1
|
Kowalczewski PŁ, Smarzyński K, Biegalski J, Muzolf-Panek M, Cais-Sokolińska D, Ruszkowska M, Lewandowicz J, Miedzianka J, Wróbel MM, Kačániová M, Baranowska HM. Insight into the potato protein-based vegan cheese: A comprehensive study on physicochemical, mechanical and molecular properties. FOOD SCI TECHNOL INT 2025:10820132251315810. [PMID: 39894935 DOI: 10.1177/10820132251315810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The growing interest in plant-based diets is driving the search for new products, including alternatives to dairy cheese. The aim of this research was to develop a recipe and technology for the production of a vegan cheese, then to characterize the physical, mechanical as well as molecular properties of the obtained products. The use of protein isolated from potato juice seems to be appropriate due to the nutritional value of the formed product and to the environmental benefits, that is, the use of waste potato juice to obtain a valuable raw material. It was found that as a result of the interaction of protein with carbohydrates and fats, the hardness and viscosity of the obtained products increase. Moreover, it was shown that one of the tested cheese analogues, which contains 5% of potato juice protein, 12% of oil and 25% of modified potato starch, is the optimal analyzed variant. It has attractive culinary properties, such as meltability; therefore, it can be used in production of hot dishes, for example, as a plant-based alternative to dairy cheese in pizza.
Collapse
Affiliation(s)
| | - Krzysztof Smarzyński
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, Gdynia, Poland
| | - Jakub Biegalski
- Department of Dairy and Process Engineering, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Muzolf-Panek
- Department of Food Quality and Safety Management, Poznań University of Life Sciences, Poznań, Poland
| | - Dorota Cais-Sokolińska
- Department of Dairy and Process Engineering, Poznań University of Life Sciences, Poznań, Poland
| | - Millena Ruszkowska
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, Gdynia, Poland
| | - Jacek Lewandowicz
- Department of Food Concentrates and Starch Products, Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology-State Research Institute, Poznań, Poland
| | - Joanna Miedzianka
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Martyna Maria Wróbel
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, Gdynia, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Warsaw, Poland
| | - Hanna Maria Baranowska
- Department of Physics and Biophysics, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
2
|
Hahn A, Liszka J, Maksym J, Nemś A, Miedzianka J. Preliminary Data of the Nutritive, Antioxidative, and Functional Properties of Watermelon ( Citrullus lanatus L.) Flour and Seed Protein Concentrate. Molecules 2025; 30:181. [PMID: 39795237 PMCID: PMC11721404 DOI: 10.3390/molecules30010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
The growing interest in a plant-based diet leads to the search for new sources of protein in the human diet as an alternative to animal proteins. Plant materials that can supplement protein as additives in food products are being studied. Watermelon seeds (Citrillus lanatus L.) are rich in proteins and waste from the food industry; however, their extraction is not completely cost-free, and the flour production process may involve additional costs related to their extraction and processing. The studies showed that watermelon seed protein concentrate, obtained using the alkaline extraction method, contained 82.52 g/100 g of protein and 1.51 g/100 g of fat. The polyphenol content in the protein preparation from defatted watermelon seeds was 1.9 mg gallic acid/g, and the antioxidant activity of the concentrate was 29.26 µmol Trolox/g (by the ABTS+). The obtained watermelon seed protein concentrate was characterised by solubility of more than 80% (at pH = 10), water absorption at the level of 2.46 (g water/g) and oil absorption equal to 2.1 (ml oil/g), showed poor foaming properties (1.51%), and was characterised by low emulsification.
Collapse
Affiliation(s)
- Agata Hahn
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland; (A.H.); (J.L.); (J.M.)
| | - Justyna Liszka
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland; (A.H.); (J.L.); (J.M.)
| | - Julia Maksym
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland; (A.H.); (J.L.); (J.M.)
