatzel M, Becker-Pauly C, Pietrzik CU. Generation of aggregation prone N-terminally truncated amyloid β peptides by meprin β depends on the sequence specificity at the cleavage site. Mol Neurodegener 2016; 11:19. [PMID: 26895626 PMCID: PMC4759862 DOI: 10.1186/s13024-016-0084-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metalloprotease meprin β cleaves the Alzheimer's Disease (AD) relevant amyloid precursor protein (APP) as a β-secretase reminiscent of BACE-1, however, predominantly generating N-terminally truncated Aβ2-x variants. RESULTS Herein, we observed increased endogenous sAPPα levels in the brains of meprin β knock-out (ko) mice compared to wild-type controls. We further analyzed the cellular interaction of APP and meprin β and found that cleavage of APP by meprin β occurs prior to endocytosis. The N-terminally truncated Aβ2-40 variant shows increased aggregation propensity compared to Aβ1-40 and acts even as a seed for Aβ1-40 aggregation. Additionally, we observed that different APP mutants affect the catalytic properties of meprin β and that, interestingly, meprin β is unable to generate N-terminally truncated Aβ peptides from Swedish mutant APP (APPswe). CONCLUSION Concluding, we propose that meprin β may be involved in the generation of N-terminally truncated Aβ2-x peptides of APP, but acts independently from BACE-1.
Collapse
Affiliation(s)
- Caroline Schönherr
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Jessica Bien
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Simone Isbert
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Rielana Wichert
- Institute of Biochemistry, Unit for Degradomics of the Protease Web, Christian-Albrechts-University, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Johannes Prox
- Institute of Biochemistry, Unit for Degradomics of the Protease Web, Christian-Albrechts-University, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sathish Kumar
- Department of Neurology, Molecular Cell Biology, University of Bonn, 53127, Bonn, Germany
| | - Jochen Walter
- Department of Neurology, Molecular Cell Biology, University of Bonn, 53127, Bonn, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph Becker-Pauly
- Institute of Biochemistry, Unit for Degradomics of the Protease Web, Christian-Albrechts-University, Otto-Hahn-Platz 9, 24118, Kiel, Germany.
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
30
|
Abstract
Substrate cleavage by metalloproteinases involves nucleophilic attack on the scissile peptide bond by a water molecule that is polarized by a catalytic metal, usually a zinc ion, and a general base, usually the carboxyl group of a glutamic acid side chain. The zinc ion is most often complexed by imidazole nitrogens of histidine side chains. This arrangement suggests that the physiological pH optimum of most metalloproteinases is in the neutral range. In addition to their catalytic metal ion, many metalloproteinases contain additional transition metal or alkaline earth ions, which are structurally important or modulate the catalytic activity. As a consequence, these enzymes are generally sensitive to metal chelators. Moreover, the catalytic metal can be displaced by adventitious metal ions from buffers or biological fluids, which may fundamentally alter the catalytic function. Therefore, handling, purification, and assaying of metalloproteinases require specific precautions to warrant their stability.
Collapse
Affiliation(s)
- Sven Fridrich
- Johannes Gutenberg University Mainz, Institute of Zoology, Cell and Matrix Biology, Germany
| | - Konstantin Karmilin
- Johannes Gutenberg University Mainz, Institute of Zoology, Cell and Matrix Biology, Germany
| | - Walter Stöcker
- Johannes Gutenberg University Mainz, Institute of Zoology, Cell and Matrix Biology, Germany
| |
Collapse
|
31
|
Wagner L, Wolf R, Zeitschel U, Rossner S, Petersén Å, Leavitt BR, Kästner F, Rothermundt M, Gärtner UT, Gündel D, Schlenzig D, Frerker N, Schade J, Manhart S, Rahfeld JU, Demuth HU, von Hörsten S. Proteolytic degradation of neuropeptide Y (NPY) from head to toe: Identification of novel NPY-cleaving peptidases and potential drug interactions in CNS and Periphery. J Neurochem 2015; 135:1019-37. [PMID: 26442809 DOI: 10.1111/jnc.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 01/24/2023]
Abstract
The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes, aminopeptidases P, secreted meprin-A (Mep-A), and cathepsin D (CTSD) rapidly hydrolyze NPY, depending on the cell type and tissue under study. Novel degradation of NPY by cathepsins B, D, L, G, S, and tissue kallikrein could also be identified. The expression of DP4, CTSD, and Mep-A at the median eminence indicates that the bioactivity of NPY is regulated by peptidases at the interphase between the periphery and the CNS. Detailed ex vivo studies on human sera and CSF samples recognized CTSD as the major NPY-cleaving enzyme in the CSF, whereas an additional C-terminal truncation by angiotensin-converting enzyme could be detected in serum. The latter finding hints to potential drug interaction between antidiabetic DP4 inhibitors and anti-hypertensive angiotensin-converting enzyme inhibitors, while it ablates suspected hypertensive side effects of only antidiabetic DP4-inhibitors application. The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes, aminopeptidases P, secreted meprin-A (Mep-A), and cathepsin D (CTSD) rapidly hydrolyze NPY, depending on the cell type and tissue under study. Novel degradation of NPY by cathepsins B, D, L, G, S, and tissue kallikrein could also be identified. The expression of DP4, CTSD, and Mep-A at the median eminence indicates that the bioactivity of NPY is regulated by peptidases at the interphase between the periphery and the CNS. Detailed ex vivo studies on human sera and CSF samples recognized CTSD as the major NPY-cleaving enzyme in the CSF, whereas an additional C-terminal truncation by angiotensin-converting enzyme could be detected in serum. The latter finding hints to potential drug interaction between antidiabetic DP4 inhibitors and anti-hypertensive angiotensin-converting enzyme inhibitors, while it ablates suspected hypertensive side effects of only antidiabetic DP4-inhibitors application.
