1
|
Yoshioka Y, Huang Y, Jin X, Ngo KX, Kumaki T, Jin M, Toyoda S, Takayama S, Inotsume M, Fujita K, Homma H, Ando T, Tanaka H, Okazawa H. PQBP3 prevents senescence by suppressing PSME3-mediated proteasomal Lamin B1 degradation. EMBO J 2024; 43:3968-3999. [PMID: 39103492 PMCID: PMC11405525 DOI: 10.1038/s44318-024-00192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Senescence of nondividing neurons remains an immature concept, with especially the regulatory molecular mechanisms of senescence-like phenotypes and the role of proteins associated with neurodegenerative diseases in triggering neuronal senescence remaining poorly explored. In this study, we reveal that the nucleolar polyglutamine binding protein 3 (PQBP3; also termed NOL7), which has been linked to polyQ neurodegenerative diseases, regulates senescence as a gatekeeper of cytoplasmic DNA leakage. PQBP3 directly binds PSME3 (proteasome activator complex subunit 3), a subunit of the 11S proteasome regulator complex, decreasing PSME3 interaction with Lamin B1 and thereby preventing Lamin B1 degradation and senescence. Depletion of endogenous PQBP3 causes nuclear membrane instability and release of genomic DNA from the nucleus to the cytosol. Among multiple tested polyQ proteins, ataxin-1 (ATXN1) partially sequesters PQBP3 to inclusion bodies, reducing nucleolar PQBP3 levels. Consistently, knock-in mice expressing mutant Atxn1 exhibit decreased nuclear PQBP3 and a senescence phenotype in Purkinje cells of the cerebellum. Collectively, these results suggest homologous roles of the nucleolar protein PQBP3 in cellular senescence and neurodegeneration.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yong Huang
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Xiaocen Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kien Xuan Ngo
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tomohiro Kumaki
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Meihua Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Saori Toyoda
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Sumire Takayama
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Maiko Inotsume
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Research Center for Child Mental Development, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Toshio Ando
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
2
|
Kelnhofer-Millevolte LE, Arnold EA, Nguyen DH, Avgousti DC. Controlling Much? Viral Control of Host Chromatin Dynamics. Annu Rev Virol 2024; 11:171-191. [PMID: 38684115 DOI: 10.1146/annurev-virology-100422-011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Viruses are exemplary molecular biologists and have been integral to scientific discovery for generations. It is therefore no surprise that nuclear replicating viruses have evolved to systematically take over host cell function through astoundingly specific nuclear and chromatin hijacking. In this review, we focus on nuclear replicating DNA viruses-herpesviruses and adenoviruses-as key examples of viral invasion in the nucleus. We concentrate on critical features of nuclear architecture, such as chromatin and the nucleolus, to illustrate the complexity of the virus-host battle for resources in the nucleus. We conclude with a discussion of the technological advances that have enabled the discoveries we describe and upcoming steps in this burgeoning field.
Collapse
Affiliation(s)
- Laurel E Kelnhofer-Millevolte
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Edward A Arnold
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Daniel H Nguyen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Workman RJ, Huang CJ, Lynch GC, Pettitt BM. Peptide diffusion in biomolecular condensates. Biophys J 2024; 123:1668-1675. [PMID: 38751116 PMCID: PMC11213990 DOI: 10.1016/j.bpj.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Diffusion determines the turnover of biomolecules in liquid-liquid phase-separated condensates. We considered the mean square displacement and thus the diffusion constant for simple model systems of peptides GGGGG, GGQGG, and GGVGG in aqueous solutions after phase separation by simulating atomic-level models. These solutions readily separate into aqueous and peptide-rich droplet phases. We noted the effect of the peptides being in a solvated, surface, or droplet state on the peptide's diffusion coefficients. Both sequence and peptide conformational distribution were found to influence diffusion and condensate turnover in these systems, with sequence dominating the magnitude of the differences. We found that the most compact structures for each sequence diffused the fastest in the peptide-rich condensate phase. This model result may have implications for turnover dynamics in signaling systems.
