1
|
Leinung N, Mentrup T, Hodzic S, Schröder B. Molecular and functional in vivo characterisation of murine Dectin-1 isoforms. Eur J Immunol 2024:e2451092. [PMID: 39194380 DOI: 10.1002/eji.202451092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Dectin-1 is a C-type lectin-receptor involved in sensing fungi by innate immune cells. Encoded by the Clec7a gene, Dectin-1 exists in two major splice isoforms, Dectin-1a and 1b, which differ in the presence of a membrane-proximal stalk domain. As reported previously, this domain determines degradative routes for Dectin-1a and 1b leading to the generation of a stable N-terminal fragment exclusively from Dectin-1a. Here, we narrow down the responsible part of the stalk and demonstrate the stabilisation of the Dectin-1a N-terminal fragment in tetraspanin-enriched microdomains. C57BL/6 and BALB/c mice show divergent Dectin-1 isoform expression patterns, which are caused by a single nucleotide polymorphism in exon 3 of the Clec7a gene, leading to a non-sense Dectin-1a mRNA in C57BL/6 mice. Using backcrossing, we generated mice with the C57BL/6 Clec7a allele on a BALB/c background and compared these to the parental strains. Expression of the C57BL/6 allele leads to the exclusive presence of the Dectin-1b protein. Furthermore, it was associated with higher Dectin-1 mRNA expression, but less Dectin-1 at the cell surface according to flow cytometry. In neutrophils, this altered ROS production induced by Dectin-1 model ligands, while cellular responses in macrophages and dendritic cells were not significantly influenced by the Dectin-1 isoform pattern.
Collapse
Affiliation(s)
- Nadja Leinung
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sajma Hodzic
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Li X, Kirkpatrick RB, Wang X, Tucker CJ, Shukla A, Jessen HJ, Wang H, Shears SB, Gu C. Homeostatic coordination of cellular phosphate uptake and efflux requires an organelle-based receptor for the inositol pyrophosphate IP8. Cell Rep 2024; 43:114316. [PMID: 38833370 PMCID: PMC11284862 DOI: 10.1016/j.celrep.2024.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/16/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Phosphate (Pi) serves countless metabolic pathways and is involved in macromolecule synthesis, energy storage, cellular signaling, and bone maintenance. Herein, we describe the coordination of Pi uptake and efflux pathways to maintain mammalian cell Pi homeostasis. We discover that XPR1, the presumed Pi efflux transporter, separately supervises rates of Pi uptake. This direct, regulatory interplay arises from XPR1 being a binding partner for the Pi uptake transporter PiT1, involving a predicted transmembrane helix/extramembrane loop in XPR1, and its hitherto unknown localization in a subset of intracellular LAMP1-positive puncta (named "XLPVs"). A pharmacological mimic of Pi homeostatic challenge is sensed by the inositol pyrophosphate IP8, which functionalizes XPR1 to respond in a temporally hierarchal manner, initially adjusting the rate of Pi efflux, followed subsequently by independent modulation of PiT1 turnover to reset the rate of Pi uptake. These observations generate a unifying model of mammalian cellular Pi homeostasis, expanding opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Xingyao Li
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA
| | - Regan B Kirkpatrick
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Anuj Shukla
- Institute of Organic Chemistry, and CIBSS - the Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, and CIBSS - the Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA; Nucleolar Integrity Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA
| | - Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA; Synaptic & Developmental Plasticity Group, Neurobiology Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
3
|
Li C, Yi Y, Ouyang Y, Chen F, Lu C, Peng S, Wang Y, Chen X, Yan X, Xu H, Li S, Feng L, Xie X. TORSEL, a 4EBP1-based mTORC1 live-cell sensor, reveals nutrient-sensing targeting by histone deacetylase inhibitors. Cell Biosci 2024; 14:68. [PMID: 38824577 PMCID: PMC11143692 DOI: 10.1186/s13578-024-01250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is an effective therapeutic target for diseases such as cancer, diabetes, aging, and neurodegeneration. However, an efficient tool for monitoring mTORC1 inhibition in living cells or tissues is lacking. RESULTS We developed a genetically encoded mTORC1 sensor called TORSEL. This sensor changes its fluorescence pattern from diffuse to punctate when 4EBP1 dephosphorylation occurs and interacts with eIF4E. TORSEL can specifically sense the physiological, pharmacological, and genetic inhibition of mTORC1 signaling in living cells and tissues. Importantly, TORSEL is a valuable tool for imaging-based visual screening of mTORC1 inhibitors. Using TORSEL, we identified histone deacetylase inhibitors that selectively block nutrient-sensing signaling to inhibit mTORC1. CONCLUSIONS TORSEL is a unique living cell sensor that efficiently detects the inhibition of mTORC1 activity, and histone deacetylase inhibitors such as panobinostat target mTORC1 signaling through amino acid sensing.
Collapse
Affiliation(s)
- Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yingyi Ouyang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chuxin Lu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yifan Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Lin Feng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
4
|
Yin Q, Yang C. Exploring lysosomal biology: current approaches and methods. BIOPHYSICS REPORTS 2024; 10:111-120. [PMID: 38774350 PMCID: PMC11103719 DOI: 10.52601/bpr.2023.230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/04/2024] [Indexed: 05/24/2024] Open
Abstract
Lysosomes are the degradation centers and signaling hubs in the cell. Lysosomes undergo adaptation to maintain cell homeostasis in response to a wide variety of cues. Dysfunction of lysosomes leads to aging and severe diseases including lysosomal storage diseases (LSDs), neurodegenerative disorders, and cancer. To understand the complexity of lysosome biology, many research approaches and tools have been developed to investigate lysosomal functions and regulatory mechanisms in diverse experimental systems. This review summarizes the current approaches and tools adopted for studying lysosomes, and aims to provide a methodological overview of lysosomal research and related fields.
Collapse
Affiliation(s)
- Qiuyuan Yin
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
5
|
Sharma N, Jung M, Mishra PK, Mun JY, Rhee HW. FLEX: genetically encodable enzymatic fluorescence signal amplification using engineered peroxidase. Cell Chem Biol 2024; 31:S2451-9456(24)00081-3. [PMID: 38513646 DOI: 10.1016/j.chembiol.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Fluorescent tagging of biomolecules enables their sensitive detection during separation and determining their subcellular location. In this context, peroxidase-based reactions are actively utilized for signal amplification. To harness this potential, we developed a genetically encodable enzymatic fluorescence signal amplification method using APEX (FLEX). We synthesized a fluorescent probe, Jenfluor triazole (JFT1), which effectively amplifies and restricts fluorescence signals under fixed conditions, enabling fluorescence-based detection of subcellularly localized electron-rich metabolites. Moreover, JFT1 exhibited stable fluorescence signals even under osmium-treated and polymer-embedded conditions, which supported findings from correlative light and electron microscopy (CLEM) using APEX. Using various APEX-conjugated proteins of interest (POIs) targeted to different organelles, we successfully visualized their localization through FLEX imaging while effectively preserving organelle ultrastructures. FLEX provides insights into dynamic lysosome-mitochondria interactions upon exposure to chemical stressors. Overall, FLEX holds significant promise as a sensitive and versatile system for fluorescently detecting APEX2-POIs in multiscale biological samples.
Collapse
Affiliation(s)
- Nirmali Sharma
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Minkyo Jung
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | | | - Ji Young Mun
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Giamogante F, Barazzuol L, Maiorca F, Poggio E, Esposito A, Masato A, Napolitano G, Vagnoni A, Calì T, Brini M. A SPLICS reporter reveals [Formula: see text]-synuclein regulation of lysosome-mitochondria contacts which affects TFEB nuclear translocation. Nat Commun 2024; 15:1516. [PMID: 38374070 PMCID: PMC10876553 DOI: 10.1038/s41467-024-46007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondrial and lysosomal activities are crucial to maintain cellular homeostasis: optimal coordination is achieved at their membrane contact sites where distinct protein machineries regulate organelle network dynamics, ions and metabolites exchange. Here we describe a genetically encoded SPLICS reporter for short- and long- juxtapositions between mitochondria and lysosomes. We report the existence of narrow and wide lysosome-mitochondria contacts differently modulated by mitophagy, autophagy and genetic manipulation of tethering factors. The overexpression of α-synuclein (α-syn) reduces the apposition of mitochondria/lysosomes membranes and affects their privileged Ca2+ transfer, impinging on TFEB nuclear translocation. We observe enhanced TFEB nuclear translocation in α-syn-overexpressing cells. We propose that α-syn, by interfering with mitochondria/lysosomes tethering impacts on local Ca2+ regulated pathways, among which TFEB mediated signaling, and in turn mitochondrial and lysosomal function. Defects in mitochondria and lysosome represent a common hallmark of neurodegenerative diseases: targeting their communication could open therapeutic avenues.
Collapse
Affiliation(s)
- Flavia Giamogante
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | | | - Elena Poggio
- Department of Biology (DIBIO), University of Padova, Padova, Italy
| | - Alessandra Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Anna Masato
- Department of Biology (DIBIO), University of Padova, Padova, Italy
- UK-Dementia Research Institute at UCL, University College London, London, UK
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tito Calì
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy.
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy.
| | - Marisa Brini
- Department of Biology (DIBIO), University of Padova, Padova, Italy.
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy.