Collapse
Affiliation(s)
- Leona Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V., Stuttgart, Germany.,Probiodrug AG, Halle, Germany.,Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Ulrike Zeitschel
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Steffen Rossner
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Lund University, Lund, Sweden
| | - Blair R Leavitt
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia and Children's and Women's Hospital, Vancouver, BC, Canada
| | - Florian Kästner
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Matthias Rothermundt
- Department of Psychiatry, University of Muenster, Muenster, Germany.,St. Rochus-Hospital Telgte, Telgte, Germany
| | | | - Daniel Gündel
- Julius Bernstein Institute for Physiology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Dagmar Schlenzig
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Nadine Frerker
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jutta Schade
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Jens-Ulrich Rahfeld
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
32
|
Sato Y, Kobayashi D, Kohno T, Kidani Y, Prox J, Becker-Pauly C, Hattori M. Determination of cleavage site of Reelin between its sixth and seventh repeat and contribution of meprin metalloproteases to the cleavage. J Biochem 2015; 159:305-12. [PMID: 26491063 DOI: 10.1093/jb/mvv102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/06/2015] [Indexed: 02/02/2023] Open
Abstract
Reelin is a secreted glycoprotein whose function is regulated by proteolysis. One of the specific cleavage sites of Reelin, called C-t, is located approximately between the sixth and seventh Reelin repeat but its exact site was unknown. We here show that a metalloprotease present in the culture supernatant of cerebellar granular neurons (CGN) cleaves Reelin between Ala2688 and Asp2689. A Reelin mutant in which Asp2689 is replaced by Lys (Reelin-DK) is resistant to C-t cleavage by culture supernatant of CGN. From biochemical characteristics and the cleavage site preference, meprin α and meprin β were suggested candidate proteases and both were confirmed to cleave Reelin at the C-t site. Meprin α cleaved Reelin-DK but meprin β did not. Actinonin, a meprin α and meprin β inhibitor, did not inhibit the Reelin-cleaving activity of CGN and the amount of Reelin fragments in brains of meprin β knock-out mice was not significantly different from that of the wild-type, indicating that meprin β does not play a major role in Reelin cleavage under basal conditions. We propose that meprin α and meprin β join the modulators of Reelin signalling as they cleave Reelin at a specific site and are upregulated under specific pathological conditions.
Collapse
Affiliation(s)
- Yoshitaka Sato
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan and
| | - Daichi Kobayashi
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan and
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan and
| | - Yujiro Kidani
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan and
| | - Johannes Prox
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan and
| | - Christoph Becker-Pauly
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Germany
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan and
| |
Collapse
|
33
|
Bonaccorso RL, Chepurny OG, Becker-Pauly C, Holz GG, Doyle RP. Enhanced Peptide Stability Against Protease Digestion Induced by Intrinsic Factor Binding of a Vitamin B12 Conjugate of Exendin-4. Mol Pharm 2015; 12:3502-6. [PMID: 26260673 DOI: 10.1021/acs.molpharmaceut.5b00390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide digestion from proteases is a significant limitation in peptide therapeutic development. It has been hypothesized that the dietary pathway of vitamin B12 (B12) may be exploited in this area, but an open question is whether B12-peptide conjugates bound to the B12 gastric uptake protein intrinsic factor (IF) can provide any stability against proteases. Herein, we describe a new conjugate of B12 with the incretin peptide exendin 4 that demonstrates picomolar agonism of the glugacon-like peptide-1 receptor (GLP1-R). Stability studies reveal that Ex-4 is digested by pancreatic proteases trypsin and chymotrypsin and by the kidney endopeptidase meprin β. Prebinding the B12 conjugate to IF, however, resulted in up to a 4-fold greater activity of the B12-Ex-4 conjugate relative to Ex-4, when the IF-B12-Ex-4 complex was exposed to 22 μg/mL of trypsin, 2.3-fold greater activity when exposed to 1.25 μg/mL of chymotrypsin, and there was no decrease in function at up to 5 μg/mL of meprin β.