Collapse
Affiliation(s)
- Riley J Workman
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas
| | - Caleb J Huang
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas
| | - Gillian C Lynch
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas
| | | |
Collapse
|
4
|
Banerjee C, Nag S, Goyal M, Saha D, Siddiqui AA, Mazumder S, Debsharma S, Pramanik S, Bandyopadhyay U. Nuclease activity of Plasmodium falciparum Alba family protein PfAlba3. Cell Rep 2023; 42:112292. [PMID: 36947546 DOI: 10.1016/j.celrep.2023.112292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Plasmodium falciparum Alba domain-containing protein Alba3 (PfAlba3) is ubiquitously expressed in intra-erythrocytic stages of Plasmodium falciparum, but the function of this protein is not yet established. Here, we report an apurinic/apyrimidinic site-driven intrinsic nuclease activity of PfAlba3 assisted by divalent metal ions. Surface plasmon resonance and atomic force microscopy confirm sequence non-specific DNA binding by PfAlba3. Upon binding, PfAlba3 cleaves double-stranded DNA (dsDNA) hydrolytically. Mutational studies coupled with mass spectrometric analysis indicate that K23 is the essential residue in modulating the binding to DNA through acetylation-deacetylation. We further demonstrate that PfSir2a interacts and deacetylates K23-acetylated PfAlba3 in favoring DNA binding. Hence, K23 serves as a putative molecular switch regulating the nuclease activity of PfAlba3. Thus, the nuclease activity of PfAlba3, along with its apurinic/apyrimidinic (AP) endonuclease feature identified in this study, indicates a role of PfAlba3 in DNA-damage response that may have a far-reaching consequence in Plasmodium pathogenicity.
Collapse
Affiliation(s)
- Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Manish Goyal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India; Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Bidhan Nagar Kolkata, 700091, West Bengal, India.
| |
Collapse
|
5
|
Liu S, Zhang Q, He H, Yi M, Tan W, Guo J, Xu B. Intranuclear Nanoribbons for Selective Killing of Osteosarcoma Cells. Angew Chem Int Ed Engl 2022; 61:e202210568. [PMID: 36102872 PMCID: PMC9869109 DOI: 10.1002/anie.202210568] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/26/2023]
Abstract
Herein, we show intranuclear nanoribbons formed upon dephosphorylation of leucine-rich L- or D-phosphopeptide catalyzed by alkaline phosphatase (ALP) to selectively kill osteosarcoma cells. Being dephosphorylated by ALP, the peptides are first transformed into micelles and then converted into nanoribbons. The peptides/assemblies first aggregate on cell membranes, then enter cells via endocytosis, and finally accumulate in nuclei (mainly in nucleoli). Proteomics analysis suggests that the assemblies interact with histone proteins. The peptides kill osteosarcoma cells rapidly and are nontoxic to normal cells. Moreover, the repeated stimulation of the osteosarcoma cells by the peptides sensitizes the cancer cells rather than inducing resistance. This work not only illustrates a novel mechanism for nucleus targeting, but may also pave a new way for selectively killing osteosarcoma cells and minimizing drug resistance.
Collapse
Affiliation(s)
- Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
6
|
Subirana MA, Riemschneider S, Hause G, Dobritzsch D, Schaumlöffel D, Herzberg M. High spatial resolution imaging of subcellular macro and trace element distribution during phagocytosis. Metallomics 2022; 14:6530650. [PMID: 35179212 DOI: 10.1093/mtomcs/mfac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022]
Abstract
The bioavailability of trace elements in the course of evolution had an essential influence on the emergence of life itself. This is reflected in the co-evolution between eukaryotes and prokaryotes. In this study, the influence and cellular distribution of bioelements during phagocytosis at the host-pathogen interface was investigated using high-resolution nanoscale secondary ion mass spectrometry (NanoSIMS) and quantitative inductively coupled plasma mass spectrometry (ICP-MS). In the eukaryotic murine macrophages (RAW 264.7 cell line), the cellular Fe / Zn ratio was found to be balanced, whereas the dominance of iron in the prokaryotic cells of the pathogen Salmonella enterica Serovar Enteritidis was about 90% compared to zinc. This confirms the evolutionary increased zinc requirement of the eukaryotic animal cell. Using NanoSIMS, the Cs+ primary ion source allowed high spatial resolution mapping of cell morphology down to subcellular level. At a comparable resolution, several low abundant trace elements could be mapped during phagocytosis with a RF plasma O- primary ion source. An enrichment of copper and nickel could be detected in the prokaryotic cells. Surprisingly, an accumulation of cobalt in the area of nuclear envelope was observed indicating an interesting but still unknown distribution of this trace element in murine macrophages.