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova, Padova, Italy.
| |
Collapse
|
7
|
Leinung N, Mentrup T, Patel M, Gallagher T, Schröder B. Dynamic association of the intramembrane proteases SPPL2a/b and their substrates with tetraspanin-enriched microdomains. iScience 2023; 26:107819. [PMID: 37736044 PMCID: PMC10509304 DOI: 10.1016/j.isci.2023.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Signal peptide peptidase-like 2a and b (SPPL2a/b) are aspartyl intramembrane proteases and cleave tail-anchored proteins as well as N-terminal fragments (NTFs) derived from type II-oriented transmembrane proteins. How these proteases recruit substrates and cleavage is regulated, is still incompletely understood. We found that SPPL2a/b localize to detergent-resistant membrane (DRM) domains with the characteristics of tetraspanin-enriched microdomains (TEMs). Based on this, association with several tetraspanins was evaluated. We demonstrate that not only SPPL2a/b but also their substrates tumor necrosis factor (TNF) and CD74 associate with tetraspanins like CD9, CD81, and CD82 and/or TEMs and analyze the stability of these complexes in different detergents. CD9 and CD81 deficiency has protease- and substrate-selective effects on SPPL2a/b function. Our findings suggest that reciprocal interactions with tetraspanins may assist protease-substrate encounters of SPPL2a/b within the membrane. Beyond SPP/SPPL proteases, this supports previous concepts that tetraspanins facilitate membrane-embedded proteolytic processes.
Collapse
Affiliation(s)
- Nadja Leinung
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Mehul Patel
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Gentili M, Liu B, Papanastasiou M, Dele-Oni D, Schwartz MA, Carlson RJ, Al'Khafaji AM, Krug K, Brown A, Doench JG, Carr SA, Hacohen N. ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling. Nat Commun 2023; 14:611. [PMID: 36739287 PMCID: PMC9899276 DOI: 10.1038/s41467-023-36132-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 02/06/2023] Open
Abstract
Stimulator of interferon genes (STING) is an intracellular sensor of cyclic di-nucleotides involved in the innate immune response against pathogen- or self-derived DNA. STING trafficking is tightly linked to its function, and its dysregulation can lead to disease. Here, we systematically characterize genes regulating STING trafficking and examine their impact on STING-mediated responses. Using proximity-ligation proteomics and genetic screens, we demonstrate that an endosomal sorting complex required for transport (ESCRT) complex containing HGS, VPS37A and UBAP1 promotes STING degradation, thereby terminating STING-mediated signaling. Mechanistically, STING oligomerization increases its ubiquitination by UBE2N, forming a platform for ESCRT recruitment at the endosome that terminates STING signaling via sorting in the lysosome. Finally, we show that expression of a UBAP1 mutant identified in patients with hereditary spastic paraplegia and associated with disrupted ESCRT function, increases steady-state STING-dependent type I IFN responses in healthy primary monocyte-derived dendritic cells and fibroblasts. Based on these findings, we propose that STING is subject to a tonic degradative flux and that the ESCRT complex acts as a homeostatic regulator of STING signaling.
Collapse
Affiliation(s)
| | - Bingxu Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | | | | | - Marc A Schwartz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Rebecca J Carlson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA
| | | | - Karsten Krug
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Hertel A, Alves LM, Dutz H, Tascher G, Bonn F, Kaulich M, Dikic I, Eimer S, Steinberg F, Bremm A. USP32-regulated LAMTOR1 ubiquitination impacts mTORC1 activation and autophagy induction. Cell Rep 2022; 41:111653. [PMID: 36476874 DOI: 10.1016/j.celrep.2022.111653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
The endosomal-lysosomal system is a series of organelles in the endocytic pathway that executes trafficking and degradation of proteins and lipids and mediates the internalization of nutrients and growth factors to ensure cell survival, growth, and differentiation. Here, we reveal regulatory, non-proteolytic ubiquitin signals in this complex system that are controlled by the enigmatic deubiquitinase USP32. Knockout (KO) of USP32 in primary hTERT-RPE1 cells results among others in hyperubiquitination of the Ragulator complex subunit LAMTOR1. Accumulation of LAMTOR1 ubiquitination impairs its interaction with the vacuolar H+-ATPase, reduces Ragulator function, and ultimately limits mTORC1 recruitment. Consistently, in USP32 KO cells, less mTOR kinase localizes to lysosomes, mTORC1 activity is decreased, and autophagy is induced. Furthermore, we demonstrate that depletion of USP32 homolog CYK-3 in Caenorhabditis elegans results in mTOR inhibition and autophagy induction. In summary, we identify a control mechanism of the mTORC1 activation cascade at lysosomes via USP32-regulated LAMTOR1 ubiquitination.
Collapse
Affiliation(s)
- Alexandra Hertel
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ludovico Martins Alves
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Henrik Dutz
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany; Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany; Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| | - Stefan Eimer
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60439 Frankfurt am Main, Germany
| | - Florian Steinberg
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| | - Anja Bremm
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Ballin M, Griep W, Patel M, Karl M, Mentrup T, Rivera‐Monroy J, Foo B, Schwappach B, Schröder B. The intramembrane proteases
SPPL2a
and
SPPL2b
regulate the homeostasis of selected
SNARE
proteins. FEBS J 2022; 290:2320-2337. [PMID: 36047592 DOI: 10.1111/febs.16610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/28/2022] [Accepted: 08/30/2022] [Indexed: 01/15/2023]
Abstract
Signal peptide peptidase (SPP) and SPP-like (SPPL) aspartyl intramembrane proteases are known to contribute to sequential processing of type II-oriented membrane proteins referred to as regulated intramembrane proteolysis. The ER-resident family members SPP and SPPL2c were shown to also cleave tail-anchored proteins, including selected SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins facilitating membrane fusion events. Here, we analysed whether the related SPPL2a and SPPL2b proteases, which localise to the endocytic or late secretory pathway, are also able to process SNARE proteins. Therefore, we screened 18 SNARE proteins for cleavage by SPPL2a and SPPL2b based on cellular co-expression assays, of which the proteins VAMP1, VAMP2, VAMP3 and VAMP4 were processed by SPPL2a/b demonstrating the capability of these two proteases to proteolyse tail-anchored proteins. Cleavage of the four SNARE proteins was scrutinised at the endogenous level upon SPPL2a/b inhibition in different cell lines as well as by analysing VAMP1-4 levels in tissues and primary cells of SPPL2a/b double-deficient (dKO) mice. Loss of SPPL2a/b activity resulted in an accumulation of VAMP1-4 in a cell type- and tissue-dependent manner, identifying these proteins as SPPL2a/b substrates validated in vivo. Therefore, we propose that SPPL2a/b control cellular levels of VAMP1-4 by initiating the degradation of these proteins, which might impact cellular trafficking.
Collapse
Affiliation(s)
- Moritz Ballin
- Biochemical Institute Christian Albrechts University Kiel Kiel Germany
- Institute of Physiological Chemistry Technische Universität Dresden Dresden Germany
| | - Wolfram Griep
- Biochemical Institute Christian Albrechts University Kiel Kiel Germany
- Institute of Physiological Chemistry Technische Universität Dresden Dresden Germany
| | - Mehul Patel
- Institute of Physiological Chemistry Technische Universität Dresden Dresden Germany
| | - Martin Karl
- Institute of Physiological Chemistry Technische Universität Dresden Dresden Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry Technische Universität Dresden Dresden Germany
| | - Jhon Rivera‐Monroy
- Department of Molecular Biology University Medical Center Göttingen Göttingen Germany
| | - Brian Foo
- Department of Molecular Biology University Medical Center Göttingen Göttingen Germany
| | - Blanche Schwappach
- Department of Molecular Biology University Medical Center Göttingen Göttingen Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry Technische Universität Dresden Dresden Germany
| |
Collapse
|
11
|
Contreras W, Wiesehöfer C, Schreier D, Leinung N, Peche P, Wennemuth G, Gentzel M, Schröder B, Mentrup T. C11orf94/Frey is a key regulator for male fertility by controlling Izumo1 complex assembly. SCIENCE ADVANCES 2022; 8:eabo6049. [PMID: 35960805 PMCID: PMC9374335 DOI: 10.1126/sciadv.abo6049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/30/2022] [Indexed: 05/26/2023]
Abstract
Although gamete fusion represents the central event in sexual reproduction, the required protein machinery is poorly defined. In sperm cells, Izumo1 and several Izumo1-associated proteins play an essential role for this process. However, so far, the mechanisms underlying transport and maturation of Izumo1 and its incorporation into high molecular weight complexes are incompletely defined. Here, we provide a detailed characterization of the C11orf94 protein, which we rename Frey, which provides a platform for the assembly of Izumo1 complexes. By retaining Izumo1 in the endoplasmic reticulum, Frey facilitates its incorporation into high molecular weight complexes. To fulfill its function, the unstable Frey protein is stabilized within the catalytic center of an intramembrane protease. Loss of Frey results in reduced assembly of Izumo1 complexes and male infertility due to impaired gamete fusion. Collectively, these findings provide mechanistic insights into the early biogenesis and functional relevance of Izumo1 complexes.
