1
|
El-Chami C, Foster AR, Johnson C, Clausen RP, Cornwell P, Haslam IS, Steward MC, Watson REB, Young HS, O'Neill CA. Organic osmolytes increase expression of specific tight junction proteins in skin and alter barrier function in keratinocytes. Br J Dermatol 2020; 184:482-494. [PMID: 32348549 DOI: 10.1111/bjd.19162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The epidermal barrier is important for water conservation, failure of which is evident in dry-skin conditions. Barrier function is fulfilled by the stratum corneum, tight junctions (TJs, which control extracellular water) and keratinocyte mechanisms, such as organic osmolyte transport, which regulate intracellular water homeostasis. Organic osmolyte transport by keratinocytes is largely unexplored and nothing is known regarding how cellular and extracellular mechanisms of water conservation may interact. OBJECTIVES We aimed to characterize osmolyte transporters in skin and keratinocytes, and, using transporter inhibitors, to investigate whether osmolytes can modify TJs. Such modification would suggest a possible link between intracellular and extracellular mechanisms of water regulation in skin. METHODS Immunostaining and quantitative polymerase chain reaction of organic osmolyte-treated organ-cultured skin were used to identify changes to organic osmolyte transporters, and TJ protein and gene expression. TJ functional assays were performed on organic osmolyte-treated primary human keratinocytes in culture. RESULTS Immunostaining demonstrated the expression of transporters for betaine, taurine and myo-inositol in transporter-specific patterns. Treatment of human skin with either betaine or taurine increased the expression of claudin-1, claudin-4 and occludin. Osmolyte transporter inhibition abolished this response. Betaine and taurine increased TJ function in primary human keratinocytes in vitro. CONCLUSIONS Treatment of skin with organic osmolytes modulates TJ structure and function, which could contribute to the epidermal barrier. This emphasizes a role for organic osmolytes beyond the maintenance of intracellular osmolarity. This could be harnessed to enhance topical therapies for diseases characterized by skin barrier dysfunction.
Collapse
Affiliation(s)
- C El-Chami
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - A R Foster
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - C Johnson
- School of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - R P Clausen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Cornwell
- TRI Princeton, 601 Prospect Avenue, Princeton, NJ, 08540, USA
| | - I S Haslam
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - M C Steward
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - R E B Watson
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - H S Young
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Dermatology, Salford Royal NHS Foundation Trust, Manchester, UK
| | - C A O'Neill
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
2
|
Foster AR, El Chami C, O'Neill CA, Watson REB. Osmolyte transporter expression is reduced in photoaged human skin: Implications for skin hydration in aging. Aging Cell 2020; 19:e13058. [PMID: 31769623 PMCID: PMC6974728 DOI: 10.1111/acel.13058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023] Open
Abstract
Aging is characterized by the deterioration of tissue structure and function. In skin, environmental factors, for example, ultraviolet radiation (UVR), can accelerate the effects of aging such as decline in barrier function and subsequent loss of hydration. Water homeostasis is vital for all cellular functions and it is known that organic osmolyte transport is critical to this process. Therefore, we hypothesized that as we age, these tightly controlled physiological mechanisms become disrupted, possibly due to loss of transporter expression. We investigated this in vivo, using human skin samples from photoprotected and photoexposed sites of young and aged volunteers. We show a reduction in keratinocyte cell size with age and a downregulation of osmolyte transporters SMIT and TAUT with both chronic and acute UVR exposure. Single‐cell live imaging demonstrated that aged keratinocytes lack efficient cell volume recovery mechanisms possessed by young keratinocytes following physiological stress. However, addition of exogenous taurine significantly rescued cell volume; this was corroborated by a reduction in TAUT mRNA and protein in aged, as compared to young, keratinocytes. Collectively, these novel data demonstrate that human epidermal keratinocytes possess osmolyte‐mediated cell volume regulatory mechanisms, which may be compromised in aging. Therefore, this suggests that organic osmolytes—especially taurine—play a critical role in cutaneous age‐related xerosis and highlights a fundamental mechanism, vital to our understanding of the pathophysiology of skin aging.