Collapse
Affiliation(s)
- Maria Angels Subirana
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France
| | - Sina Riemschneider
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Gerd Hause
- Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Dirk Dobritzsch
- Martin-Luther-University Halle-Wittenberg, Core Facility - Proteomic Mass Spectrometry, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Dirk Schaumlöffel
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France.,Peoples' Friendship University of Russia (RUDN University), Mklukho-Maklaya str. 6, 117198 Moscow, Russia
| | - Martin Herzberg
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany
| |
Collapse
|
7
|
Wickhorst PJ, Druzhinin SI, Ihmels H, Müller M, Sutera Sardo M, Schönherr H, Viola G. A Dimethylaminophenyl‐Substituted Naphtho[1,2‐
b
]quinolizinium as a Multicolor NIR Probe for the Fluorimetric Detection of Intracellular Nucleic Acids and Proteins. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peter Jonas Wickhorst
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Sergey I. Druzhinin
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Heiko Ihmels
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Mareike Müller
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | | | - Holger Schönherr
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Giampietro Viola
- Department of Women's and Child's health Oncohematology laboratory University of Padova Via Giustiniani 2 I-35128 Padova Italy
| |
Collapse
|
8
|
Yoneda M, Nakagawa T, Hattori N, Ito T. The nucleolus from a liquid droplet perspective. J Biochem 2021; 170:153-162. [PMID: 34358306 DOI: 10.1093/jb/mvab090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/27/2021] [Indexed: 11/14/2022] Open
Abstract
The nucleolus is a membrane-less organelle sequestered from the nucleus by liquid droplet formation through a liquid-liquid phase separation (LLPS). It plays important roles in cell homeostasis through its internal thermodynamic changes. Reversible nucleolar transitions between coalescence and dispersion are dependent on the concentrations, conformations, and interactions of its molecular liquid droplet-forming components, including DNA, RNA, and protein. The liquid droplet-like properties of the nucleolus enable its diverse dynamic roles. The liquid droplet formation mechanism, by which the nucleolus is sequestered from the nucleoplasm despite the absence of a membrane, explains a number of complex nucleolar functions.
Collapse
Affiliation(s)
- Mitsuhiro Yoneda
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852-8523, JAPAN.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, JAPAN
| | - Takeya Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852-8523, JAPAN.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, JAPAN
| | - Naoko Hattori
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852-8523, JAPAN.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, JAPAN
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852-8523, JAPAN.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, JAPAN
| |
Collapse
|
9
|
Lou J, Yu S, Feng L, Guo X, Wang M, Branco AT, Li T, Lemos B. Environmentally induced ribosomal DNA (rDNA) instability in human cells and populations exposed to hexavalent chromium [Cr (VI)]. ENVIRONMENT INTERNATIONAL 2021; 153:106525. [PMID: 33774497 PMCID: PMC8477438 DOI: 10.1016/j.envint.2021.106525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 05/12/2023]
Abstract
Hexavalent Chromium [Cr (VI)] is an established toxicant, carcinogen, and a significant source of public health concern. The multicopy ribosomal DNA (rDNA) array is mechanistically linked to aging and cancer, is the most evolutionarily conserved segment of the human genome, and gives origin to nucleolus, a nuclear organelle where ribosomes are assembled. Here we show that exposure to Cr (VI) induces instability in the rDNA, triggering cycles of rapid, specific, and transient amplification and contraction of the array in human cells. The dynamic of environmentally responsive rDNA copy number (CN) amplification and contraction occurs at doses to which millions of individuals are regularly exposed. Finally, analyses of human populations occupationally exposed to Cr (VI) indicate that environmental exposure history and drinking habits but not age shape extensive naturally occurring rDNA copy number variation. Our observations identify a novel pathway of response to hexavalent chromium exposure and raise the prospect that a suite of environmental determinants of rDNA copy number remain to be discovered.