Collapse
Affiliation(s)
- Ron L Bonaccorso
- Department of Chemistry, Center for Science and Technology, Syracuse University , 111 College Place, Syracuse, New York 13244, United States
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University , Syracuse, New York 13210, United States
| | | | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University , Syracuse, New York 13210, United States.,Department of Pharmacology, State University of New York, Upstate Medical University , Syracuse, New York 13210, United States
| | - Robert P Doyle
- Department of Chemistry, Center for Science and Technology, Syracuse University , 111 College Place, Syracuse, New York 13244, United States.,Department of Medicine, State University of New York, Upstate Medical University , Syracuse, New York 13210, United States
| |
Collapse
|
34
|
Metalloprotease meprin β is activated by transmembrane serine protease matriptase-2 at the cell surface thereby enhancing APP shedding. Biochem J 2015; 470:91-103. [DOI: 10.1042/bj20141417] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/15/2015] [Indexed: 01/16/2023]
Abstract
Metalloprotease meprin β is a sheddase of transmembrane proteins. We identified serine protease matriptase-2 (MT2) as a specific activator of meprin β at the cell surface. This provides mechanistic insight for the regulation of meprin β activity and demonstrates clear differences in proenzyme activation.
Collapse
|
35
|
Schlenzig D, Wermann M, Ramsbeck D, Moenke-Wedler T, Schilling S. Expression, purification and initial characterization of human meprin β from Pichia pastoris. Protein Expr Purif 2015; 116:75-81. [PMID: 26256061 DOI: 10.1016/j.pep.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/26/2022]
Abstract
Human meprin β (h-meprin β), a single-zinc metalloendoprotease of the astacin family, is potentially involved in disorders such as fibrosis and Alzheimer's disease. Here, we describe the expression of the enzyme in the yeast Pichia pastoris. The N-terminal signal sequence was replaced by the α-leader of Saccharomyces, enabling efficient secretion of the mature enzyme, harboring either an N-terminal or C-terminal His-tag. The purification by affinity and hydrophobic interaction chromatography resulted in isolation of 58.4 mg/l of homogenous human pro-meprin β from fermentation broth. The activated enzyme isolated from yeast (yh-meprin β) displayed virtually identical enzymatic activity as h-meprin from a mammalian cell line. Furthermore, the yh-meprin β was N-glycosylated and secreted as a dimer with a molecular mass of 148 kDa. Endoglycosidase H treatment generated a protein with a molecular mass of 133 kDa, but essentially unchanged kinetic parameters. Thus, our data suggest that human meprin β expressed in P. pastoris displays virtually identical parameters as meprin from other sources. The high yield of protein expression, the ease of purification and the deglycosylation in its native state appear to favor further studies aiming at inhibitor screening and structure-based inhibitor refinement.
Collapse
Affiliation(s)
- D Schlenzig
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation (IZI-MWT), Weinbergweg 22, 06120 Halle/Saale, Germany
| | - M Wermann
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation (IZI-MWT), Weinbergweg 22, 06120 Halle/Saale, Germany
| | - D Ramsbeck
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation (IZI-MWT), Weinbergweg 22, 06120 Halle/Saale, Germany
| | - T Moenke-Wedler
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation (IZI-MWT), Weinbergweg 22, 06120 Halle/Saale, Germany
| | - S Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation (IZI-MWT), Weinbergweg 22, 06120 Halle/Saale, Germany.
| |
Collapse
|
36
|
Arnold P, Schmidt F, Prox J, Zunke F, Pietrzik C, Lucius R, Becker-Pauly C. Calcium negatively regulates meprin β activity and attenuates substrate cleavage. FASEB J 2015; 29:3549-57. [DOI: 10.1096/fj.15-272310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022]
|
37
|
Prox J, Arnold P, Becker-Pauly C. Meprin α and meprin β: Procollagen proteinases in health and disease. Matrix Biol 2015; 44-46:7-13. [DOI: 10.1016/j.matbio.2015.01.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
|
38
|
Jodal A, Pape F, Becker-Pauly C, Maas O, Schibli R, Béhé M. Evaluation of ¹¹¹in-labelled exendin-4 derivatives containing different meprin β-specific cleavable linkers. PLoS One 2015; 10:e0123443. [PMID: 25855967 PMCID: PMC4391719 DOI: 10.1371/journal.pone.0123443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cleavable linkers, which are specifically cleaved by defined conditions or enzymes, are powerful tools that can be used for various purposes. Amongst other things, they have been successfully used to deliver toxic payloads as prodrugs into target tissues. In this work novel linker sequences targeting meprin β, a metalloprotease expressed in the kidney brush-border membrane, were designed and included in the sequence of three radiolabelled exendin-4 derivatives. As radiolabelled exendin-4 derivatives strongly accumulate in the kidneys, we hypothesised that specific cleavage of the radiolabelled moiety at the kidney brush-border membrane would allow easier excretion of the activity into the urine and therefore improve the pharmacological properties of the peptide. RESULTS The insertion of a cleavable linker did not negatively influence the in vitro properties of the peptides. They showed a good affinity to the GLP-1 receptor expressed in CHL cells, a high internalisation and sufficiently high stability in fresh human blood plasma. In vitro digestion with recombinant meprin β rapidly metabolised the corresponding linker sequences. After 60 min the majority of the corresponding peptides were digested and at the same time the anticipated fragments were formed. The peptides were also quickly metabolised in CD1 nu/nu mouse kidney homogenates. Immunofluorescence staining of meprin β in kidney sections confirmed the expression of the protease in the kidney brush-border membrane. Biodistribution in GLP-1 receptor positive tumour-xenograft bearing mice revealed high specific uptake of the 111In-labelled tracers in receptor positive tissue. Accumulation in the kidneys, however, was still high and comparable to the lead compound 111In-Ex4NOD40. CONCLUSION In conclusion, we show that the concept of cleavable linkers specific for meprin β is feasible, as the peptides are rapidly cleaved by the enzyme while retaining their biological properties.