Collapse
Affiliation(s)
- Whendy Contreras
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Caroline Wiesehöfer
- Department of Anatomy, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dora Schreier
- CRISPR-Cas9 Facility, Experimental Center of the Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Leinung
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Petra Peche
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Gunther Wennemuth
- Department of Anatomy, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marc Gentzel
- Core Facility Molecular Analysis–Mass Spectrometry, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Mentrup T, Stumpff-Niggemann AY, Leinung N, Schlosser C, Schubert K, Wehner R, Tunger A, Schatz V, Neubert P, Gradtke AC, Wolf J, Rose-John S, Saftig P, Dalpke A, Jantsch J, Schmitz M, Fluhrer R, Jacobsen ID, Schröder B. Phagosomal signalling of the C-type lectin receptor Dectin-1 is terminated by intramembrane proteolysis. Nat Commun 2022; 13:1880. [PMID: 35388002 PMCID: PMC8987071 DOI: 10.1038/s41467-022-29474-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sensing of pathogens by pattern recognition receptors (PRR) is critical to initiate protective host defence reactions. However, activation of the immune system has to be carefully titrated to avoid tissue damage necessitating mechanisms to control and terminate PRR signalling. Dectin-1 is a PRR for fungal β-glucans on immune cells that is rapidly internalised after ligand-binding. Here, we demonstrate that pathogen recognition by the Dectin-1a isoform results in the formation of a stable receptor fragment devoid of the ligand binding domain. This fragment persists in phagosomal membranes and contributes to signal transduction which is terminated by the intramembrane proteases Signal Peptide Peptidase-like (SPPL) 2a and 2b. Consequently, immune cells lacking SPPL2b demonstrate increased anti-fungal ROS production, killing capacity and cytokine responses. The identified mechanism allows to uncouple the PRR signalling response from delivery of the pathogen to degradative compartments and identifies intramembrane proteases as part of a regulatory circuit to control anti-fungal immune responses. Dectin-1 is a critical component of the innate sensing repertoire which is involved in pattern based recognition of fungal pathogens. Here the authors show that intramembrane proteolysis is involved in the regulation of the antifungal host response by termination of the phagosomal signalling of Dectin-1.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Nadja Leinung
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Schlosser
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Katja Schubert
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antje Tunger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Ann-Christine Gradtke
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Janina Wolf
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Jung J, Baek J, Tae K, Shin D, Han S, Yang W, Yu W, Jung SM, Park SH, Choi CY, Lee S. Structural mechanism for regulation of Rab7 by site-specific monoubiquitination. Int J Biol Macromol 2022; 194:347-357. [PMID: 34801583 DOI: 10.1016/j.ijbiomac.2021.11.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Site-specific ubiquitination can regulate the functions of Rab proteins in membrane trafficking. Previously we showed that site-specific monoubiquitination on Rab5 downregulates its function. Rab7 acts in the downstream of Rab5. Although site-specific ubiquitination of Rab7 can affect its function, it remains elusive how the ubiquitination is involved in modulation of the function of Rab7 at molecular level. Here, we report molecular basis for the regulation of Rab7 by site-specific monoubiquitination. Rab7 was predominantly monoubiquitinated at multiple sites in the membrane fraction of cultured cells. Two major ubiquitination sites (K191 and K194), identified by mutational analysis with single K mutants, were responsible for membrane localization of monoubiquitinated Rab7. Using small-angle X-ray scattering, we derived structural models of site-specifically monoubiquitinated Rab7 in solution. Structural analysis combined with molecular dynamics simulation corroborated that the ubiquitin moieties on K191 and K194 are key determinants for exclusion of Rab7 from the endosomal membrane. Ubiquitination on the two major sites apparently mitigated colocalization of Rab7 with ORF3a of SARS-CoV-2, potentially deterring the egression of SARS-CoV-2. Our results establish that the regulatory effects of a Rab protein through site-specific monoubiquitination are commonly observed among Rab GTPases while the ubiquitination sites differ in each Rab protein.
Collapse
Affiliation(s)
- Jaeeun Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiseok Baek
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kun Tae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seungsu Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonjin Yang
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Wookyung Yu
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
14
|
Wang F, Ma XR, Wu Y, Xu YC, Gu HM, Wang DX, Dong ZJ, Li HL, Wang LB, Zhao JW. Neutralization of Hv1/HVCN1 With Antibody Enhances Microglia/Macrophages Myelin Clearance by Promoting Their Migration in the Brain. Front Cell Neurosci 2021; 15:768059. [PMID: 34744634 PMCID: PMC8570284 DOI: 10.3389/fncel.2021.768059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 01/09/2023] Open
Abstract
Microglia dynamically monitor the microenvironment of the central nervous system (CNS) by constantly extending and retracting their processes in physiological conditions, and microglia/macrophages rapidly migrate into lesion sites in response to injuries or diseases in the CNS. Consequently, their migration ability is fundamentally important for their proper functioning. However, the mechanisms underlying their migration have not been fully understood. We wonder whether the voltage-gated proton channel HVCN1 in microglia/macrophages in the brain plays a role in their migration. We show in this study that in physiological conditions, microglia and bone marrow derived macrophage (BMDM) express HVCN1 with the highest level among glial cells, and upregulation of HVCN1 in microglia/macrophages is presented in multiple injuries and diseases of the CNS, reflecting the overactivation of HVCN1. In parallel, myelin debris accumulation occurs in both the focal lesion and the site where neurodegeneration takes place. Importantly, both genetic deletion of the HVCN1 gene in cells in vitro and neutralization of HVCN1 with antibody in the brain in vivo promotes migration of microglia/macrophages. Furthermore, neutralization of HVCN1 with antibody in the brain in vivo promotes myelin debris clearance by microglia/macrophages. This study uncovers a new role of HVCN1 in microglia/macrophages, coupling the proton channel HVCN1 to the migration of microglia/macrophages for the first time.
Collapse
Affiliation(s)
- Fan Wang
- Department of Pathology and Department of Human Anatomy, Histology and Embryology, Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ru Ma
- Department of Pathology and Department of Human Anatomy, Histology and Embryology, Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Wu
- Department of Pathology and Department of Human Anatomy, Histology and Embryology, Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Cheng Xu
- Department of Pathology and Department of Human Anatomy, Histology and Embryology, Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui-Min Gu
- Department of Pathology and Department of Human Anatomy, Histology and Embryology, Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Di-Xian Wang
- Department of Pathology and Department of Human Anatomy, Histology and Embryology, Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhao-Jun Dong
- Department of Pathology and Department of Human Anatomy, Histology and Embryology, Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui-Liang Li
- Division of Medicine, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Li-Bin Wang
- The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jing-Wei Zhao
- Department of Pathology and Department of Human Anatomy, Histology and Embryology, Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Rudnik S, Damme M. The lysosomal membrane-export of metabolites and beyond. FEBS J 2021; 288:4168-4182. [PMID: 33067905 DOI: 10.1111/febs.15602] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023]
Abstract
Lysosomes are degradative organelles in eukaryotic cells mediating the hydrolytic catabolism of various macromolecules to small basic building blocks. These low-molecular-weight metabolites are transported across the lysosomal membrane and reused in the cytoplasm and other organelles for biosynthetic pathways. Even though in the past 20 years our understanding of the lysosomal membrane regarding various transporters, other integral and peripheral membrane proteins, the lipid composition, but also its turnover has dramatically improved, there are still many unresolved questions concerning key aspects of the function of the lysosomal membrane. These include a possible function of lysosomes as a cellular storage compartment, yet unidentified transporters mediating the export such as various amino acids, mechanisms mediating the transport of lysosomal membrane proteins from the Golgi apparatus to lysosomes, and the turnover of lysosomal membrane proteins. Here, we review the current knowledge about the lysosomal membrane and identify some of the open questions that need to be solved in the future for a comprehensive and complete understanding of how lysosomes communicate with other organelles, cellular processes, and pathways.
Collapse
Affiliation(s)
- Sönke Rudnik
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
16
|
Gradtke AC, Mentrup T, Lehmann CHK, Cabrera-Cabrera F, Desel C, Okakpu D, Assmann M, Dalpke A, Schaible UE, Dudziak D, Schröder B. Deficiency of the Intramembrane Protease SPPL2a Alters Antimycobacterial Cytokine Responses of Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:164-180. [PMID: 33239420 DOI: 10.4049/jimmunol.2000151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022]
Abstract
Signal peptide peptidase-like 2a (SPPL2a) is an aspartyl intramembrane protease essential for degradation of the invariant chain CD74. In humans, absence of SPPL2a leads to Mendelian susceptibility to mycobacterial disease, which is attributed to a loss of the dendritic cell (DC) subset conventional DC2. In this study, we confirm depletion of conventional DC2 in lymphatic tissues of SPPL2a-/- mice and demonstrate dependence on CD74 using SPPL2a-/- CD74-/- mice. Upon contact with mycobacteria, SPPL2a-/- bone marrow-derived DCs show enhanced secretion of IL-1β, whereas production of IL-10 and IFN-β is reduced. These effects correlated with modulated responses upon selective stimulation of the pattern recognition receptors TLR4 and Dectin-1. In SPPL2a-/- bone marrow-derived DCs, Dectin-1 is redistributed to endosomal compartments. Thus, SPPL2a deficiency alters pattern recognition receptor pathways in a CD74-dependent way, shifting the balance from anti- to proinflammatory cytokines in antimycobacterial responses. We propose that in addition to the DC reduction, this altered DC functionality contributes to Mendelian susceptibility to mycobacterial disease upon SPPL2a deficiency.