Collapse
Affiliation(s)
- Jianlin Lou
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Shoukai Yu
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Xinnian Guo
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Meng Wang
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Alan T Branco
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tao Li
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
10
|
Law ASY, Lee LCC, Lo KKW, Yam VWW. Aggregation and Supramolecular Self-Assembly of Low-Energy Red Luminescent Alkynylplatinum(II) Complexes for RNA Detection, Nucleolus Imaging, and RNA Synthesis Inhibitor Screening. J Am Chem Soc 2021; 143:5396-5405. [PMID: 33813827 DOI: 10.1021/jacs.0c13327] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As an important nuclear substructure, the nucleolus has received increasing attention because of its significant functions in the transcription and processing of ribosomal RNA in eukaryotic cells. In this work, we introduce a proof-of-concept luminescence assay to detect RNA and to accomplish nucleolus imaging with the use of the supramolecular self-assembly of platinum(II) complexes. Noncovalent interactions between platinum(II) complexes and RNA can be induced by the introduction of a guanidinium group into the complexes, and accordingly, a high RNA affinity can be achieved. Interestingly, the aggregation affinities of platinum(II) complexes enable them to display remarkable luminescence turn-on upon RNA binding, which is a result of the strengthening of noncovalent Pt(II)···Pt(II) and π-π stacking interactions. The complexes exhibit not only intriguing spectroscopic changes and luminescence enhancement after RNA binding but also specific nucleolus imaging in cells. As compared to fluorescent dyes, the low-energy red luminescence and large Stokes shifts of platinum(II) complexes afford a high signal-to-background autofluorescence ratio in nucleolus imaging. Additional properties, including long phosphorescence lifetimes and low cytotoxicity, have endowed the platinum(II) complexes with the potential for biological applications. Also, platinum(II) complexes have been adopted to monitor the dynamics of the nucleolus induced by the addition of RNA synthesis inhibitors. This capability allows the screening of inhibitors and can be advantageous for the development of antineoplastic agents. This work provides a novel strategy for exploring the application of platinum(II) complex-based cell imaging agents based on the mechanism of supramolecular self-assembly. It is envisaged that platinum(II) complexes can be utilized as valuable probes because of the aforementioned appealing advantages.
Collapse
Affiliation(s)
- Angela Sin-Yee Law
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| |
Collapse
|
11
|
Lu JY, Shao W, Chang L, Yin Y, Li T, Zhang H, Hong Y, Percharde M, Guo L, Wu Z, Liu L, Liu W, Yan P, Ramalho-Santos M, Sun Y, Shen X. Genomic Repeats Categorize Genes with Distinct Functions for Orchestrated Regulation. Cell Rep 2020; 30:3296-3311.e5. [PMID: 32160538 PMCID: PMC7195444 DOI: 10.1016/j.celrep.2020.02.048] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 11/06/2022] Open
Abstract
Repetitive elements are abundantly distributed in mammalian genomes. Here, we reveal a striking association between repeat subtypes and gene function. SINE, L1, and low-complexity repeats demarcate distinct functional categories of genes and may dictate the time and level of gene expression by providing binding sites for different regulatory proteins. Importantly, imaging and sequencing analysis show that L1 repeats sequester a large set of genes with specialized functions in nucleolus- and lamina-associated inactive domains that are depleted of SINE repeats. In addition, L1 transcripts bind extensively to its DNA in embryonic stem cells (ESCs). Depletion of L1 RNA in ESCs leads to relocation of L1-enriched chromosomal segments from inactive domains to the nuclear interior and de-repression of L1-associated genes. These results demonstrate a role of L1 DNA and RNA in gene silencing and suggest a general theme of genomic repeats in orchestrating the function, regulation, and expression of their host genes.