Collapse
Affiliation(s)
- April R. Foster
- Centre for Dermatology Research Faculty of Biology, Medicine and Health University of Manchester & Salford Royal NHS Foundation Trust Manchester Academic Health Science Centre Manchester UK
| | - Cecile El Chami
- Centre for Dermatology Research Faculty of Biology, Medicine and Health University of Manchester & Salford Royal NHS Foundation Trust Manchester Academic Health Science Centre Manchester UK
| | - Catherine A. O'Neill
- Centre for Dermatology Research Faculty of Biology, Medicine and Health University of Manchester & Salford Royal NHS Foundation Trust Manchester Academic Health Science Centre Manchester UK
| | - Rachel E. B. Watson
- Centre for Dermatology Research Faculty of Biology, Medicine and Health University of Manchester & Salford Royal NHS Foundation Trust Manchester Academic Health Science Centre Manchester UK
- NIHR Manchester Biomedical Research Centre Central Manchester University Hospitals NHS Foundation Trust Manchester UK
| |
Collapse
|
3
|
El-Chami C, Haslam IS, Steward MC, O'Neill CA. Organic osmolytes preserve the function of the developing tight junction in ultraviolet B-irradiated rat epidermal keratinocytes. Sci Rep 2018; 8:5167. [PMID: 29581434 PMCID: PMC5979960 DOI: 10.1038/s41598-018-22533-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/08/2018] [Indexed: 01/04/2023] Open
Abstract
Epidermal barrier function is provided by the highly keratinised stratum corneum and also by tight junctions (TJs) in the granular layer of skin. The development of the TJ barrier significantly deteriorates in response to ultraviolet B radiation (UVB). Following exposure to UVB, keratinocytes accumulate organic osmolytes, which are known to preserve cell volume during water stress. Since TJs are intimately associated with control of water homeostasis in skin, we hypothesised that there may be a direct influence of osmolytes on TJ development. Exposure of rat epidermal keratinocytes (REKs) to a single dose of UVB reduced the function of developing TJs. This was concomitant with dislocalisation of claudin-1 and claudin-4 from the keratinocyte plasma membrane, phosphorylation of occludin and elevation of reactive oxygen species (ROS). In the presence of organic osmolytes, these effects were negated but were independent of the effects of these molecules on cell volume, elevation of ROS or the gene expression of TJ proteins. These data suggest that organic osmolytes affect TJs via post-translational mechanism(s) possibly involving protection of the native conformation of TJ proteins.
Collapse
Affiliation(s)
- Cécile El-Chami
- School of Biological Sciences, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Iain S Haslam
- School of Biological Sciences, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.,School of Medical Sciences, Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.,Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, United Kingdom
| | - Martin C Steward
- School of Medical Sciences, Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Catherine A O'Neill
- School of Biological Sciences, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| |
Collapse
|
4
|
Dayang W, Dongbo P. Taurine prevents ultraviolet B induced apoptosis in retinal ganglion cells. Cutan Ocul Toxicol 2017; 37:90-95. [PMID: 28592159 DOI: 10.1080/15569527.2017.1339714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wu Dayang
- Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Pang Dongbo
- Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| |
Collapse
|
5
|
Dayang W, Dongbo P. Taurine Protects Lens Epithelial Cells Against Ultraviolet B-Induced Apoptosis. Curr Eye Res 2017; 42:1407-1411. [PMID: 28708005 DOI: 10.1080/02713683.2016.1255759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wu Dayang
- Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P.R. China
| | - Pang Dongbo
- Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P.R. China
| |
Collapse
|
6
|
Kuehne A, Hildebrand J, Soehle J, Wenck H, Terstegen L, Gallinat S, Knott A, Winnefeld M, Zamboni N. An integrative metabolomics and transcriptomics study to identify metabolic alterations in aged skin of humans in vivo. BMC Genomics 2017; 18:169. [PMID: 28201987 PMCID: PMC5312537 DOI: 10.1186/s12864-017-3547-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/02/2017] [Indexed: 11/12/2022] Open
Abstract
Background Aging human skin undergoes significant morphological and functional changes such as wrinkle formation, reduced wound healing capacity, and altered epidermal barrier function. Besides known age-related alterations like DNA-methylation changes, metabolic adaptations have been recently linked to impaired skin function in elder humans. Understanding of these metabolic adaptations in aged skin is of special interest to devise topical treatments that potentially reverse or alleviate age-dependent skin deterioration and the occurrence of skin disorders. Results We investigated the global metabolic adaptions in human skin during aging with a combined transcriptomic and metabolomic approach applied to epidermal tissue samples of young and old human volunteers. Our analysis confirmed known age-dependent metabolic alterations, e.g. reduction of coenzyme Q10 levels, and also revealed novel age effects that are seemingly important for skin maintenance. Integration of donor-matched transcriptome and metabolome data highlighted transcriptionally-driven alterations of metabolism during aging such as altered activity in upper glycolysis and glycerolipid biosynthesis or decreased protein and polyamine biosynthesis. Together, we identified several age-dependent metabolic alterations that might affect cellular signaling, epidermal barrier function, and skin structure and morphology. Conclusions Our study provides a global resource on the metabolic adaptations and its transcriptional regulation during aging of human skin. Thus, it represents a first step towards an understanding of the impact of metabolism on impaired skin function in aged humans and therefore will potentially lead to improved treatments of age related skin disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3547-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093, Zürich, Switzerland.,PhD Program Systems Biology, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Janosch Hildebrand
- Coburg University of Applied Sciences and Arts, Friedrich-Streib-Straße 2, Coburg, 96450, Germany
| | - Joern Soehle
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Horst Wenck
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Lara Terstegen
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Stefan Gallinat
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Anja Knott
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Marc Winnefeld
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093, Zürich, Switzerland.