Collapse
Affiliation(s)
- Andreas Jodal
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Fabienne Pape
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Ole Maas
- Department of Radiology and Nuclear Medicine, Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- * E-mail:
| |
Collapse
|
39
|
The metalloproteases meprin α and meprin β: unique enzymes in inflammation, neurodegeneration, cancer and fibrosis. Biochem J 2013; 450:253-64. [PMID: 23410038 PMCID: PMC3573791 DOI: 10.1042/bj20121751] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The metalloproteases meprin α and meprin β exhibit structural and functional features that are unique among all extracellular proteases. Although meprins were discovered more than 30 years ago, their precise substrates and physiological roles have been elusive. Both enzymes were originally found to be highly expressed in kidney and intestine, which focused research on these particular tissues and associated pathologies. Only recently it has become evident that meprins exhibit a much broader expression pattern, implicating functions in angiogenesis, cancer, inflammation, fibrosis and neurodegenerative diseases. Different animal models, as well as proteomics approaches for the identification of protease substrates, have helped to reveal more precise molecular signalling events mediated by meprin activity, such as activation and release of pro-inflammatory cytokines. APP (amyloid precursor protein) is cleaved by meprin β in vivo, reminiscent of the β-secretase BACE1 (β-site APP-cleaving enzyme 1). The subsequent release of Aβ (amyloid β) peptides is thought to be the major cause of the neurodegenerative Alzheimer's disease. On the other hand, ADAM10 (a disintegrin and metalloprotease domain 10), which is the constitutive α-secretase, was shown to be activated by meprin β, which is itself shed from the cell surface by ADAM10. In skin, both meprins are overexpressed in fibrotic tumours, characterized by massive accumulation of fibrillar collagens. Indeed, procollagen III is processed to its mature form by meprin α and meprin β, an essential step in collagen fibril assembly. The recently solved crystal structure of meprin β and the unique cleavage specificity of these proteases identified by proteomics will help to generate specific inhibitors that could be used as therapeutics to target meprins under certain pathological conditions.
Collapse
|
40
|
Kaushal GP, Haun RS, Herzog C, Shah SV. Meprin A metalloproteinase and its role in acute kidney injury. Am J Physiol Renal Physiol 2013; 304:F1150-8. [PMID: 23427141 DOI: 10.1152/ajprenal.00014.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Meprin A, composed of α- and β-subunits, is a membrane-associated neutral metalloendoprotease that belongs to the astacin family of zinc endopeptidases. It was first discovered as an azocasein and benzoyl-l-tyrosyl-p-aminobenzoic acid hydrolase in the brush-border membranes of proximal tubules and intestines. Meprin isoforms are now found to be widely distributed in various organs (kidney, intestines, leukocytes, skin, bladder, and a variety of cancer cells) and are capable of hydrolyzing and processing a large number of substrates, including extracellular matrix proteins, cytokines, adherens junction proteins, hormones, bioactive peptides, and cell surface proteins. The ability of meprin A to cleave various substrates sheds new light on the functional properties of this enzyme, including matrix remodeling, inflammation, and cell-cell and cell-matrix processes. Following ischemia-reperfusion (IR)- and cisplatin-induced acute kidney injury (AKI), meprin A is redistributed toward the basolateral plasma membrane, and the cleaved form of meprin A is excreted in the urine. These studies suggest that altered localization and shedding of meprin A in places other than the apical membranes may be deleterious in vivo in acute tubular injury. These studies also provide new insight into the importance of a sheddase involved in the release of membrane-associated meprin A under pathological conditions. Meprin A is injurious to the kidney during AKI, as meprin A-knockout mice and meprin inhibition provide protective roles and improve renal function. Meprin A, therefore, plays an important role in AKI and potentially is a unique target for therapeutic intervention during AKI.