| | - Agnieszka Nemś
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland;
| | - Joanna Miedzianka
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland;
| |
Collapse
|
3
|
Kowalczewski PŁ, Wróbel MM, Smarzyński K, Zembrzuska J, Ślachciński M, Jeżowski P, Tomczak A, Kulczyński B, Zielińska-Dawidziak M, Sałek K, Kmiecik D. Potato Protein-Based Vegan Burgers Enriched with Different Sources of Iron and Fiber: Nutrition, Sensory Characteristics, and Antioxidants before and after In Vitro Digestion. Foods 2024; 13:3060. [PMID: 39410095 PMCID: PMC11475115 DOI: 10.3390/foods13193060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The aim of this research was to develop a technology for the production of plant-based burgers (PBBs) based on potato protein, also containing high content of iron and appropriately selected fats. The produced PBBs were characterized in terms of their nutritional and bioactive properties both before and after the in vitro digestion process. It was found that the produced burger was characterized by high protein content, ranging from 20.80 to 22.16 g/100 g. It was also shown to have a high dietary fiber content, ranging from 8.35 to 9.20 g/100 g. The main fraction of dietary fiber in the tested samples was insoluble fiber, which accounted for approximately 89% of the total fiber content. In addition, noteworthy is the high digestibility of the protein, reaching approximately 95% for the potato fiber used in the formulation, and about 85% for the oat fiber. Produced PBBs also provide significant amounts of iron, with the use of an organic iron source greatly increasing its quantity in the final product. The analyzed antioxidant properties before and after the digestion process showed a tenfold increase in biological activity after digestion, indicating that the examined PBBs may counteract oxidative stress. Analyzing the chemical and biological properties, it is impossible not to assess consumer attractiveness. It has been shown that PBB1, which contains potato fiber and powdered sprouts enriched with ferritin, received the highest attractiveness ratings among respondents.
Collapse
Affiliation(s)
- Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland;
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
| | - Martyna Maria Wróbel
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
- Department of Quality Management, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Krzysztof Smarzyński
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
- Department of Quality Management, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 60-965 Poznań, Poland; (J.Z.); (M.Ś.)
| | - Mariusz Ślachciński
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 60-965 Poznań, Poland; (J.Z.); (M.Ś.)
| | - Paweł Jeżowski
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 60-965 Poznań, Poland; (J.Z.); (M.Ś.)
| | - Aneta Tomczak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 60-623 Poznań, Poland; (A.T.); (M.Z.-D.)
| | - Bartosz Kulczyński
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Magdalena Zielińska-Dawidziak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 60-623 Poznań, Poland; (A.T.); (M.Z.-D.)
| | - Karina Sałek
- Institute of Biological Chemistry, Biophysics & Bioengineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland;
| |
Collapse
|
4
|
Hadidi M, Aghababaei F, Gonzalez-Serrano DJ, Goksen G, Trif M, McClements DJ, Moreno A. Plant-based proteins from agro-industrial waste and by-products: Towards a more circular economy. Int J Biol Macromol 2024; 261:129576. [PMID: 38253140 DOI: 10.1016/j.ijbiomac.2024.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| | | | - Diego J Gonzalez-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany; CENCIRA Agrofood Research and Innovation Centre, Ion Mester 6, 400650 Cluj-Napoca, Romania
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, United States
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
5
|
Fu Q, Zhao J, Rong S, Han Y, Liu F, Chu Q, Wang S, Chen S. Research Advances in Plant Protein-Based Products: Protein Sources, Processing Technology, and Food Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15429-15444. [PMID: 37824166 DOI: 10.1021/acs.jafc.3c02224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Plant proteins are high-quality dietary components of food products. With the growing interest in sustainable and healthy food alternatives, plant proteins have gained significant attention as viable substitutes for animal-based proteins. Understanding the diversity of protein sources derived from plants, novel processing technology, and multiple applications is crucial for developing nutritious and sustainable plant protein-based products. This Review summarizes the natural sources of traditional and emerging plant proteins. The classifications, processing technologies, and applications of plant protein-based products in the food industry are explicitly elucidated. Moreover, the advantages and disadvantages of plant protein-based food products are revealed. Strategies such as protein fortification and complementation to overcome these shortcomings are critically discussed. We also demonstrate several issues that need to be addressed in future development.