Collapse
Affiliation(s)
- Ann-Christine Gradtke
- Institute of Physiological Chemistry, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital Erlangen, D-91052 Erlangen, Germany.,Medical Immunology Campus Erlangen, D-91054 Erlangen, Germany.,Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg, D-91054 Erlangen, Germany
| | - Florencia Cabrera-Cabrera
- Institute of Physiological Chemistry, Technische Universität Dresden, D-01307 Dresden, Germany.,Biochemical Institute, Christian-Albrechts-University Kiel, D-24118 Kiel, Germany
| | - Christine Desel
- Biochemical Institute, Christian-Albrechts-University Kiel, D-24118 Kiel, Germany
| | - Darian Okakpu
- Institute of Physiological Chemistry, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Maike Assmann
- Priority Program Infections, Division of Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, and German Center for Infection Research, partner site Borstel, D-23845 Borstel, Germany; and
| | - Alexander Dalpke
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Ulrich E Schaible
- Priority Program Infections, Division of Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, and German Center for Infection Research, partner site Borstel, D-23845 Borstel, Germany; and
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital Erlangen, D-91052 Erlangen, Germany.,Medical Immunology Campus Erlangen, D-91054 Erlangen, Germany.,Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg, D-91054 Erlangen, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, D-01307 Dresden, Germany;
| |
Collapse
|
17
|
Eisenreich A, Orphal M, Böhme K, Kreutz R. Tmem63c is a potential pro-survival factor in angiotensin II-treated human podocytes. Life Sci 2020; 258:118175. [PMID: 32750436 DOI: 10.1016/j.lfs.2020.118175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/25/2020] [Accepted: 07/27/2020] [Indexed: 01/20/2023]
Abstract
AIMS Human podocytes (hPC) play an important role in the pathogenesis of renal diseases. In this context, angiotensin II (Ang II) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) play a crucial role in podocyte injury. Recently, transmembrane protein (Tmem) 63c, a member of the Tmem-family was found to be expressed in kidney and associated with podocyte function. In this study, we analysed the expression regulation and functional impact of Tmem63c on cell viability and apoptosis in hPC in the context of Ang II activation. MATERIALS AND METHODS Expression of Tmem63c in response to Ang II and the NFκB inhibitor Bay 11-7082 was analysed by Real-Time PCR and Western blotting. Cellular functions were determined by functional assays. KEY FINDINGS We found Ang II to induce Tmem63c expression in hPC in a concentration-dependent manner. Inhibition of NFκB by Bay 11-7082 reduced basal as well as Ang II-induced Tmem63c expression. SiRNA-mediated down-regulation of Tmem63c diminished cell viability and protein kinase B (Akt) signaling and increased cell apoptosis of resting as well as Ang II-activated hPC. SIGNIFICANCE These data show that Ang II induced the expression of Tmem63c in hPC, possibly via NFκB-dependent mechanisms. Moreover, down-regulation of Tmem63c was associated with reduced cell viability, indicating Tmem63c to be a potential pro-survival factor in hPC.
Collapse
Affiliation(s)
- Andreas Eisenreich
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany.
| | - Miriam Orphal
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Karen Böhme
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10115 Berlin, Germany
| | - Reinhold Kreutz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10115 Berlin, Germany
| |
Collapse
|
18
|
Hu Q, Wang G, Chen X, Zhang L, Zhao W, Jiang Y, Zhang C, Sun J, Xu H, Li H, Kong Q, Zhao J, Li X, Zhang X, Lv W, Liu Y, Yang G, Mu L, Wang J. Neural-specific distribution of transmembrane protein TMEM240 and formation of TMEM240-Body. Int J Biol Macromol 2020; 161:692-703. [PMID: 32535204 DOI: 10.1016/j.ijbiomac.2020.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/18/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
Mutation in TMEM240 is suggested to cause SCA21, but the specific mechanism has not been clarified. The subcellular localization, specific biological function, and corresponding mechanism of action of TMEM240 have also not been delineated. In this study, the mRNA and protein expression of TMEM240 were assessed using qPCR and western blotting, respectively. Live cell imaging was used to establish the sub-cellular location of TMEM240, and electron microscopy was used to determine the morphology and distribution of TMEM240 in the cell. TMEM240 was specifically expressed in the neurons. Exogenous TMEM240 formed a multilayered cell structure, which we refer to as TMEM240-Body (T240-Body). T240-Body was separated and purified by centrifugation and filtration. An anchor protein His-tagged-GFP-BP on Ni-NTA agarose was used to pull down T240-GFP binding proteins. Both the N-terminal and the C-terminal of TMEM240 were confirmed to be inside the T240-Body. Co-localization experiments suggested that peroxisomes might contribute to T240-Body formation, and the two transmembrane regions of TMEM240 appear to be essential for formation of the T240-Body. Emerin protein contributed to formation of T240-Body when combined with TMEM240. Overall, this study provides new insights into TMEM240, which inform future research to further our understanding of its biological function.
Collapse
Affiliation(s)
- Qiongqiong Hu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China; Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, China
| | - Guangyou Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xin Chen
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Liulei Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wei Zhao
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yan Jiang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chong Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jin Sun
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hao Xu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hulun Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qingfei Kong
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiarui Zhao
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xinrong Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xiaoyu Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Weiqi Lv
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yumei Liu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Gaiqing Yang
- Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, China
| | - Lili Mu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Jinghua Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China; Ministry of Education Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
19
|
Expression of RARRES1 and AGBL2 and progression of conventional renal cell carcinoma. Br J Cancer 2020; 122:1818-1824. [PMID: 32307444 PMCID: PMC7283229 DOI: 10.1038/s41416-020-0798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Approximately 15% of clinically localised conventional renal cell carcinoma (RCC) will develop metastasis within 5 years of follow-up. The aim of this study was to identify biomarkers predicting the postoperative tumour relapse. METHODS Tissue microarrays of conventional RCC from a cohort of 691 patients without metastasis at the time of operation were analysed by immunohistochemistry for the expression of carboxypeptase inhibitor RARRES1 and its substrate carboxypeptidase AGBL2. Univariate and multivariate Cox regression models were addressed to postoperative tumour relapse and the metastasis-free survival time was estimated by Kaplan-Meier analysis. RESULTS In multivariate analysis, the lack of staining or cytoplasmic staining of RARRES1 was a significant risk factor indicating five times higher risk of cancer relapse. Combining its co-expression with AGBL2, we found that RARRES1 cytoplasmic/negative and AGBL2-positive/negative staining is a significant risk factor for tumour progression indicating 11-15 times higher risk of cancer relapse, whereas the membranous RARRES1 expression, especially its co-expression with AGBL2, associated with excellent disease outcome. CONCLUSIONS RARRES1 and AGBL2 expression defines groups of patients at low and high risk of tumour progression and may direct an active surveillance to detect metastasis as early as possible and to apply adjuvant therapy.
Collapse
|
20
|
Xiong QY, Xiong CQ, Wang LZ, Gao JL. Effect of sidt2 Gene on Cell Insulin Resistance and Its Molecular Mechanism. J Diabetes Res 2020; 2020:4217607. [PMID: 32964053 PMCID: PMC7502120 DOI: 10.1155/2020/4217607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/25/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Sidt2 (SID1 transmembrane family, member 2) is a multiple transmembrane lysosomal membrane protein newly discovered in our previous study. In the previous study, we used gene targeting technique to make a mouse model of sidt2 gene knockout (sidt2-/-). It was found that sidt2-/- mice showed elevated fasting blood glucose and impaired glucose tolerance, showing a disorder of glucose metabolism, suggesting that sidt2 may be closely related to insulin resistance. We used 3T3-L1 adipocytes, C2-C12 myoblasts, and HEPA1-6 hepatoma cells as subjects to observe the effects of sidt2 on insulin-stimulated glucose uptake and the abovementioned insulin signal transduction pathways, and then to explore the effect of sidt2 on peripheral tissue insulin resistance and its possible molecular mechanism. METHODS (1) Lentiviruses with sidt2 gene knockout and puromycin resistance were constructed by Crispr/cas9 vector and transfected into 3T3-L1 adipocytes, C2-C12 myoblasts, and HEPA1-6 hepatoma cells to construct sidt2 knockout cell line model. (2) Glucose uptake of 3T3-L1 adipocytes, C2-C12 myoblasts, and HEPA1-6 hepatoma cells stimulated by insulin was detected by glucose detection kit, and the results were analyzed. (3) Sidt2 knockout group and control group of 3T3-L1 adipocytes, C2-C12 myoblast, and HEPA1-6 hepatoma cells were cultured according to the routine method. The total proteins of the above cells were extracted, and the expression of PAKT (thr308), PI3-K, and PIRS-1 (ser307) in the IRS-1 signaling pathway of the three groups was detected by western blot technique. RESULTS (1) The sidt2 elimination models of 3T3-L1 adipocytes, C2-C12 myoblasts, and HEPA1-6 hepatoma cells were successfully constructed. (2) It was found that the glucose uptake of cells in the sidt2 knockout group was lower than that in normal group under insulin stimulation through the detection of glucose concentration in the cell culture medium. (3) It was found that the expression of PAKT (thr308) and PI3-K protein decreased and the expression of PIRS-1 (ser307) protein increased in sidt2-/- group compared to the control group. CONCLUSIONS sidt2 knockout can reduce glucose uptake in peripheral tissue under insulin stimulation, which may lead to peripheral tissue insulin resistance by affecting the IRS-1 signal pathway.