Collapse
Affiliation(s)
- J Yuyang Lu
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wen Shao
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yafei Yin
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Zhang
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Michelle Percharde
- MRC London Institute of Medical Sciences (LMS), London W120NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W120NN, UK
| | - Lerui Guo
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongyang Wu
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lichao Liu
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Liu
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pixi Yan
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xiaohua Shen
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Abstract
Selectively targeting the cell nucleolus remains a challenge. Here, we report the first case in which d-peptides form membraneless molecular condensates with RNA for targeting cell nucleolus. A d-peptide derivative, enriched with lysine and hydrophobic residues, self-assembles to form nanoparticles, which enter cells through clathrin-dependent endocytosis and mainly accumulate at the cell nucleolus. A structural analogue of the d-peptide reveals that the particle morphology of the assemblies, which depends on the side chain modification, favors the cellular uptake. In contrast to those of the d-peptide, the assemblies of the corresponding l-enantiomer largely localize in cell lysosomes. Preliminary mechanism study suggests that the d-peptide nanoparticles interact with RNA to form membraneless condensates in the nucleolus, which further induces DNA damage and results in cell death. This work illustrates a new strategy for rationally designing supramolecular assemblies of d-peptides for targeting subcellular organelles.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| |
Collapse
|
13
|
Fluorescence microscopy image classification of 2D HeLa cells based on the CapsNet neural network. Med Biol Eng Comput 2019; 57:1187-1198. [PMID: 30687900 DOI: 10.1007/s11517-018-01946-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
The development of computer technology now allows the quick and efficient automatic fluorescence microscopy generation of a large number of images of proteins in specific subcellular compartments using fluorescence microscopy. Digital image processing and pattern recognition technology can easily classify these images, identify the subcellular location of proteins, and subsequently carry out related work such as analysis and investigation of protein function. Here, based on a fluorescence microscopy 2D image dataset of HeLa cells, the CapsNet network model was used to classify ten types of images of proteins in different subcellular compartments. Capsules in the CapsNet network model were trained to capture the possibility of certain features and variants rather than to capture the characteristics of a specific variant. The capsule at the same level predicted the instantiation parameters of the higher level capsule through the transformation matrix, and the higher level capsule became active when multiple dynamic routing forecasts were consistent. Experiments show that using the CapsNet network model to classify 2D HeLa datasets can achieve higher accuracy. Graphical abstract ᅟ.
Collapse
|
14
|
Review of the "X chromosome-nucleolus nexus" hypothesis of autoimmune diseases with an update explaining disruption of the nucleolus. Immunol Res 2018; 66:790-799. [PMID: 30515730 DOI: 10.1007/s12026-018-9044-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The "X chromosome-nucleolus nexus" hypothesis provides a comprehensive explanation of how autoantibodies can develop following cellular stress. The hypothesis connects autoimmune diseases with the impact of environmental factors, such as viruses, through epigenetic disruption. The inactive X chromosome, a major epigenetic structure in the female cell's nucleus, is a key component of the hypothesis. The inactive X is vulnerable to disruption due to the following: (1) its heavy requirements for methylation to suppress gene expression, (2) its peripheral location at the nuclear envelope, (3) its late replication timing, and (4) its frequently observed close association with the nucleolus. The dynamic nucleolus can expand dramatically in response to cellular stress and this could disrupt the neighboring inactive X, particularly during replication, leading to expression from previously suppressed chromatin. Especially vulnerable at the surface of the inactive X chromosome would be genes and elements from Xp22 to the terminus of the short arm of the X. Expression of these genes and elements could interfere with nucleolar integrity, nucleolar efficiency, and future nucleolar stress response, and even lead to fragmentation of the nucleolus. Ribonucleoprotein complexes assembled in the nucleolus could be left in incomplete states and inappropriate conformations, and/or contain viral components when the nucleolus is disrupted and these abnormal complexes could initiate an autoimmune response when exposed to the immune system. Epitope spreading could then lead to an autoimmune reaction to the more abundant normal complexes. Many autoantigens reported in lupus and other autoimmune diseases are, at least transiently, nucleolar components.