Collapse
Affiliation(s)
- Qi Fu
- School of Public Health, Wuhan University, 430071, Wuhan, China
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78542, United States
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78542, United States
| | - Shuang Rong
- School of Public Health, Wuhan University, 430071, Wuhan, China
| | - Yahong Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Yangling 712199, China
| | - Qianmei Chu
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - Suqing Wang
- School of Nursing, Wuhan University, Wuhan 430071, China
| | - Shuai Chen
- School of Public Health, Wuhan University, 430071, Wuhan, China
| |
Collapse
|
6
|
Jakobson K, Kaleda A, Adra K, Tammik ML, Vaikma H, Kriščiunaite T, Vilu R. Techno-Functional and Sensory Characterization of Commercial Plant Protein Powders. Foods 2023; 12:2805. [PMID: 37509897 PMCID: PMC10379337 DOI: 10.3390/foods12142805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Many new plant proteins are appearing on the market, but their properties are insufficiently characterized. Hence, we collected 24 commercial proteins from pea, oat, fava bean, chickpea, mung bean, potato, canola, soy, and wheat, including different batches, and assessed their techno-functional and sensory properties. Many powders had yellow, red, and brown color tones, but that of fava bean was the lightest. The native pH ranged from 6.0 to 7.7. The water solubility index was 28% on average, but after heat treatment the solubility typically increased. Soy isolate had by far the best water-holding capacity of 6.3 g (H2O) g-1, and canola had the highest oil-holding capacity of 2.8 g (oil) g-1. The foaming capacity and stability results were highly varied but typical to the raw material. The emulsification properties of all powders were similar. Upon heating, the highest viscosity and storage modulus were found in potato, canola, and mung bean. All powders had raw material flavor, were bitter and astringent, and undissolved particles were perceived in the mouth. Large differences in functionality were found between the batches of one pea powder. In conclusion, we emphasize the need for methodological standardization, but while respecting the conditions found in end applications like meat and dairy analogs.
Collapse
Affiliation(s)
- Kadi Jakobson
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Aleksei Kaleda
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
| | - Karl Adra
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
| | - Mari-Liis Tammik
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Helen Vaikma
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
- School of Business and Governance, Tallinn University of Technology, Akadeemia tee 3, 12612 Tallinn, Estonia
| | - Tiina Kriščiunaite
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
| | - Raivo Vilu
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
7
|
Blecharczyk A, Kowalczewski PŁ, Sawinska Z, Rybacki P, Radzikowska-Kujawska D. Impact of Crop Sequence and Fertilization on Potato Yield in a Long-Term Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:495. [PMID: 36771580 PMCID: PMC9921471 DOI: 10.3390/plants12030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The research was conducted during the years 2007-2013, on the base of a long-term study established in 1958, at the Experimental Station Brody (52°26' N; 16°18' E), belonging to the Poznań University of Life Sciences. Varieties of potatoes resistant to cyst nematodes were grown in a seven-course crop rotation (potato-spring barley-alfalfa-alfalfa-spring oilseed rape-winter wheat-winter rye) and in continuous monoculture. The presented study from the years 2007-2013 covers the next 8th rotation of the 7-field crop rotation (since 1958). With regard to continuous cultivation, this is the period between the 50th and 56th year of the potato monoculture. The experiment included 11 fertilization variants, of which the following 7 were included in the study: 1-control object without fertilization, 2-manure, 3-manure + NPK, 4-NPKCa, 5-NPK, 6-NP, 7-NK and 8-PK. Every year, mineral and organic fertilization was applied in the following doses per 1 ha: N-90 kg, P-26 kg, K-100 kg, manure-30 t and Ca-0.7 t. Potato cultivation in monoculture resulted in a significant reduction in tuber yield compared to crop rotation and a reduction in the number of tubers per plant and the average weight of one tuber. Manure fertilization, especially in combination with NPK mineral fertilizer, had a more favorable effect on the level of potato yielding and the content of N, P, K and Mg in tubers compared to only mineral fertilization, but decreased the content of dry matter, starch and Ca. The results of long-term experiment indicate that the most effective in potato cultivation is the combined application of both manure and full mineral fertilization (NPK) with the proper sequence of plants (crop rotation).
Collapse
Affiliation(s)
- Andrzej Blecharczyk
- Department of Agronomy, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| | - Zuzanna Sawinska
- Department of Agronomy, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland
| | - Piotr Rybacki
- Department of Agronomy, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland
| | | |
Collapse
|
8
|
The Functional and Physicochemical Properties of Rice Protein Concentrate Subjected to Acetylation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020770. [PMID: 36677829 PMCID: PMC9864533 DOI: 10.3390/molecules28020770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to increase the value of rice protein concentrate (RPC) by improving the functional properties of a preparation subjected to acetylation and analyze the impact of this chemical modification on chemical composition, digestibility, and protein patterning using SDS-PAGE electrophoresis and FT-IR spectroscopy. In the modified samples, the protein content increased (80.90-83.10 g/100 g cf. 74.20 g/100 g in the control). Electrophoresis revealed that the content of the main rice protein fractions (prolamin and glutelin) decreased as the concentration of the modifying reagent increased. Through spectroscopic analysis, wavenumbers, corresponding to the presence of proteins or lipids, aromatic systems, and carbohydrates, were observed. The use of acetic anhydride did not change the digestibility of the modified RPC significantly when compared to that of the control sample. The acetylation of the RPC caused a significant increase in its emulsifying properties at pH 8 (1.83-14.74%) and its water-binding capacity but did not have a statistically significant impact on the oil-absorption capacity. There was a slight increase in protein solubility and a decrease in foaming capacity in the modified RPC.