Collapse
Affiliation(s)
- Qian-Ying Xiong
- Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu 241002, China
| | - Chao-Qun Xiong
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wuhu 242001, China
| | - Li-Zhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wuhu 242001, China
- Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu 241001, China
| | - Jia-Lin Gao
- Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu 241002, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wuhu 242001, China
| |
Collapse
|
21
|
Papadopoulou AA, Müller SA, Mentrup T, Shmueli MD, Niemeyer J, Haug-Kröper M, von Blume J, Mayerhofer A, Feederle R, Schröder B, Lichtenthaler SF, Fluhrer R. Signal peptide peptidase-like 2c impairs vesicular transport and cleaves SNARE proteins. EMBO Rep 2019; 20:e46451. [PMID: 30733281 PMCID: PMC6399617 DOI: 10.15252/embr.201846451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
Members of the GxGD-type intramembrane aspartyl proteases have emerged as key players not only in fundamental cellular processes such as B-cell development or protein glycosylation, but also in development of pathologies, such as Alzheimer's disease or hepatitis virus infections. However, one member of this protease family, signal peptide peptidase-like 2c (SPPL2c), remains orphan and its capability of proteolysis as well as its physiological function is still enigmatic. Here, we demonstrate that SPPL2c is catalytically active and identify a variety of SPPL2c candidate substrates using proteomics. The majority of the SPPL2c candidate substrates cluster to the biological process of vesicular trafficking. Analysis of selected SNARE proteins reveals proteolytic processing by SPPL2c that impairs vesicular transport and causes retention of cargo proteins in the endoplasmic reticulum. As a consequence, the integrity of subcellular compartments, in particular the Golgi, is disturbed. Together with a strikingly high physiological SPPL2c expression in testis, our data suggest involvement of SPPL2c in acrosome formation during spermatogenesis.
Collapse
Affiliation(s)
- Alkmini A Papadopoulou
- Institute for Metabolic Biochemistry, Biomedical Center (BMC), Ludwig-Maximilians University Munich, Munich, Germany
| | - Stephan A Müller
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Torben Mentrup
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Merav D Shmueli
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, and Institute for Advanced Study, Technical University Munich, Munich, Germany
| | - Johannes Niemeyer
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Martina Haug-Kröper
- Institute for Metabolic Biochemistry, Biomedical Center (BMC), Ludwig-Maximilians University Munich, Munich, Germany
| | | | - Artur Mayerhofer
- Cell Biology, Anatomy III, Biomedical Center (BMC), Ludwig-Maximilians University Munich, Munich, Germany
| | - Regina Feederle
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Munich Center for Systems Neurology (SyNergy), Munich, Germany
| | - Bernd Schröder
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
- Institute for Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Stefan F Lichtenthaler
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, and Institute for Advanced Study, Technical University Munich, Munich, Germany
- Munich Center for Systems Neurology (SyNergy), Munich, Germany
| | - Regina Fluhrer
- Institute for Metabolic Biochemistry, Biomedical Center (BMC), Ludwig-Maximilians University Munich, Munich, Germany
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| |
Collapse
|
22
|
Niemeyer J, Mentrup T, Heidasch R, Müller SA, Biswas U, Meyer R, Papadopoulou AA, Dederer V, Haug-Kröper M, Adamski V, Lüllmann-Rauch R, Bergmann M, Mayerhofer A, Saftig P, Wennemuth G, Jessberger R, Fluhrer R, Lichtenthaler SF, Lemberg MK, Schröder B. The intramembrane protease SPPL2c promotes male germ cell development by cleaving phospholamban. EMBO Rep 2019; 20:e46449. [PMID: 30733280 PMCID: PMC6399600 DOI: 10.15252/embr.201846449] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022] Open
Abstract
Signal peptide peptidase (SPP) and the four homologous SPP-like (SPPL) proteases constitute a family of intramembrane aspartyl proteases with selectivity for type II-oriented transmembrane segments. Here, we analyse the physiological function of the orphan protease SPPL2c, previously considered to represent a non-expressed pseudogene. We demonstrate proteolytic activity of SPPL2c towards selected tail-anchored proteins. Despite shared ER localisation, SPPL2c and SPP exhibit distinct, though partially overlapping substrate spectra and inhibitory profiles, and are organised in different high molecular weight complexes. Interestingly, SPPL2c is specifically expressed in murine and human testis where it is primarily localised in spermatids. In mice, SPPL2c deficiency leads to a partial loss of elongated spermatids and reduced motility of mature spermatozoa, but preserved fertility. However, matings of male and female SPPL2c-/- mice exhibit reduced litter sizes. Using proteomics we identify the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2)-regulating protein phospholamban (PLN) as a physiological SPPL2c substrate. Accumulation of PLN correlates with a decrease in intracellular Ca2+ levels in elongated spermatids that likely contribute to the compromised male germ cell differentiation and function of SPPL2c-/- mice.
Collapse
Affiliation(s)
- Johannes Niemeyer
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Torben Mentrup
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Ronny Heidasch
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Stephan A Müller
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar and Institute for Advanced Study, Technical University of Munich, Munich, Germany
| | - Uddipta Biswas
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Rieke Meyer
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alkmini A Papadopoulou
- Institute for Metabolic Biochemistry, Biomedical Center (BMC) München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Verena Dederer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Martina Haug-Kröper
- Institute for Metabolic Biochemistry, Biomedical Center (BMC) München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Vivian Adamski
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Martin Bergmann
- Institute of Veterinary Anatomy, Justus Liebig University of Gießen, Gießen, Germany
| | - Artur Mayerhofer
- Cell Biology, Anatomy III, Biomedical Center (BMC) München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Gunther Wennemuth
- Institute of Anatomy, University Hospital, Duisburg-Essen University, Essen, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Regina Fluhrer
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Institute for Metabolic Biochemistry, Biomedical Center (BMC) München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar and Institute for Advanced Study, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Bernd Schröder
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
23
|
Mentrup T, Theodorou K, Cabrera-Cabrera F, Helbig AO, Happ K, Gijbels M, Gradtke AC, Rabe B, Fukumori A, Steiner H, Tholey A, Fluhrer R, Donners M, Schröder B. Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis. J Exp Med 2019; 216:807-830. [PMID: 30819724 PMCID: PMC6446863 DOI: 10.1084/jem.20171438] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/21/2018] [Accepted: 10/17/2018] [Indexed: 11/27/2022] Open
Abstract
The intramembrane proteases SPPL2a/b control pro-atherogenic signaling of membrane-bound proteolytic fragments derived from the oxLDL receptor LOX-1. In mice deficient for these proteases, plaque development and fibrosis is enhanced. This highlights SPPL2a/b as crucial players of a novel athero-protective mechanism, which is conserved in humans. The lectin-like oxidized LDL receptor 1 (LOX-1) is a key player in the development of atherosclerosis. LOX-1 promotes endothelial activation and dysfunction by mediating uptake of oxidized LDL and inducing pro-atherogenic signaling. However, little is known about modulators of LOX-1–mediated responses. Here, we show that the function of LOX-1 is controlled proteolytically. Ectodomain shedding by the metalloprotease ADAM10 and lysosomal degradation generate membrane-bound N-terminal fragments (NTFs), which we identified as novel substrates of the intramembrane proteases signal peptide peptidase–like 2a and b (SPPL2a/b). SPPL2a/b control cellular LOX-1 NTF levels which, following self-association via their transmembrane domain, can activate MAP kinases in a ligand-independent manner. This leads to an up-regulation of several pro-atherogenic and pro-fibrotic targets including ICAM-1 and the connective tissue growth factor CTGF. Consequently, SPPL2a/b-deficient mice, which accumulate LOX-1 NTFs, develop larger and more advanced atherosclerotic plaques than controls. This identifies intramembrane proteolysis by SPPL2a/b as a novel atheroprotective mechanism via negative regulation of LOX-1 signaling.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Kosta Theodorou
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands
| | - Florencia Cabrera-Cabrera
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Andreas O Helbig
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Kathrin Happ
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Marion Gijbels
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands.,Amsterdam Cardiovascular Sciences, Department of Medical Biochemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ann-Christine Gradtke
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Björn Rabe
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Akio Fukumori
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Biomedical Center, Metabolic Biochemistry, Ludwig Maximilians University of Munich, Munich, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Regina Fluhrer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Biomedical Center, Metabolic Biochemistry, Ludwig Maximilians University of Munich, Munich, Germany
| | - Marjo Donners
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany .,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
24
|
Lawrence RE, Cho KF, Rappold R, Thrun A, Tofaute M, Kim DJ, Moldavski O, Hurley JH, Zoncu R. A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase-Ragulator lysosomal scaffold. Nat Cell Biol 2018; 20:1052-1063. [PMID: 30061680 PMCID: PMC6279252 DOI: 10.1038/s41556-018-0148-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
A key step in nutrient sensing is the activation of the master growth regulator, mTORC1 kinase, on the surface of lysosomes. Nutrients enable mTORC1 scaffolding by a complex composed of the Rag GTPases (Rags) and Ragulator, but the underlying mechanism of mTORC1 capture is poorly understood. Combining dynamic imaging in cells and reconstituted systems, we uncover an affinity switch that controls mTORC1 lifetime and activation at the lysosome. Nutrients destabilize the Rag-Ragulator interface, causing cycling of the Rags between lysosome-bound Ragulator and the cytoplasm, and rendering mTORC1 capture contingent on simultaneous engagement of two Rag-binding interfaces. Rag GTPase domains trigger cycling by coordinately weakening binding of the C-terminal domains to Ragulator in a nucleotide-controlled manner. Cancer-specific Rag mutants override release from Ragulator and enhance mTORC1 recruitment and signaling output. Cycling in the active state sets the Rags apart from most signaling GTPases, and provides a mechanism to attenuate mTORC1 signaling.