Collapse
Affiliation(s)
- Gur P Kaushal
- Central Arkansas Veterans Healthcare System, 4300 West 7th St., 111D/LR, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
41
|
Geurts N, Becker-Pauly C, Martens E, Proost P, Van den Steen PE, Stöcker W, Opdenakker G. Meprins process matrix metalloproteinase-9 (MMP-9)/gelatinase B and enhance the activation kinetics by MMP-3. FEBS Lett 2012; 586:4264-9. [PMID: 23123160 DOI: 10.1016/j.febslet.2012.10.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 01/22/2023]
Abstract
Meprin α and β, members of the astacin family of zinc metalloproteinases, are unique plasma membrane and secreted proteases known to cleave a wide range of biological substrates involved in inflammation, cancer and fibrosis. In this study, we identified proMMP-9 as a novel substrate and show that aminoterminal meprin-mediated clipping improves the activation kinetics of proMMP-9 by MMP-3, an efficient activator of proMMP-9. Interestingly, the NH(2)-terminus LVLFPGDL, generated by incubation with meprin α, is identical to the form produced in conditioned media from human neutrophils and monocytes. Hence, this meprin-mediated processing and enhancement of MMP-9 activation kinetics may have biological relevance in the context of in vivo inflammatory processes.
Collapse
Affiliation(s)
- Nathalie Geurts
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane. Proc Natl Acad Sci U S A 2012; 109:16131-6. [PMID: 22988105 DOI: 10.1073/pnas.1211076109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ectodomain shedding at the cell surface is a major mechanism to regulate the extracellular and circulatory concentration or the activities of signaling proteins at the plasma membrane. Human meprin β is a 145-kDa disulfide-linked homodimeric multidomain type-I membrane metallopeptidase that sheds membrane-bound cytokines and growth factors, thereby contributing to inflammatory diseases, angiogenesis, and tumor progression. In addition, it cleaves amyloid precursor protein (APP) at the β-secretase site, giving rise to amyloidogenic peptides. We have solved the X-ray crystal structure of a major fragment of the meprin β ectoprotein, the first of a multidomain oligomeric transmembrane sheddase, and of its zymogen. The meprin β dimer displays a compact shape, whose catalytic domain undergoes major rearrangement upon activation, and reveals an exosite and a sugar-rich channel, both of which possibly engage in substrate binding. A plausible structure-derived working mechanism suggests that substrates such as APP are shed close to the plasma membrane surface following an "N-like" chain trace.
Collapse
|
43
|
Jefferson T, Auf dem Keller U, Bellac C, Metz VV, Broder C, Hedrich J, Ohler A, Maier W, Magdolen V, Sterchi E, Bond JS, Jayakumar A, Traupe H, Chalaris A, Rose-John S, Pietrzik CU, Postina R, Overall CM, Becker-Pauly C. The substrate degradome of meprin metalloproteases reveals an unexpected proteolytic link between meprin β and ADAM10. Cell Mol Life Sci 2012; 70:309-33. [PMID: 22940918 PMCID: PMC3535375 DOI: 10.1007/s00018-012-1106-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 01/10/2023]
Abstract
The in vivo roles of meprin metalloproteases in pathophysiological conditions remain elusive. Substrates define protease roles. Therefore, to identify natural substrates for human meprin α and β we employed TAILS (terminal amine isotopic labeling of substrates), a proteomics approach that enriches for N-terminal peptides of proteins and cleavage fragments. Of the 151 new extracellular substrates we identified, it was notable that ADAM10 (a disintegrin and metalloprotease domain-containing protein 10)-the constitutive α-secretase-is activated by meprin β through cleavage of the propeptide. To validate this cleavage event, we expressed recombinant proADAM10 and after preincubation with meprin β, this resulted in significantly elevated ADAM10 activity. Cellular expression in murine primary fibroblasts confirmed activation. Other novel substrates including extracellular matrix proteins, growth factors and inhibitors were validated by western analyses and enzyme activity assays with Edman sequencing confirming the exact cleavage sites identified by TAILS. Cleavages in vivo were confirmed by comparing wild-type and meprin(-/-) mice. Our finding of cystatin C, elafin and fetuin-A as substrates and natural inhibitors for meprins reveal new mechanisms in the regulation of protease activity important for understanding pathophysiological processes.