Collapse
|
9
|
Bioactive Substances of Potato Juice Reveal Synergy in Cytotoxic Activity against Cancer Cells of Digestive System Studied In Vitro. Nutrients 2022; 15:nu15010114. [PMID: 36615771 PMCID: PMC9823805 DOI: 10.3390/nu15010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
More and more literature data indicate the health-promoting effect of potato juice (PJ). However, to date, it has not been precisely explained which of the many compounds present in PJ exhibit biological activity. The work aimed to establish the antiproliferative effect of gastrointestinal digested PJ and the products of its processing. Fresh PJs derived from three edible potato varieties, industrial side stream resulting from starch production, partially deproteinized PJ derived from feed protein production line, and three different potato protein preparations subjected to digestion in the artificial gastrointestinal tract were used in this study. The cytotoxic potential of glycoalkaloids (GAs), phenolic acids, digested PJ, and products of PJ processing was determined in human normal and cancer cells derived from the digestive system. The results showed that GAs exhibit concentration-dependent cytotoxicity against all analyzed cell lines. In contrast, phenolic acids (caffeic, ferulic, and chlorogenic acid) do not show cytotoxicity in the applied cell lines. A correlation between cytotoxic potency and GAs content was found in all PJ products studied. The most potent effects were observed under treatment with deproteinized PJ, a product of industrial processing of PJ, distinguished by the highest effective activity among the fresh juice products studied. Moreover, this preparation revealed a favorable cytotoxicity ratio towards cancer cells compared to normal cells. Statistical analysis of the obtained results showed the synergistic effect of other bioactive substances contained in PJ and its products, which may be crucial in further research on the possibility of using PJ as a source of compounds of therapeutic importance.
Collapse
|
10
|
Le Thanh-Blicharz J, Lewandowicz J, Małyszek Z, Baranowska HM, Kowalczewski PŁ. Chemical Modifications of Normal and Waxy Potato Starches Affect Functional Properties of Aerogels. Gels 2022; 8:720. [PMID: 36354628 PMCID: PMC9689880 DOI: 10.3390/gels8110720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 07/29/2023] Open
Abstract
Aerogels are of increasing interest because of their exceptionally large surface area, porous structure, and low weight. Despite the significant increase in interest in the subject of starch-based aerogels, the number of detailed studies is rather scarce, which is especially evident in the case of chemically modified derivatives. Therefore, the study aims to evaluate the physicochemical properties of aerogels from chemically modified potato starch preparations (E 1422 and E 1450) obtained both from normal and waxy starches. Aerogels were prepared through the retrogradation of starch pastes followed by the gradual replacement of water with ethyl alcohol. The obtained preparations were characterized in terms of their bulk density, oil-binding capacity, as well as the texture and rheological properties of the formed pastes. Moreover, their usefulness was evaluated in an emulsion system employing rheological and low-field NMR methods. The obtained aerogels were characterized by a lower bulk density of 0.18-0.59 g/cm3 and 5.4-6.6 times higher oil-binding capacity compared to native potato starch. The chemical modification of starch helped to further alter the functional properties of the obtained aerogels, making them more effective oil binders, emulsifiers, and stabilizers (increasing the stability from 55 to 90%), which was especially evident for E 1450 preparation. Amylose content improved the aerogel properties, as waxy preparations were characterized by worse functional properties with the only exception of improved thickening ability. The most beneficial properties for the preparation of emulsions were observed for the aerogel obtained based on E 1450 normal potato starch.