Collapse
Affiliation(s)
- Rosalie E Lawrence
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA
| | - Kelvin F Cho
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA
| | - Ronja Rappold
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA
| | - Anna Thrun
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA
| | - Marie Tofaute
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA
| | - Do Jin Kim
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Ofer Moldavski
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA. .,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
25
|
Nguyen TL, Schneppenheim J, Rudnik S, Lüllmann-Rauch R, Bernreuther C, Hermans-Borgmeyer I, Glatzel M, Saftig P, Schröder B. Functional characterization of the lysosomal membrane protein TMEM192 in mice. Oncotarget 2018; 8:43635-43652. [PMID: 28504966 PMCID: PMC5546430 DOI: 10.18632/oncotarget.17514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/18/2017] [Indexed: 11/25/2022] Open
Abstract
The Transmembrane protein 192 (TMEM192) is a lysosomal/late endosomal protein initially discovered by organellar proteomics. TMEM192 exhibits four transmembrane segments with cytosolic N- and C-termini and forms homodimers. Devoid of significant homologies, the molecular function of TMEM192 is currently unknown. Upon TMEM192 knockdown in hepatoma cells, a dysregulation of autophagy and increased apoptosis were reported. Here, we aimed to define the physiological role of TMEM192 by analysing consequences of TMEM192 ablation in mice. Therefore, we compared the biochemical properties of murine TMEM192 to those of the human orthologue. We reveal lysosomal residence of murine TMEM192 and demonstrate ubiquitous tissue expression. In brain, TMEM192 expression was pronounced in the hippocampus but also present in the cortex and cerebellum, as analysed based on a lacZ reporter allele. Murine TMEM192 undergoes proteolytic processing in a tissue-specific manner. Thereby, a 17 kDa fragment is generated which was detected in most murine tissues except liver. TMEM192 processing occurs after lysosomal targeting by pH-dependent lysosomal proteases. TMEM192-/- murine embryonic fibroblasts (MEFs) exhibited a regular morphology of endo-/lysosomes and were capable of performing autophagy and lysosomal exocytosis. Histopathological, ultrastructural and biochemical analyses of all major tissues of TMEM192-/- mice demonstrated normal lysosomal functions without apparent lysosomal storage. Furthermore, the abundance of the major immune cells was comparable in TMEM192-/- and wild type mice. Based on this, we conclude that under basal conditions in vivo the loss of TMEM192 can be efficiently compensated by alternative pathways. Further studies will be required to decipher its molecular function.
Collapse
Affiliation(s)
- Thuy Linh Nguyen
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | | | - Sönke Rudnik
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | | | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Bernd Schröder
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
26
|
Abu-Remaileh M, Wyant GA, Kim C, Laqtom NN, Abbasi M, Chan SH, Freinkman E, Sabatini DM. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 2017; 358:807-813. [PMID: 29074583 DOI: 10.1126/science.aan6298] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023]
Abstract
The lysosome degrades and recycles macromolecules, signals to the cytosol and nucleus, and is implicated in many diseases. Here, we describe a method for the rapid isolation of mammalian lysosomes and use it to quantitatively profile lysosomal metabolites under various cell states. Under nutrient-replete conditions, many lysosomal amino acids are in rapid exchange with those in the cytosol. Loss of lysosomal acidification through inhibition of the vacuolar H+-adenosine triphosphatase (V-ATPase) increased the luminal concentrations of most metabolites but had no effect on those of the majority of essential amino acids. Instead, nutrient starvation regulates the lysosomal concentrations of these amino acids, an effect we traced to regulation of the mechanistic target of rapamycin (mTOR) pathway. Inhibition of mTOR strongly reduced the lysosomal efflux of most essential amino acids, converting the lysosome into a cellular depot for them. These results reveal the dynamic nature of lysosomal metabolites and that V-ATPase- and mTOR-dependent mechanisms exist for controlling lysosomal amino acid efflux.
Collapse
Affiliation(s)
- Monther Abu-Remaileh
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Gregory A Wyant
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Choah Kim
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Nouf N Laqtom
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Maria Abbasi
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. .,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
27
|
Schneppenheim J, Loock AC, Hüttl S, Schweizer M, Lüllmann-Rauch R, Oberg HH, Arnold P, Lehmann CHK, Dudziak D, Kabelitz D, Lucius R, Lennon-Duménil AM, Saftig P, Schröder B. The Influence of MHC Class II on B Cell Defects Induced by Invariant Chain/CD74 N-Terminal Fragments. THE JOURNAL OF IMMUNOLOGY 2017; 199:172-185. [DOI: 10.4049/jimmunol.1601533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/01/2017] [Indexed: 01/24/2023]
|
28
|
Shendre A, Irvin MR, Wiener H, Zhi D, Limdi NA, Overton ET, Shrestha S. Local Ancestry and Clinical Cardiovascular Events Among African Americans From the Atherosclerosis Risk in Communities Study. J Am Heart Assoc 2017; 6:JAHA.116.004739. [PMID: 28396569 PMCID: PMC5532995 DOI: 10.1161/jaha.116.004739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Local ancestry in relation to clinical cardiovascular events (CVEs) among African Americans can provide insight into their genetic susceptibility to the disease. METHODS AND RESULTS We examined local European ancestry (LEA) association with CVEs among 3000 African Americans from the Atherosclerosis Risk in Communities Study (ARIC). We estimated LEA using Local Ancestry Inference in adMixed Populations using Linkage Disequilibrium (LAMP-LD) and examined its association with myocardial infarction, stroke, coronary heart disease and its composite and cardiovascular disease composite using logistic regression. Genome-wide significance was achieved by 121 LEA regions in relation to myocardial infarction and 2 in relation to the cardiovascular disease composite. The LEA region downstream of 4q32.1 was significantly associated with 2 times higher odds of myocardial infarction (P=1.45×10-6). The LEA region upstream of 6q11.1 was associated with 0.37 times lower odds of fatal coronary heart disease (P=7.34×10-4), whereas the LEA region downstream of 21q21.1 was associated with 1.55 times higher odds of composite coronary heart disease (P=3.45×10-4). Association of LEA with stroke was observed in the region upstream of 6p22.3 with a 1.57 times higher odds of stroke (P=9.69×10-4). Likewise, the LEA region on 4q32.3 was associated with a 1.53 times higher odds of composite cardiovascular disease (P=3.04×10-4). We also found 20 of the LEA regions at previously significant cardiovascular disease single-nucleotide polymorphisms to be associated with CVE in our study. CONCLUSIONS Future studies are needed to replicate and/or determine the causal variants driving our associations and explore clinical applications for those consistently associated with CVEs.
Collapse
Affiliation(s)
- Aditi Shendre
- Department of Epidemiology, University of Alabama at Birmingham, AL
| | | | - Howard Wiener
- Department of Epidemiology, University of Alabama at Birmingham, AL
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, AL
| | - Nita A Limdi
- Department of Neurology, University of Alabama at Birmingham, AL
| | - Edgar T Overton
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, AL
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, AL
| |
Collapse
|
29
|
Shyu RY, Wang CH, Wu CC, Chen ML, Lee MC, Wang LK, Jiang SY, Tsai FM. Tazarotene-Induced Gene 1 Enhanced Cervical Cell Autophagy through Transmembrane Protein 192. Mol Cells 2016; 39:877-887. [PMID: 27989102 PMCID: PMC5223105 DOI: 10.14348/molcells.2016.0161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/18/2023] Open
Abstract
Tazarotene-induced gene 1 (TIG1) is a retinoic acid-inducible protein that is considered a putative tumor suppressor. The expression of TIG1 is decreased in malignant prostate carcinoma or poorly differentiated colorectal adenocarcinoma, but TIG1 is present in benign or well-differentiated tumors. Ectopic TIG1 expression led to suppression of growth in cancer cells. However, the function of TIG1 in cell differentiation is still unknown. Using a yeast two-hybrid system, we found that transmembrane protein 192 (TMEM192) interacted with TIG1. We also found that both TIG1A and TIG1B isoforms interacted and co-localized with TMEM192 in HtTA cervical cancer cells. The expression of TIG1 induced the expression of autophagy-related proteins, including Beclin-1 and LC-3B. The silencing of TMEM192 reduced the TIG1-mediated upregulation of autophagic activity. Furthermore, silencing of either TIG1 or TMEM192 led to alleviation of the upregulation of autophagy induced by all-trans retinoic acid. Our results demonstrate that the expression of TIG1 leads to cell autophagy through TMEM192. Our study also suggests that TIG1 and TMEM192 play an important role in the all-trans retinoic acid-mediated upregulation of autophagic activity.
Collapse
Affiliation(s)
- Rong-Yaun Shyu
- Department of Internal Medicine, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Chun-Hua Wang
- Department of Dermatology, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Chang-Chieh Wu
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114,
Taiwan
| | - Mao-Liang Chen
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Lu-Kai Wang
- Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan 333,
Taiwan
| | - Shun-Yuan Jiang
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231,
Taiwan
| |
Collapse
|
30
|
Substrate determinants of signal peptide peptidase-like 2a (SPPL2a)-mediated intramembrane proteolysis of the invariant chain CD74. Biochem J 2016; 473:1405-22. [DOI: 10.1042/bcj20160156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/16/2016] [Indexed: 11/17/2022]
Abstract
Intramembrane proteolysis of CD74 by SPPL2a is essential for B- and dendritic cells. We show that CD74 is proteolysed in the luminal third of the transmembrane segment and identify determinants within its transmembrane and luminal membrane-proximal domain facilitating this cleavage.