| |
Collapse
|
7
|
Rauhala L, Hämäläinen L, Dunlop TW, Pehkonen P, Bart G, Kokkonen M, Tammi M, Tammi R, Pasonen-Seppänen S. The organic osmolyte betaine induces keratin 2 expression in rat epidermal keratinocytes — A genome-wide study in UVB irradiated organotypic 3D cultures. Toxicol In Vitro 2015; 30:462-75. [DOI: 10.1016/j.tiv.2015.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 12/18/2022]
|
8
|
El-Chami C, Haslam IS, Steward MC, O'Neill CA. Role of organic osmolytes in water homoeostasis in skin. Exp Dermatol 2014; 23:534-7. [DOI: 10.1111/exd.12473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Cécile El-Chami
- Institute of Inflammation and Repair; Faculty of Medical and Human Sciences; University of Manchester; Manchester UK
| | - Iain S. Haslam
- Institute of Inflammation and Repair; Faculty of Medical and Human Sciences; University of Manchester; Manchester UK
| | | | - Catherine A. O'Neill
- Institute of Inflammation and Repair; Faculty of Medical and Human Sciences; University of Manchester; Manchester UK
| |
Collapse
|
9
|
Gardell AM, Qin Q, Rice RH, Li J, Kültz D. Derivation and osmotolerance characterization of three immortalized tilapia (Oreochromis mossambicus) cell lines. PLoS One 2014; 9:e95919. [PMID: 24797371 PMCID: PMC4010420 DOI: 10.1371/journal.pone.0095919] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/01/2014] [Indexed: 12/12/2022] Open
Abstract
Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish.
Collapse
Affiliation(s)
- Alison M. Gardell
- Department of Animal Science, University of California Davis, Davis, California, United States of America
- * E-mail:
| | - Qin Qin
- Department of Environmental Toxicology, University of California Davis, Davis, California, United States of America
| | - Robert H. Rice
- Department of Environmental Toxicology, University of California Davis, Davis, California, United States of America
| | - Johnathan Li
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Dietmar Kültz
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| |
Collapse
|
10
|
Abstract
To achieve and maintain skin architecture and homeostasis, keratinocytes must intricately balance growth, differentiation, and polarized motility known to be governed by calcium. Orai1 is a pore subunit of a store-operated Ca(2+) channel that is a major molecular counterpart for Ca(2+) influx in nonexcitable cells. To elucidate the physiological significance of Orai1 in skin, we studied its functions in epidermis of mice, with targeted disruption of the orai1 gene, human skin sections, and primary keratinocytes. We demonstrate that Orai1 protein is mainly confined to the basal layer of epidermis where it plays a critical role to control keratinocyte proliferation and polarized motility. Orai1 loss of function alters keratinocyte differentiation both in vitro and in vivo. Exploring underlying mechanisms, we show that the activation of Orai1-mediated calcium entry leads to enhancing focal adhesion turnover via a PKCβ-Calpain-focal adhesion kinase pathway. Our findings provide insight into the functions of the Orai1 channel in the maintenance of skin homeostasis.