Collapse
Affiliation(s)
- Joanna Le Thanh-Blicharz
- Department of Food Concentrates and Starch Products, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology—State Research Institute, 40 Starołęcka St., 61-361 Poznań, Poland
| | - Jacek Lewandowicz
- Institute of Logistics, Poznan University of Technology, 2 Jacka Rychlewskiego St., 60-965 Poznań, Poland
| | - Zuzanna Małyszek
- Department of Food Concentrates and Starch Products, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology—State Research Institute, 40 Starołęcka St., 61-361 Poznań, Poland
| | - Hanna Maria Baranowska
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 38/42 Wojska Polskiego St., 60-637 Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| |
Collapse
|
11
|
Rawdkuen S, D’Amico S, Schoenlechner R. Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi ( Plukenetia volubilis L.) Oil Press-Cakes. Foods 2022; 11:foods11131869. [PMID: 35804688 PMCID: PMC9265265 DOI: 10.3390/foods11131869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Proteins from Sacha inchi (SI) have been widely known for their health-benefiting properties. This study aimed to investigate the different protein isolates obtained from oil press-cakes of Thai and Peru SI. The protein content and protein recovery of Thai and Peru SI were estimated to be 93.27, 90.67%, and 49.15, 59.32%, respectively. The protein patterns of the Thai and Peru SI samples analyzed by SDS-PAGE showed glycoprotein as a major protein, with a molecular weight of 35 kDa. Both protein isolates (PI) showed water and oil holding capacities in the range of 2.97−3.09 g/g sample and 2.75−2.88 g/g sample, respectively. The emulsifying properties of the PI from Thai SI were higher than those of Peru (p < 0.05), while the foaming properties were not analogous to the emulsion properties. The Thai SI sample showed lower digestibility up to 120 min of in vitro digestion time than that of the Peru SI sample (p < 0.05). However, simulated in vitro pepsin digestion of Thai and Peru Si samples displayed hydrolyzed protein bands compared to trypsin digestion, which showed no protein patterns in both SI samples on a 4−20% gradient gel. These results suggest that the protein isolates from Thai and Peru SI exhibit marked variations in physical and techno-functional properties and have a high potential to be employed as plant-based protein additives for future non-animal-based protein-rich foods.
Collapse
Affiliation(s)
- Saroat Rawdkuen
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: ; Tel.:+66-53916-752
| | - Stefano D’Amico
- Institute of Animal Nutrition and Feeding, AGES—Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220 Vienna, Austria;
| | - Regine Schoenlechner
- Department of Food Sciences and Technology, Institute of Food Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria;
| |
Collapse
|
12
|
Kowalczewski PŁ, Olejnik A, Świtek S, Bzducha-Wróbel A, Kubiak P, Kujawska M, Lewandowicz G. Bioactive compounds of potato ( Solanum tuberosum L.) juice: from industry waste to food and medical applications. CRITICAL REVIEWS IN PLANT SCIENCES 2022; 41:52-89. [DOI: 10.1080/07352689.2022.2057749] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Stanisław Świtek
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Grażyna Lewandowicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
13
|
Kowalczewski PŁ, Zembrzuska J, Drożdżyńska A, Smarzyński K, Radzikowska D, Kieliszek M, Jeżowski P, Sawinska Z. Influence of potato variety on polyphenol profile composition and glycoalcaloid contents of potato juice. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The results of studies published in recent years indicate the broad biological activity of potato juice (PJ), which is a byproduct of the starch production process. Among the most frequently described activities are anti-inflammatory, antioxidant, and cytotoxic effects. Nevertheless, this waste juice is produced by the processing of many varieties of potatoes with different proportions, which does not allow to conclude on the biological activity of individual varieties. This article is a report on the antioxidant activity of PJ from seven selected potato varieties, their profile of polyphenolic compounds, and the content of glycoalkaloids (GAs). The use of similar cultivation conditions allowed to eliminate the influence of environmental factors on the content of the analyzed compounds. The influence of PJ on the growth of probiotic, commensal, and pathogenic bacteria was also assessed. It was shown that the varieties significantly influenced the differences in antioxidant activity as well as the content of GAs, but despite the observed differences, none of them showed antimicrobial activity. Therefore, it can be concluded that an appropriately selected variety will make it possible to obtain PJ that will be characterized by high antioxidant activity and, at the same time, will be safe from the toxicological point of view.