Collapse
|
31
|
Hüttl S, Kläsener K, Schweizer M, Schneppenheim J, Oberg HH, Kabelitz D, Reth M, Saftig P, Schröder B. Processing of CD74 by the Intramembrane Protease SPPL2a Is Critical for B Cell Receptor Signaling in Transitional B Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:1548-63. [PMID: 26157172 DOI: 10.4049/jimmunol.1403171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/09/2015] [Indexed: 12/16/2022]
Abstract
The invariant chain (CD74), a chaperone in MHC class II-mediated Ag presentation, is sequentially processed by different endosomal proteases. We reported recently that clearance of the final membrane-bound N-terminal fragment (NTF) of CD74 is mediated by the intramembrane protease signal peptide peptidase-like (SPPL)2a, a process critical for B cell development. In mice, SPPL2a deficiency provokes the accumulation of this NTF in endocytic vesicles, which leads to a B cell maturation arrest at the transitional 1 stage. To define the underlying mechanism, we analyzed the impact of SPPL2a deficiency on signaling pathways involved in B cell homeostasis. We demonstrate that tonic as well as BCR-induced activation of the PI3K/Akt pathway is massively compromised in SPPL2a(-/-) B cells and identify this as major cause of the B cell maturation defect in these mice. Altered BCR trafficking induces a reduction of surface IgM in SPPL2a-deficient B cells, leading to a diminished signal transmission via the BCR and the tyrosine kinase Syk. We provide evidence that in SPPL2a(-/-) mice impaired BCR signaling is to a great extent provoked by the accumulating CD74 NTF, which can interact with the BCR and Syk, and that impaired PI3K/Akt signaling and reduced surface IgM are not directly linked processes. In line with disturbances in PI3K/Akt signaling, SPPL2a(-/-) B cells show a dysregulation of the transcription factor FOXO1, causing elevated transcription of proapoptotic genes. We conclude that SPPL2a-mediated processing of CD74 NTF is indispensable to maintain appropriate levels of tonic BCR signaling to promote B cell maturation.
Collapse
Affiliation(s)
- Susann Hüttl
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany
| | - Kathrin Kläsener
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany; Institute for Biology III, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; Max Planck Institute for Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Janna Schneppenheim
- Institute of Anatomy, Christian Albrechts University of Kiel, D-24118 Kiel, Germany; and
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian Albrechts University of Kiel, D-24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian Albrechts University of Kiel, D-24105 Kiel, Germany
| | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany; Institute for Biology III, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; Max Planck Institute for Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Paul Saftig
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany
| | - Bernd Schröder
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany;
| |
Collapse
|
32
|
Mentrup T, Häsler R, Fluhrer R, Saftig P, Schröder B. A Cell-Based Assay Reveals Nuclear Translocation of Intracellular Domains Released by SPPL Proteases. Traffic 2015; 16:871-92. [DOI: 10.1111/tra.12287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Torben Mentrup
- Biochemical Institute; Christian Albrechts University of Kiel; Otto-Hahn-Platz 9 D-24118 Kiel Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology; Christian Albrechts University of Kiel; Schittenhelmstr. 12 D-24105 Kiel Germany
| | - Regina Fluhrer
- Biomedizinisches Centrum (BMC); Ludwig Maximilians University of Munich; Feodor-Lynen-Strasse 17 D-81377 Munich Germany
- DZNE - German Center for Neurodegenerative Diseases; Feodor-Lynen-Strasse 17 D-81377 Munich Germany
| | - Paul Saftig
- Biochemical Institute; Christian Albrechts University of Kiel; Otto-Hahn-Platz 9 D-24118 Kiel Germany
| | - Bernd Schröder
- Biochemical Institute; Christian Albrechts University of Kiel; Otto-Hahn-Platz 9 D-24118 Kiel Germany
| |
Collapse
|
33
|
Signal-peptide-peptidase-like 2a is required for CD74 intramembrane proteolysis in human B cells. Biochem Biophys Res Commun 2014; 451:48-53. [PMID: 25035924 DOI: 10.1016/j.bbrc.2014.07.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 01/16/2023]
Abstract
The invariant chain (CD74) mediates targeting of the MHCII complex to endosomal compartments, where CD74 undergoes degradation allowing MHCII to acquire peptides. We demonstrated recently that intramembrane proteolysis of the final membrane-bound N-terminal fragment (NTF) of CD74 is catalyzed by Signal-peptide-peptidase-like 2a (SPPL2a) and that this process is indispensable for development and function of B lymphocytes in mice. In SPPL2a(-/-) mice, homeostasis of these cells is disturbed by the accumulation of the unprocessed CD74 NTF. So far, evidence for this essential role of SPPL2a is restricted to mice. Nevertheless, inhibition of SPPL2a has been suggested as novel approach to target B cells for treating autoimmunity. Here, we characterize human B cell lines with a homozygous microdeletion on chromosome 15. We demonstrate that this deletion disrupts the SPPL2a genomic locus and leads to loss of SPPL2a transcript. Lymphoblastoid cell lines from patients with this deletion exhibit absence of SPPL2a at the protein level and show an accumulation of the CD74 NTF comparable to B cells from SPPL2a(-/-) mice. By this means, we present evidence that the role of SPPL2a in CD74 proteolysis is conserved in human B cells and provide support for modulation of SPPL2a activity as a therapeutic concept.
Collapse
|
34
|
The intramembrane proteases signal Peptide peptidase-like 2a and 2b have distinct functions in vivo. Mol Cell Biol 2014; 34:1398-411. [PMID: 24492962 DOI: 10.1128/mcb.00038-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reported recently that the presenilin homologue signal peptide peptidase-like 2a (SPPL2a) is essential for B cell development by cleaving the N-terminal fragment (NTF) of the invariant chain (li, CD74). Based on this, we suggested that pharmacological modulation of SPPL2a may represent a novel approach to deplete B cells in autoimmune disorders. With regard to reported overlapping substrate spectra of SPPL2a and its close homologue, SPPL2b, we investigated the role of SPPL2b in CD74 NTF proteolysis and its impact on B and dendritic cell homeostasis. In heterologous expression experiments, SPPL2b was found to cleave CD74 NTF with an efficiency similar to that of SPPL2a. For in vivo analysis, SPPL2b single-deficient and SPPL2a/SPPL2b double-deficient mice were generated and examined for CD74 NTF turnover/accumulation, B cell maturation and functionality, and dendritic cell homeostasis. We demonstrate that in vivo SPPL2b does not exhibit a physiologically relevant contribution to CD74 proteolysis in B and dendritic cells. Furthermore, we reveal that both proteases exhibit divergent subcellular localizations in B cells and different expression profiles in murine tissues. These findings suggest distinct functions of SPPL2a and SPPL2b and, based on a high abundance of SPPL2b in brain, a physiological role of this protease in the central nervous system.
Collapse
|
35
|
Schwake M, Schröder B, Saftig P. Lysosomal membrane proteins and their central role in physiology. Traffic 2013; 14:739-48. [PMID: 23387372 DOI: 10.1111/tra.12056] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 12/19/2022]
Abstract
The lysosomal membrane was thought for a long time to primarily act as a physical barrier separating the luminal acidic milieu from the cytoplasmic environment. Meanwhile, it has been realized that unique lysosomal membranes play essential roles in a number of cellular events ranging from phagocytosis, autophagy, cell death, virus infection to membrane repair. This review provides an overview about the most interesting emerging functions of lysosomal membrane proteins and how they contribute to health and disease. Their importance is exemplified by their role in acidification, transport of metabolites and ions across the membrane, intracellular transport of hydrolases and the regulation of membrane fusion events. Studies in patient cells, non-mammalian model organisms and knockout mice contributed to our understanding of how the different lysosomal membrane proteins affect cellular homeostasis, developmental processes as well as tissue functions. Because these proteins are central for the biogenesis of this compartment they are also considered as attractive targets to modulate the lysosomal machinery in cases where impaired lysosomal degradation leads to cellular pathologies. We are only beginning to understand the complex composition and function of these proteins which are tightly linked to processes occurring throughout the endocytic and biosynthetic pathways.
Collapse
Affiliation(s)
- Michael Schwake
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098, Kiel, Germany
| | | | | |
Collapse
|
36
|
Prunotto M, Farina A, Lane L, Pernin A, Schifferli J, Hochstrasser DF, Lescuyer P, Moll S. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine. J Proteomics 2013; 82:193-229. [PMID: 23376485 DOI: 10.1016/j.jprot.2013.01.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/17/2012] [Accepted: 01/03/2013] [Indexed: 12/14/2022]
Abstract
Urine results from a coordinated activity of glomerular and tubular compartments of the kidney. As a footprint of these cellular functional processes, urinary exosomes, and 40-80 nm membrane vesicles released after fusion with the plasma membrane into the extracellular environment by renal epithelial cells, are a source for identification of proteins and investigation of their role in the kidney. The aim of the present study was the identification of podocyte exosome proteins based on urine immunoabsorption using podocyte-specific CR1-immunocoated beads followed by proteomic analysis using LC MS/MS techniques. This methodology allowed the identification of 1195 proteins. By using a bioinformatic approach, 27 brain-expressed proteins were identified, in which 14 out of them were newly demonstrated to be expressed in the kidney at a mRNA level, and, one of them, the COMT protein, was demonstrated to be expressed in podocytes at a protein level. These results, attesting the reliability of the methodology to identify podocyte proteins, need now to be completed by further experiments to analyze more precisely their biological function(s) in the podocytes.