Collapse
|
15
|
Chen W, Yan Z, Li S, Huang N, Huang X, Zhang J, Zhong S. RNAs as Proximity-Labeling Media for Identifying Nuclear Speckle Positions Relative to the Genome. iScience 2018; 4:204-215. [PMID: 30240742 PMCID: PMC6146591 DOI: 10.1016/j.isci.2018.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
Abstract
It remains challenging to identify all parts of the nuclear genome that are in proximity to nuclear speckles, due to physical separation between the nuclear speckle cores and chromatin. We hypothesized that noncoding RNAs including small nuclear RNA (snRNAs) and Malat1, which accumulate at the periphery of nuclear speckles (nsaRNA [nuclear speckle-associated RNA]), may extend to sufficient proximity to the genome. Leveraging a transcriptome-genome interaction assay (mapping of RNA-genome interactions [MARGI]), we identified clusters of nsaRNA-interacting genomic sequences (nsaPeaks). Posttranscriptional pre-mRNAs, which also accumulate to nuclear speckles, exhibited proximity to nsaPeaks but rarely to other genomic regions. Our combined DNA fluorescence in situ hybridization and immunofluorescence analysis in 182 single cells revealed a 3-fold increase in odds for nuclear speckles to localize near an nsaPeak than its neighboring genomic sequence. These data suggest a model that nsaRNAs are located in sufficient proximity to the nuclear genome and leave identifiable genomic footprints, thus revealing the parts of genome proximal to nuclear speckles. MARGI captures interactions of nuclear speckle-associated RNAs (nsaRNA) and DNA nsaRNA-interacting genomic sequences were clustered (nsaPeaks) in the genome Posttranscriptional pre-mRNAs and CDK9 proteins exhibited proximity to nsaPeaks Single-cell images confirmed proximity of nuclear speckles to an nsaPeak
Collapse
Affiliation(s)
- Weizhong Chen
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Zhangming Yan
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Simin Li
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Norman Huang
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Xuerui Huang
- Division of Biological Sciences, University of California San Diego, San Diego, CA 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA.
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
16
|
Waminal NE, Pellerin RJ, Kim NS, Jayakodi M, Park JY, Yang TJ, Kim HH. Rapid and Efficient FISH using Pre-Labeled Oligomer Probes. Sci Rep 2018; 8:8224. [PMID: 29844509 PMCID: PMC5974128 DOI: 10.1038/s41598-018-26667-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/17/2018] [Indexed: 12/29/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is used to visualize the distribution of DNA elements within a genome. Conventional methods for FISH take 1-2 days. Here, we developed a simplified, rapid FISH technique using pre-labeled oligonucleotide probes (PLOPs) and tested the procedure using 18 PLOPs from 45S and 5S rDNA, Arabidopsis-type telomere, and newly-identified Panax ginseng-specific tandem repeats. The 16 developed rDNA PLOPs can be universally applied to plants and animals. The telomere PLOPs can be utilized in most plants with Arabidopsis-type telomeres. The ginseng-specific PLOP can be used to distinguish P. ginseng from related Panax species. Differential labeling of PLOPs allowed us to simultaneously visualize different target loci while reducing the FISH hybridization time from ~16 h to 5 min. PLOP-FISH is efficient, reliable, and rapid, making it ideal for routine analysis, especially of newly sequenced genomes using either universal or specific targets, such as novel tandem repeats identified from whole-genome sequencing data.