Collapse
Affiliation(s)
- Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences , 31 Wojska Polskiego St. , 60-624 Poznań , Poland
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology , 4 Berdychowo St. , 60-965 Poznań , Poland
| | - Agnieszka Drożdżyńska
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences , 48 Wojska Polskiego St. , 60-627 Poznań , Poland
| | - Krzysztof Smarzyński
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences , 31 Wojska Polskiego St. , 60-624 Poznań , Poland
| | - Dominika Radzikowska
- Department of Agronomy, Poznań University of Life Sciences , 11 Dojazd St. , 60-632 Poznań , Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW , 02-776 Warsaw , Poland
| | - Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology , 4 Berdychowo St. , 60-965 Poznań , Poland
| | - Zuzanna Sawinska
- Department of Agronomy, Poznań University of Life Sciences , 11 Dojazd St. , 60-632 Poznań , Poland
| |
Collapse
|
14
|
Miedzianka J, Zambrowicz A, Zielińska-Dawidziak M, Drożdż W, Nemś A. Effect of Acetylation on Physicochemical and Functional Properties of Commercial Pumpkin Protein Concentrate. Molecules 2021; 26:1575. [PMID: 33809328 PMCID: PMC8002035 DOI: 10.3390/molecules26061575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of the present study was to determine the effects of acetylation with different doses of acetic anhydride on the chemical composition and chosen functional properties of commercial pumpkin protein concentrate (PPC). The total protein content decreased as compared to unmodified samples. Electrophoretic analysis revealed that in the acetylated pumpkin protein, the content of the heaviest protein (35 kDa) decreased in line with increasing concentrations of modifying reagent. Acetylation of PPC caused a significant increase in water-binding and oil-absorption capacity and for emulsifying properties even at the dose of 0.4 mL/g. Additionally, an increase in foaming capacity was demonstrated for preparations obtained with 2.0 mL/g of acetic anhydride, whereas acetylation with 0.4 and 1.0 mL/g caused a decrease in protein solubility as compared to native PPC.
Collapse
Affiliation(s)
- Joanna Miedzianka
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wrocław, Poland; (W.D.); (A.N.)
| | - Aleksandra Zambrowicz
- Department of Functional Products Development, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wrocław, Poland;
| | - Magdalena Zielińska-Dawidziak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 48 Mazowiecka Street, 60-623 Poznań, Poland;
| | - Wioletta Drożdż
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wrocław, Poland; (W.D.); (A.N.)
| | - Agnieszka Nemś
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wrocław, Poland; (W.D.); (A.N.)
| |
Collapse
|
15
|
Kowalczewski PŁ, Olejnik A, Rybicka I, Zielińska-Dawidziak M, Białas W, Lewandowicz G. Membrane Filtration-Assisted Enzymatic Hydrolysis Affects the Biological Activity of Potato Juice. Molecules 2021; 26:852. [PMID: 33561978 PMCID: PMC7914785 DOI: 10.3390/molecules26040852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
The results of recently published studies indicate that potato juice is characterized by interesting biological activity that can be particularly useful in the case of gastrointestinal symptoms. Moreover, the studies also described the high nutritional value of its proteins. This article is a report on the impact of the enzymatic hydrolysis of proteins combined with membrane filtration. The obtained potato juice protein hydrolysate (PJPH) and its concentrate (cPJPH) were characterized in terms of their nutritional value and biological activity. The amino acid profile and scoring, the content of mineral compounds, and the antioxidant and in vitro cytotoxic activity were assessed. The study proved that the antioxidant activity of PJPH is higher than that of fresh potato juice, and the cytotoxicity against human gastric carcinoma cell line (Hs 746T), human colon cancer cell line (Caco-2), human colorectal adenocarcinoma cell line (HT-29), and human normal colon mucosa cell line (CCD 841 CoN) showed biological activity specifically targeted against cancer cells. Therefore, it can be concluded that the membrane filtration-assisted enzymatic hydrolysis of potato juice proteins may increase their biological activity and allow for potato juice to be used in the production of medicinal preparations.
Collapse
Affiliation(s)
- Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznań, Poland; (A.O.); (W.B.); (G.L.)
| | - Iga Rybicka
- Department of Technology and Instrumental Analysis, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Magdalena Zielińska-Dawidziak
- Department of Biochemistry and Food Analysis, Faculty of Food Science and Nutrition, 48 Mazowiecka St., Poznań University of Life Sciences, 60-623 Poznań, Poland;
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznań, Poland; (A.O.); (W.B.); (G.L.)
| | - Grażyna Lewandowicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznań, Poland; (A.O.); (W.B.); (G.L.)
| |
Collapse
|