Collapse
Affiliation(s)
- Marco Prunotto
- Institute of Clinical Pathology, Geneva University Hospitals, Geneva CH-1211, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Schneppenheim J, Dressel R, Hüttl S, Lüllmann-Rauch R, Engelke M, Dittmann K, Wienands J, Eskelinen EL, Hermans-Borgmeyer I, Fluhrer R, Saftig P, Schröder B. The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain. ACTA ACUST UNITED AC 2012; 210:41-58. [PMID: 23267015 PMCID: PMC3549707 DOI: 10.1084/jem.20121069] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The intramembrane protease SPPL2a cleaves the NTF of invariant chain (CD74), which is essential for normal trafficking of MHC class II–containing endosomes and thus for B cell development and function. Regulated intramembrane proteolysis is a central cellular process involved in signal transduction and membrane protein turnover. The presenilin homologue signal-peptide-peptidase-like 2a (SPPL2a) has been implicated in the cleavage of type 2 transmembrane proteins. We show that the invariant chain (li, CD74) of the major histocompatability class II complex (MHCII) undergoes intramembrane proteolysis mediated by SPPL2a. B lymphocytes of SPPL2a−/− mice accumulate an N-terminal fragment (NTF) of CD74, which severely impairs membrane traffic within the endocytic system and leads to an altered response to B cell receptor stimulation, reduced BAFF-R surface expression, and accumulation of MHCII in transitional developmental stage T1 B cells. This results in significant loss of B cell subsets beyond the T1 stage and disrupted humoral immune responses, which can be recovered by additional ablation of CD74. Hence, we provide evidence that regulation of CD74-NTF levels by SPPL2a is indispensable for B cell development and function by maintaining trafficking and integrity of MHCII-containing endosomes, highlighting SPPL2a as a promising pharmacological target for depleting and/or modulating B cells.
Collapse
Affiliation(s)
- Janna Schneppenheim
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu Z, Lv YJ, Song YP, Li XH, Du YN, Wang CH, Hu LK. Lysosomal membrane protein TMEM192 deficiency triggers crosstalk between autophagy and apoptosis in HepG2 hepatoma cells. Oncol Rep 2012; 28:985-91. [PMID: 22736246 DOI: 10.3892/or.2012.1881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/08/2012] [Indexed: 11/06/2022] Open
Abstract
As constituents of lysosomes, lysosomal membrane proteins play important roles in lysosome-related autophagy and apoptosis. In a recent proteomic study of lysosomal proteins, we identified transmembrane protein 192 (TMEM192) as a novel lysosomal membrane protein candidate. Using specific anti-TMEM192 antibody and lysosomal markers, the lysosomal localization of TMEM192 was determined by immunofluorescence. TMEM192 shows a wide expression pattern in mouse tissues. Interestingly, TMEM192 was found to be highly expressed in tumor cell lines, while it was not expressed or was detected at low levels in normal cell lines. By knockdown of TMEM192 expression using specific siRNAs, we found that TMEM192-deficient HepG2 hepatoma cells show growth inhibition and increased apoptosis. Autophagy was shown to be activated through detection of LC3II expression. Increased apoptosis was inhibited by blocking the expression of the key autophagy gene Atg7 in TMEM192-deficient HepG2 cells. The results suggest that TMEM192 is important for tumor cell growth and proliferation. TMEM192 deficiency can induce autophagy in tumor cells, and can further activate apoptosis by the mitochondrial pathway through autophagy. TMEM192 promotion of autophagy may be a new route for tumor therapy.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Radiation Oncology, Qilu Hospital, and Department of Oncology, Shandong University School of Medicine, Shandong 250012, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
TM7SF1 (GPR137B): a novel lysosome integral membrane protein. Mol Biol Rep 2012; 39:8883-9. [PMID: 22729905 DOI: 10.1007/s11033-012-1755-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 06/07/2012] [Indexed: 01/29/2023]
Abstract
In the previous proteomic study of human placenta, transmembrane 7 superfamily member 1 (TM7SF1) was found enriched in lysosome compartments. TM7SF1 encodes a 399-amino acid protein with a calculated molecular mass of 45 kDa. Bioinformatic analysis of its amino acid sequence showed that it is a multipass transmembrane protein containing a potential dileucine-based lysosomal targeting signal and four putative N-glycosylation sites. By percoll-gradient centrifugation and further subfraction ways, the lysosomal solute and membrane compartments were isolated respectively. Immunoblotting analysis indicated that TM7SF1 was co-fractioned with lysosome associated membrane protein 2 (LAMP2), which was only detected in lysosomal membrane compartments whereas not detected in the solute compartments. Using specific anti-TM7SF1 antibody and double-immunofluorescence with lysosome membrane protein LAMP1 and Lyso-Tracker Red, the colocalisations of endogenous TM7SF1 with lysosome and late endosome markers were demonstrated. All of this indicated that TM7SF1 is an integral lysosome membrane protein. Rat ortholog of TM7SF1 was found to be strongly expressed in heart, liver, kidney and brain while not or low detected in other tissues. In summary, TM7SF1 was a lysosomal integral membrane protein that shows tissue-specific expression. As a G-protein-coupled receptor in lysosome membrane, TM7SF1 was predicted function as signal transduction across lysosome membrane.
Collapse
|
40
|
Savalas LRT, Gasnier B, Damme M, Lübke T, Wrocklage C, Debacker C, Jézégou A, Reinheckel T, Hasilik A, Saftig P, Schröder B. Disrupted in renal carcinoma 2 (DIRC2), a novel transporter of the lysosomal membrane, is proteolytically processed by cathepsin L. Biochem J 2011; 439:113-28. [PMID: 21692750 DOI: 10.1042/bj20110166] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DIRC2 (Disrupted in renal carcinoma 2) has been initially identified as a breakpoint-spanning gene in a chromosomal translocation putatively associated with the development of renal cancer. The DIRC2 protein belongs to the MFS (major facilitator superfamily) and has been previously detected by organellar proteomics as a tentative constituent of lysosomal membranes. In the present study, lysosomal residence of overexpressed as well as endogenous DIRC2 was shown by several approaches. DIRC2 is proteolytically processed into a N-glycosylated N-terminal and a non-glycosylated C-terminal fragment respectively. Proteolytic cleavage occurs in lysosomal compartments and critically depends on the activity of cathepsin L which was found to be indispensable for this process in murine embryonic fibroblasts. The cleavage site within DIRC2 was mapped between amino acid residues 214 and 261 using internal epitope tags, and is presumably located within the tentative fifth intralysosomal loop, assuming the typical MFS topology. Lysosomal targeting of DIRC2 was demonstrated to be mediated by a N-terminal dileucine motif. By disrupting this motif, DIRC2 can be redirected to the plasma membrane. Finally, in a whole-cell electrophysiological assay based on heterologous expression of the targeting mutant at the plasma membrane of Xenopus oocytes, the application of a complex metabolic mixture evokes an outward current associated with the surface expression of full-length DIRC2. Taken together, these data strongly support the idea that DIRC2 is an electrogenic lysosomal metabolite transporter which is subjected to and presumably modulated by limited proteolytic processing.
Collapse
|
41
|
Two dileucine motifs mediate late endosomal/lysosomal targeting of transmembrane protein 192 (TMEM192) and a C-terminal cysteine residue is responsible for disulfide bond formation in TMEM192 homodimers. Biochem J 2011; 434:219-31. [PMID: 21143193 DOI: 10.1042/bj20101396] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
TMEM192 (transmembrane protein 192) is a novel constituent of late endosomal/lysosomal membranes with four potential transmembrane segments and an unknown function that was initially discovered by organellar proteomics. Subsequently, localization in late endosomes/lysosomes has been confirmed for overexpressed and endogenous TMEM192, and homodimers of TMEM192 linked by disulfide bonds have been reported. In the present study the molecular determinants of TMEM192 mediating its transport to late endosomes/lysosomes were analysed by using CD4 chimaeric constructs and mutagenesis of potential targeting motifs in TMEM192. Two directly adjacent N-terminally located dileucine motifs of the DXXLL-type were found to be critical for transport of TMEM192 to late endosomes/lysosomes. Whereas disruption of both dileucine motifs resulted in mistargeting of TMEM192 to the plasma membrane, each of the two motifs was sufficient to ensure correct targeting of TMEM192. In order to study disulfide bond formation, mutagenesis of cysteine residues was performed. Mutation of Cys266 abolished disulfide bridge formation between TMEM192 molecules, indicating that TMEM192 dimers are linked by a disulfide bridge between their C-terminal tails. According to the predicted topology, Cys266 would be localized in the reductive milieu of the cytosol where disulfide bridges are generally uncommon. Using immunogold labelling and proteinase protection assays, the localization of the N- and C-termini of TMEM192 on the cytosolic side of the late endosomal/lysosomal membrane was experimentally confirmed. These findings may imply close proximity of the C-termini in TMEM192 dimers and a possible involvement of this part of the protein in dimer assembly.
Collapse
|
42
|
Abstract
Lysosomes are organelles of eukaryotic cells that are critically involved in the degradation of macromolecules mainly delivered by endocytosis and autophagocytosis. Degradation is achieved by more than 60 hydrolases sequestered by a single phospholipid bilayer. The lysosomal membrane facilitates interaction and fusion with other compartments and harbours transport proteins catalysing the export of catabolites, thereby allowing their recycling. Lysosomal proteins have been addressed in various proteomic studies that are compared in this review regarding the source of material, the organelle/protein purification scheme, the proteomic methodology applied and the proteins identified. Distinguishing true constituents of an organelle from co-purifying contaminants is a central issue in subcellular proteomics, with additional implications for lysosomes as being the site of degradation of many cellular and extracellular proteins. Although many of the lysosomal hydrolases were identified by classical biochemical approaches, the knowledge about the protein composition of the lysosomal membrane has remained fragmentary for a long time. Using proteomics many novel lysosomal candidate proteins have been discovered and it can be expected that their functional characterisation will help to understand functions of lysosomes at a molecular level that have been characterised only phenomenologically so far and to generally deepen our understanding of this indispensable organelle.
Collapse
Affiliation(s)
- Bernd A Schröder
- Biochemical Institute, Christian-Albrechts University, Kiel, Germany.
| | | | | | | |
Collapse
|