Collapse
|
11
|
Analysing the role of UVB-induced translational inhibition and PP2Ac deactivation in NF-κB signalling using a minimal mathematical model. PLoS One 2012; 7:e40274. [PMID: 22815735 PMCID: PMC3399864 DOI: 10.1371/journal.pone.0040274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/03/2012] [Indexed: 02/08/2023] Open
Abstract
Activation of nuclear factor κB (NF-κB) by interleukin-1β (IL-1) usually results in an anti-apoptotic activity that is rapidly terminated by a negative feedback loop involving NF-κB dependent resynthesis of its own inhibitor IκBα. However, apoptosis induced by ultraviolet B radiation (UVB) is not attenuated, but significantly enhanced by co-stimulation with IL-1 in human epithelial cells. Under these conditions NF-κB remains constitutively active and turns into a pro-apoptotic factor by selectively repressing anti-apoptotic genes. Two different mechanisms have been separately proposed to explain UV-induced lack of IκBα recurrence: global translational inhibition as well as deactivation of the Ser/Thr phosphatase PP2Ac. Using mathematical modelling, we show that the systems behaviour requires a combination of both mechanisms, and we quantify their contribution in different settings. A mathematical model including both mechanisms is developed and fitted to various experimental data sets. A comparison of the model results and predictions with model variants lacking one of the mechanisms shows that both mechanisms are present in our experimental setting. The model is successfully validated by the prediction of independent data. Weak constitutive IKKβ phosphorylation is shown to be a decisive process in IκBα degradation induced by UVB stimulation alone, but irrelevant for (co-)stimulations with IL-1. In silico knockout experiments show that translational inhibition is predominantly responsible for lack of IκBα recurrence following IL-1+UVB stimulation. In case of UVB stimulation alone, cooperation of both processes causes the observed decrease of IκBα. This shows that the processes leading to activation of transcription factor NF-κB upon stimulation with ultraviolet B radiation with and without interleukin-1 costimulation are more complex than previously thought, involving both a cross talk of UVB induced translational inhibition and PP2Ac deactivation. The importance of each of the mechanisms depends on the specific cellular setting.
Collapse
|
12
|
Hosseinzadeh Z, Bhavsar SK, Lang F. Down-Regulation of the Myoinositol Transporter SMIT by JAK2. Cell Physiol Biochem 2012. [DOI: 10.1159/000343335] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Pulliainen K, Nevalainen H, Väkeväinen H, Jutila K, Gummer CL. An analytical method for the determination of betaine (trimethylglycine) from hair. Int J Cosmet Sci 2010; 32:135-8. [DOI: 10.1111/j.1468-2494.2009.00554.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Craig SS, Craig SA, Ganio MS, Maresh CM, Horrace G, da Costa KA, Zeisel SH. The betaine content of sweat from adolescent females. J Int Soc Sports Nutr 2010; 7:3. [PMID: 20205750 PMCID: PMC2822829 DOI: 10.1186/1550-2783-7-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/22/2010] [Indexed: 11/25/2022] Open
Abstract
Background This study was developed to establish whether betaine was present in the sweat of females and to determine any correlations with other sweat components. Methods Sweat patches were placed on eight trained adolescent Highland dancers (age = 13.6 ± 2.3 yr), who then participated in a dance class for 2 hours. Patches were removed, and the sweat recovered via centrifugation. The sweat was subsequently analyzed for betaine, choline, sodium, potassium, chloride, lactate, glucose, urea and ammonia. Results Betaine was present in the sweat of all subjects (232 ± 84 μmol·L-1), which is higher than typically found in plasma. The concentration of several sweat components were correlated, in particular betaine with most other measured components. Conclusion Betaine, an osmoprotectant and methyl donor, is a component of sweat that may be lost from the body in significant amounts.
Collapse
|
15
|
Rendic S, Guengerich FP. Update information on drug metabolism systems--2009, part II: summary of information on the effects of diseases and environmental factors on human cytochrome P450 (CYP) enzymes and transporters. Curr Drug Metab 2010; 11:4-84. [PMID: 20302566 PMCID: PMC4167379 DOI: 10.2174/138920010791110917] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/22/2010] [Indexed: 12/14/2022]
Abstract
The present paper is an update of the data on the effects of diseases and environmental factors on the expression and/or activity of human cytochrome P450 (CYP) enzymes and transporters. The data are presented in tabular form (Tables 1 and 2) and are a continuation of previously published summaries on the effects of drugs and other chemicals on CYP enzymes (Rendic, S.; Di Carlo, F. Drug Metab. Rev., 1997, 29(1-2), 413-580., Rendic, S. Drug Metab. Rev., 2002, 34(1-2), 83-448.). The collected information presented here is as stated by the cited author(s), and in cases when several references are cited the latest published information is included. Inconsistent results and conclusions obtained by different authors are highlighted, followed by discussion of the major findings. The searchable database is available as an Excel file, for information about file availability contact the corresponding author.
Collapse
Affiliation(s)
- S Rendic
- University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|