Collapse
Affiliation(s)
- Nomar Espinosa Waminal
- Chromosome Research Institute, Department of Life Science, Sahmyook University, Seoul, 01795, Korea.,Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Remnyl Joyce Pellerin
- Chromosome Research Institute, Department of Life Science, Sahmyook University, Seoul, 01795, Korea
| | - Nam-Soo Kim
- Department of Molecular Biosciences, Kangwon National University, Chuncheon, 24341, Korea
| | - Murukarthick Jayakodi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Hyun Hee Kim
- Chromosome Research Institute, Department of Life Science, Sahmyook University, Seoul, 01795, Korea.
| |
Collapse
|
17
|
Yu S, Lemos B. The long-range interaction map of ribosomal DNA arrays. PLoS Genet 2018; 14:e1007258. [PMID: 29570716 PMCID: PMC5865718 DOI: 10.1371/journal.pgen.1007258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 02/15/2018] [Indexed: 11/28/2022] Open
Abstract
The repeated rDNA array gives rise to the nucleolus, an organelle that is central to cellular processes as varied as stress response, cell cycle regulation, RNA modification, cell metabolism, and genome stability. The rDNA array is also responsible for the production of more than 70% of all cellular RNAs (the ribosomal RNAs). The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1 while the 45S rDNA arrays reside on the short arm of five human acrocentric chromosomes. These critical genome elements have remained unassembled and have been excluded from all Hi-C analyses to date. Here we built the first high resolution map of 5S and 45S rDNA array contacts with the rest of the genome combining over 15 billion Hi-C reads from several experiments. The data enabled sufficiently high coverage to map rDNA-genome interactions with 1MB resolution and identify rDNA-gene contacts. The map showed that the 5S and 45S arrays display preferential contact at common sites along the genome but are not themselves sufficiently close to yield 5S-45S Hi-C contacts. Ribosomal DNA contacts are enriched in segments of closed, repressed, and late replicating chromatin, as well as CTCF binding sites. Finally, we identified functional categories whose dispersed genes coalesced in proximity to the rDNA arrays or instead avoided proximity with the rDNA arrays. The observations further our understanding of the spatial localization of rDNA arrays and their contribution to the architecture of the cell nucleus.
Collapse
Affiliation(s)
- Shoukai Yu
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States of America
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States of America
| |
Collapse
|
18
|
Politz JCR, Scalzo D, Groudine M. The redundancy of the mammalian heterochromatic compartment. Curr Opin Genet Dev 2015; 37:1-8. [PMID: 26706451 DOI: 10.1016/j.gde.2015.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/05/2023]
Abstract
Two chromatin compartments are present in most mammalian cells; the first contains primarily euchromatic, early replicating chromatin and the second, primarily late-replicating heterochromatin, which is the subject of this review. Heterochromatin is concentrated in three intranuclear regions: the nuclear periphery, the perinucleolar space and in pericentromeric bodies. We review recent evidence demonstrating that the heterochromatic compartment is critically involved in global nuclear organization and the maintenance of genome stability, and discuss models regarding how this compartment is formed and maintained. We also evaluate our understanding of how heterochromatic sequences (herein named heterochromatic associated regions (HADs)) might be tethered within these regions and review experiments that reveal the stochastic nature of individual HAD positioning within the compartment. These investigations suggest a substantial level of functional redundancy within the heterochromatic compartment.
Collapse
Affiliation(s)
| | - David Scalzo
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mark Groudine
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
| |
Collapse
|
19
|
Huang J, Zhao Y, Bai D, Shiraigol W, Li B, Yang L, Wu J, Bao W, Ren X, Jin B, Zhao Q, Li A, Bao S, Bao W, Xing Z, An A, Gao Y, Wei R, Bao Y, Bao T, Han H, Bai H, Bao Y, Zhang Y, Daidiikhuu D, Zhao W, Liu S, Ding J, Ye W, Ding F, Sun Z, Shi Y, Zhang Y, Meng H, Dugarjaviin M. Donkey genome and insight into the imprinting of fast karyotype evolution. Sci Rep 2015; 5:14106. [PMID: 26373886 PMCID: PMC4571621 DOI: 10.1038/srep14106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
The donkey, like the horse, is a promising model for exploring karyotypic instability. We report the de novo whole-genome assemblies of the donkey and the Asiatic wild ass. Our results reflect the distinct characteristics of donkeys, including more effective energy metabolism and better immunity than horses. The donkey shows a steady demographic trajectory. We detected abundant satellite sequences in some inactive centromere regions but not in neocentromere regions, while ribosomal RNAs frequently emerged in neocentromere regions but not in the obsolete centromere regions. Expanded miRNA families and five newly discovered miRNA target genes involved in meiosis may be associated with fast karyotype evolution. APC/C, controlling sister chromatid segregation, cytokinesis, and the establishment of the G1 cell cycle phase were identified by analysis of miRNA targets and rapidly evolving genes.