Collapse
Affiliation(s)
- Tamara Jefferson
- Institute of Biochemistry, Christian-Albrechts-University, 24118, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Minder P, Bayha E, Becker-Pauly C, Sterchi EE. Meprinα transactivates the epidermal growth factor receptor (EGFR) via ligand shedding, thereby enhancing colorectal cancer cell proliferation and migration. J Biol Chem 2012; 287:35201-35211. [PMID: 22923609 DOI: 10.1074/jbc.m112.368910] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Meprinα, an astacin-type metalloprotease is overexpressed in colorectal cancer cells and is secreted in a non-polarized fashion, leading to the accumulation of meprinα in the tumor stroma. The transition from normal colonocytes to colorectal cancer correlates with increased meprinα activity at primary tumor sites. A role for meprinα in invasion and metastatic dissemination is supported by its pro-angiogenic and pro-migratory activity. In the present study, we provide evidence for a meprinα-mediated transactivation of the EGFR signaling pathway and suggest that this mechanism is involved in colorectal cancer progression. Using alkaline phosphatase-tagged EGFR ligands and an ELISA assay, we demonstrate that meprinα is capable of shedding epidermal growth factor (EGF) and transforming growth factor-α (TGFα) from the plasma membrane. Shedding was abrogated using actinonin, an inhibitor for meprinα. The physiological effects of meprinα-mediated shedding of EGF and TGFα were investigated with human colorectal adenocarcinoma cells (Caco-2). Proteolytically active meprinα leads to an increase in EGFR and ERK1/2 phosphorylation and subsequently enhances cell proliferation and migration. In conclusion, the implication of meprinα in the EGFR/MAPK signaling pathway indicates a role of meprinα in colorectal cancer progression.
Collapse
Affiliation(s)
- Petra Minder
- Institute of Biochemistry and Molecular Medicine,University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland
| | - Elke Bayha
- Institute of Biochemistry and Molecular Medicine,University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland
| | - Christoph Becker-Pauly
- Institute of Biochemistry, Christian-Albrechts-University, Rudolf-Hoeber-Strasse 1, 24118 Kiel, Germany
| | - Erwin E Sterchi
- Institute of Biochemistry and Molecular Medicine,University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
45
|
Bien J, Jefferson T, Causević M, Jumpertz T, Munter L, Multhaup G, Weggen S, Becker-Pauly C, Pietrzik CU. The metalloprotease meprin β generates amino terminal-truncated amyloid β peptide species. J Biol Chem 2012; 287:33304-13. [PMID: 22879596 DOI: 10.1074/jbc.m112.395608] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid β (Aβ) peptide, which is abundantly found in the brains of patients suffering from Alzheimer disease, is central in the pathogenesis of this disease. Therefore, to understand the processing of the amyloid precursor protein (APP) is of critical importance. Recently, we demonstrated that the metalloprotease meprin β cleaves APP and liberates soluble N-terminal APP (N-APP) fragments. In this work, we present evidence that meprin β can also process APP in a manner reminiscent of β-secretase. We identified cleavage sites of meprin β in the amyloid β sequence of the wild type and Swedish mutant of APP at positions p1 and p2, thereby generating Aβ variants starting at the first or second amino acid residue. We observed even higher kinetic values for meprin β than BACE1 for both the wild type and the Swedish mutant APP form. This enzymatic activity of meprin β on APP and Aβ generation was also observed in the absence of BACE1/2 activity using a β-secretase inhibitor and BACE knock-out cells, indicating that meprin β acts independently of β-secretase.
Collapse
Affiliation(s)
- Jessica Bien
- Institute of Pathobiochemistry, University Medical Centre of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bijakowski C, Vadon-Le Goff S, Delolme F, Bourhis JM, Lécorché P, Ruggiero F, Becker-Pauly C, Yiallouros I, Stöcker W, Dive V, Hulmes DJS, Moali C. Sizzled is unique among secreted frizzled-related proteins for its ability to specifically inhibit bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases. J Biol Chem 2012; 287:33581-93. [PMID: 22825851 DOI: 10.1074/jbc.m112.380816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BMP-1/tolloid-like proteinases (BTPs) are major enzymes involved in extracellular matrix assembly and activation of bioactive molecules, both growth factors and anti-angiogenic molecules. Although the control of BTP activity by several enhancing molecules is well established, the possibility that regulation also occurs through endogenous inhibitors is still debated. Secreted frizzled-related proteins (sFRPs) have been studied as possible candidates, with highly contradictory results, after the demonstration that sizzled, a sFRP found in Xenopus and zebrafish, was a potent inhibitor of Xenopus and zebrafish tolloid-like proteases. In this study, we demonstrate that mammalian sFRP-1, -2, and -4 do not modify human BMP-1 activity on several of its known substrates including procollagen I, procollagen III, pN-collagen V, and prolysyl oxidase. In contrast, Xenopus sizzled appears as a tight binding inhibitor of human BMP-1, with a K(i) of 1.5 ± 0.5 nM, and is shown to strongly inhibit other human tolloid isoforms mTLD and mTLL-1. Because sizzled is the most potent inhibitor of human tolloid-like proteinases known to date, we have studied its mechanism of action in detail and shown that the frizzled domain of sizzled is both necessary and sufficient for inhibitory activity and that it acts directly on the catalytic domain of BMP-1. Residues in sizzled required for inhibition include Asp-92, which is shared by sFRP-1 and -2, and also Phe-94, Ser-43, and Glu-44, which are specific to sizzled, thereby providing a rational basis for the absence of inhibitory activity of human sFRPs.