Collapse
Affiliation(s)
- Jinlong Huang
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Yiping Zhao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Dongyi Bai
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Wunierfu Shiraigol
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Bei Li
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Lihua Yang
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Jing Wu
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Wuyundalai Bao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Xiujuan Ren
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Burenqiqige Jin
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Qinan Zhao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Anaer Li
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Sarula Bao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Wuyingga Bao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Zhencun Xing
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Aoruga An
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Yahan Gao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Ruiyuan Wei
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Yirugeletu Bao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Taoketao Bao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Haige Han
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Haitang Bai
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Yanqing Bao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Yuhong Zhang
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Dorjsuren Daidiikhuu
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| | - Wenjing Zhao
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Shuyun Liu
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jinmei Ding
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Weixing Ye
- Shanghai Personal Biotechnology Limited Company, 218 Yindu Road, Shanghai 200231, P. R. China
| | - Fangmei Ding
- Shanghai Personal Biotechnology Limited Company, 218 Yindu Road, Shanghai 200231, P. R. China
| | - Zikui Sun
- Shanghai Personal Biotechnology Limited Company, 218 Yindu Road, Shanghai 200231, P. R. China
| | - Yixiang Shi
- Shanghai Personal Biotechnology Limited Company, 218 Yindu Road, Shanghai 200231, P. R. China
| | - Yan Zhang
- SRA Inc. 6003 Executive Blvd. Suite 400, Rockville, MD20852, USA
| | - He Meng
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Manglai Dugarjaviin
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, P. R. China
| |
Collapse
|
20
|
Jin DJ, Cagliero C, Martin CM, Izard J, Zhou YN. The dynamic nature and territory of transcriptional machinery in the bacterial chromosome. Front Microbiol 2015; 6:497. [PMID: 26052320 PMCID: PMC4440401 DOI: 10.3389/fmicb.2015.00497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/06/2015] [Indexed: 11/16/2022] Open
Abstract
Our knowledge of the regulation of genes involved in bacterial growth and stress responses is extensive; however, we have only recently begun to understand how environmental cues influence the dynamic, three-dimensional distribution of RNA polymerase (RNAP) in Escherichia coli on the level of single cell, using wide-field fluorescence microscopy and state-of-the-art imaging techniques. Live-cell imaging using either an agarose-embedding procedure or a microfluidic system further underscores the dynamic nature of the distribution of RNAP in response to changes in the environment and highlights the challenges in the study. A general agreement between live-cell and fixed-cell images has validated the formaldehyde-fixing procedure, which is a technical breakthrough in the study of the cell biology of RNAP. In this review we use a systems biology perspective to summarize the advances in the cell biology of RNAP in E. coli, including the discoveries of the bacterial nucleolus, the spatial compartmentalization of the transcription machinery at the periphery of the nucleoid, and the segregation of the chromosome territories for the two major cellular functions of transcription and replication in fast-growing cells. Our understanding of the coupling of transcription and bacterial chromosome (or nucleoid) structure is also summarized. Using E. coli as a simple model system, co-imaging of RNAP with DNA and other factors during growth and stress responses will continue to be a useful tool for studying bacterial growth and adaptation in changing environment.
Collapse
Affiliation(s)
- Ding J Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| | - Cedric Cagliero
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| | - Carmen M Martin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| | - Jerome Izard
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| | - Yan N Zhou
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| |
Collapse
|