Collapse
Affiliation(s)
- Cécile Bijakowski
- Institut de Biologie et Chimie des Protéines, CNRS/Université de Lyon FRE3310/FR3302, 69367 Lyon cedex 7, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lottaz D, Maurer CA, Noël A, Blacher S, Huguenin M, Nievergelt A, Niggli V, Kern A, Müller S, Seibold F, Friess H, Becker-Pauly C, Stöcker W, Sterchi EE. Enhanced activity of meprin-α, a pro-migratory and pro-angiogenic protease, in colorectal cancer. PLoS One 2011; 6:e26450. [PMID: 22096485 PMCID: PMC3214016 DOI: 10.1371/journal.pone.0026450] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/27/2011] [Indexed: 11/22/2022] Open
Abstract
Meprin-α is a metalloprotease overexpressed in cancer cells, leading to the accumulation of this protease in a subset of colorectal tumors. The impact of increased meprin-α levels on tumor progression is not known. We investigated the effect of this protease on cell migration and angiogenesis in vitro and studied the expression of meprin-α mRNA, protein and proteolytic activity in primary tumors at progressive stages and in liver metastases of patients with colorectal cancer, as well as inhibitory activity towards meprin-α in sera of cancer patient as compared to healthy controls. We found that the hepatocyte growth factor (HGF)- induced migratory response of meprin-transfected epithelial cells was increased compared to wild-type cells in the presence of plasminogen, and that the angiogenic response in organ-cultured rat aortic explants was enhanced in the presence of exogenous human meprin-α. In patients, meprin-α mRNA was expressed in colonic adenomas, primary tumors UICC (International Union Against Cancer) stage I, II, III and IV, as well as in liver metastases. In contrast, the corresponding protein accumulated only in primary tumors and liver metastases, but not in adenomas. However, liver metastases lacked meprin-α activity despite increased expression of the corresponding protein, which correlated with inefficient zymogen activation. Sera from cancer patients exhibited reduced meprin-α inhibition compared to healthy controls. In conclusion, meprin-α activity is regulated differently in primary tumors and metastases, leading to high proteolytic activity in primary tumors and low activity in liver metastases. By virtue of its pro-migratory and pro-angiogenic activity, meprin-α may promote tumor progression in colorectal cancer.
Collapse
Affiliation(s)
- Daniel Lottaz
- Department of Rheumatology, Clinical Immunology and Allergology, Inselspital, University Hospital of Bern, Bern, Switzerland
- * E-mail: (DL); (EES)
| | | | - Agnès Noël
- Laboratory of Biology of Tumor and Development, Groupe Interdisciplinaire de Génoprotéomique Appliqué-Recherche (GIGA-Cancer), University of Liège, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Biology of Tumor and Development, Groupe Interdisciplinaire de Génoprotéomique Appliqué-Recherche (GIGA-Cancer), University of Liège, Liège, Belgium
| | - Maya Huguenin
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | - Verena Niggli
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Alexander Kern
- Department of Visceral, Thoracic and Vascular Surgery, Technische Universität Dresden, Dresden, Germany
| | - Stefan Müller
- Department of Gastroenterology, University of Bern, Bern, Switzerland
| | - Frank Seibold
- Department of Gastroenterology, University of Bern, Bern, Switzerland
| | - Helmut Friess
- Department of Surgery, Technische Universität München, München, Germany
| | | | - Walter Stöcker
- Institute of Zoology, Johannes-Gutenberg University, Mainz, Germany
| | - Erwin E. Sterchi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- * E-mail: (DL); (EES)
| |
Collapse
|
48
|
Ohler A, Becker-Pauly C. Morpholino knockdown of the ubiquitously expressed transmembrane serine protease TMPRSS4a in zebrafish embryos exhibits severe defects in organogenesis and cell adhesion. Biol Chem 2011; 392:653-64. [PMID: 21657981 DOI: 10.1515/bc.2011.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract Over the past years the members of the type II transmembrane serine protease (TTSP) family have emerged as new players in mammalian biology. TMPRSS4 (transmembrane protease/serine) is overexpressed in several human cancer tissues, promoting invasion, migration, and metastasis. However, the physiological function has not yet been elucidated. Here, we present morpholino knockdown studies targeting TMPRSS4a, a homolog of human TMPRSS4 in zebrafish embryos. By RT-PCR, we could demonstrate an expression of this protease already 5 h post-fertilization, suggesting important functions in the early stages of embryonic development. Indeed, in vivo gene silencing caused severe defects in tissue development and cell differentiation including a disturbed skeletal muscle formation, a decelerated heartbeat, and a degenerated vascular system. Scanning electron microscopy revealed strong defects in epidermal skin organization, with clearly altered cell-cell contacts, resulting in the detachment of keratinocytes from the underneath tissue. The disturbed organogenesis in general is consistent with RT-PCR results which exhibited a ubiquitous expression of TMPRSS4a, predominantly in kidney, skin, heart, and gills. Our results demonstrate the importance of TMPRSS4a in tissue development and cell differentiation. Whether its proteolytic activity is directed towards adhesion molecules or leads to the activation of other proteases needs to be investigated further.
Collapse
Affiliation(s)
- Anke Ohler
- Institute of Zoology, Cell and Matrix Biology, Johannes Gutenberg University, Germany
| | | |
Collapse
|
49
|
Jefferson T, Čaušević M, auf dem Keller U, Schilling O, Isbert S, Geyer R, Maier W, Tschickardt S, Jumpertz T, Weggen S, Bond JS, Overall CM, Pietrzik CU, Becker-Pauly C. Metalloprotease meprin beta generates nontoxic N-terminal amyloid precursor protein fragments in vivo. J Biol Chem 2011; 286:27741-50. [PMID: 21646356 PMCID: PMC3149364 DOI: 10.1074/jbc.m111.252718] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/02/2011] [Indexed: 01/07/2023] Open
Abstract
Identification of physiologically relevant substrates is still the most challenging part in protease research for understanding the biological activity of these enzymes. The zinc-dependent metalloprotease meprin β is known to be expressed in many tissues with functions in health and disease. Here, we demonstrate unique interactions between meprin β and the amyloid precursor protein (APP). Although APP is intensively studied as a ubiquitously expressed cell surface protein, which is involved in Alzheimer disease, its precise physiological role and relevance remain elusive. Based on a novel proteomics technique termed terminal amine isotopic labeling of substrates (TAILS), APP was identified as a substrate for meprin β. Processing of APP by meprin β was subsequently validated using in vitro and in vivo approaches. N-terminal APP fragments of about 11 and 20 kDa were found in human and mouse brain lysates but not in meprin β(-/-) mouse brain lysates. Although these APP fragments were in the range of those responsible for caspase-induced neurodegeneration, we did not detect cytotoxicity to primary neurons treated by these fragments. Our data demonstrate that meprin β is a physiologically relevant enzyme in APP processing.
Collapse
Affiliation(s)
- Tamara Jefferson
- From Cell and Matrix Biology, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Mirsada Čaušević
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Ulrich auf dem Keller
- the Institute of Cell Biology, Swiss Federal Institute of Technology Zurich, ETH Hoenggerberg, HPM D24, CH-8093 Zurich, Switzerland
| | - Oliver Schilling
- the Institute of Molecular Medicine and Cell Research, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Simone Isbert
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Rebecca Geyer
- From Cell and Matrix Biology, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Wladislaw Maier
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Sabrina Tschickardt
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Thorsten Jumpertz
- the Department of Neuropathology, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Sascha Weggen
- the Department of Neuropathology, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Judith S. Bond
- the Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| | - Christopher M. Overall
- the Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| | - Claus U. Pietrzik
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | | |
Collapse
|
50
|
Becker-Pauly C, Barré O, Schilling O, Auf dem Keller U, Ohler A, Broder C, Schütte A, Kappelhoff R, Stöcker W, Overall CM. Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates. Mol Cell Proteomics 2011; 10:M111.009233. [PMID: 21693781 PMCID: PMC3186203 DOI: 10.1074/mcp.m111.009233] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Astacins are secreted and membrane-bound metalloproteases with clear associations to many important pathological and physiological processes. Yet with only a few substrates described their biological roles are enigmatic. Moreover, the lack of knowledge of astacin cleavage site specificities hampers assay and drug development. Using PICS (proteomic identification of protease cleavage site specificity) and TAILS (terminal amine isotopic labeling of substrates) degradomics approaches >3000 cleavage sites were proteomically identified for five different astacins. Such broad coverage enables family-wide determination of specificities N- and C-terminal to the scissile peptide bond. Remarkably, meprin α, meprin β, and LAST_MAM proteases exhibit a strong preference for aspartate in the peptide (P)1′ position because of a conserved positively charged residue in the active cleft subsite (S)1′. This unparalleled specificity has not been found for other families of extracellular proteases. Interestingly, cleavage specificity is also strongly influenced by proline in P2′ or P3′ leading to a rare example of subsite cooperativity. This specificity characterizes the astacins as unique contributors to extracellular proteolysis that is corroborated by known cleavage sites in procollagen I+III, VEGF (vascular endothelial growth factor)-A, IL (interleukin)-1β, and pro-kallikrein 7. Indeed, cleavage sites in VEGF-A and pro-kallikrein 7 identified by terminal amine isotopic labeling of substrates matched those reported by Edman degradation. Moreover, the novel substrate FGF-19 was validated biochemically and shown to exhibit altered biological activity after meprin processing.
Collapse
Affiliation(s)
- Christoph Becker-Pauly
- Cell and Matrix Biology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, D-55128 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|