1
|
Tejero Pérez A, Kapravelou G, Porres Foulquie JM, López Jurado Romero de la Cruz M, Martínez Martínez R. Potential benefits of microalgae intake against metabolic diseases: beyond spirulina-a systematic review of animal studies. Nutr Rev 2023:nuad098. [PMID: 37643736 DOI: 10.1093/nutrit/nuad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
CONTEXT Microalgae are a diverse source of bioactive molecules, such as polyphenols, carotenoids, and omega-3 fatty acids, with beneficial properties in biomarkers of metabolic diseases. Unlike the rest of the microalgae genera, Arthrospira sp., commonly called spirulina, has been widely studied. OBJECTIVE This review aims to describe the current knowledge about microalgae, besides spirulina, focusing on their beneficial properties against metabolic diseases. DATA SOURCES A systematic research of MEDLINE (via PubMed), Cochrane, and Scopus databases was conducted to identify relevant studies published after January 2012. In vivo animal studies including microalgae consumption, except for spirulina, that significantly improved altered biomarkers related to metabolic diseases were included. These biomarkers included body weight/composition, glucose metabolism, lipid metabolism, oxidative damage, inflammation markers, and gut microbiota. DATA EXTRACTION After the literature search and the implementation of inclusion and exclusion criteria, 37 studies were included in the revision out of the 132 results originally obtained after the application of the equation on the different databases. DATA ANALYSIS Data containing 15 microalgae genera were included reporting on a wide range of beneficial results at different levels, including a decrease in body weight and changes in plasma levels of glucose and lipoproteins due to molecular alterations such as those related to gene expression regulation. The most reported beneficial effects were related to gut microbiota and inflammation followed by lipid and glucose metabolism and body weight/composition. CONCLUSIONS Microalgae intake improved different altered biomarkers due to metabolic diseases and seem to have potential in the design of enriched foodstuffs or novel nutraceuticals. Nevertheless, to advance to clinical trials, more thorough/detailed studies should be performed on some of the microalgae genera included in this review to collect more information on their molecular mechanisms of action.
Collapse
Affiliation(s)
- Adrian Tejero Pérez
- Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Faculty of Medicine, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Garyfallia Kapravelou
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Jesús María Porres Foulquie
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - María López Jurado Romero de la Cruz
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Rosario Martínez Martínez
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| |
Collapse
|
2
|
Arjsri P, Mapoung S, Semmarath W, Srisawad K, Tuntiwechapikul W, Yodkeeree S, Dejkriengkraikul P. Pyrogallol from Spirogyra neglecta Inhibits Proliferation and Promotes Apoptosis in Castration-Resistant Prostate Cancer Cells via Modulating Akt/GSK-3 β/ β-catenin Signaling Pathway. Int J Mol Sci 2023; 24:ijms24076452. [PMID: 37047425 PMCID: PMC10094533 DOI: 10.3390/ijms24076452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an advanced form of prostate cancer associated with poor survival rates. The high proliferation and metastasis rates have made CRPC one of the most challenging types of cancer for medical practitioners and researchers. In this study, the anti-cancer properties and inhibition of CRPC progression by S. neglecta extract and its active constituents were determined using two CRPC cell lines, DU145 and PC3. The ethyl acetate fraction of S. neglecta (SnEA) was obtained using a solvent-partitioned extraction technique. The active constituents of SnEA were then determined using the HPLC technique, which showed that SnEA mainly contained syringic acid, pyrogallol, and p-coumaric acid phenolic compounds. After the determination of cytotoxic properties using the SRB assay, it was found that pyrogallol, but not the other two major compounds of SnEA, displayed promising anti-cancer properties in both CRPC cell lines. SnEA and pyrogallol were then further investigated for their anti-proliferation and apoptotic induction properties using propidium iodide and Annexin V staining. The results showed that SnEA and pyrogallol inhibited both DU145 and PC3 cell proliferation by inducing cell cycle arrest in the G0/G1 phase and significantly decreased the expression of cell cycle regulator proteins (cyclin D1, cyclin E1, CDK-2, and CDK-4, p < 0.001). SnEA and pyrogallol treatments also promoted apoptosis in both types of CRPC cells through significantly downregulating anti-apoptotic proteins (survivin, Bcl-2, and Bcl-xl, p < 0.001) and upregulating apoptotic proteins (cleaved-caspase-9, cleaved-caspase-3 and cleaved-PARP-1, p < 0.001). Mechanistic study demonstrated that SnEA and pyrogallol inactivated the Akt signaling pathway leading to enhancement of the active form of GSK-3β in CRPC cell lines. Therefore, the phosphorylation of β-catenin was increased, which caused degradation of the protein, resulting in a downregulation of β-catenin (unphosphorylated form) transcriptional factor activity. The current results reflect the potential impact of S. neglecta extract and pyrogallol on the management of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sariya Mapoung
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warathit Semmarath
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Akkraratchkumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wirote Tuntiwechapikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Mirahmad M, Mohseni S, Tabatabaei-Malazy O, Esmaeili F, Alatab S, Bahramsoltani R, Ejtahed HS, Qulami H, Bitarafan Z, Arjmand B, Nazeri E. Antioxidative hypoglycemic herbal medicines with in vivo and in vitro activity against C-reactive protein; a systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154615. [PMID: 36610136 DOI: 10.1016/j.phymed.2022.154615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Inflammation is a double-edged sword in the pathophysiology of chronic diseases, such as type 2 diabetes mellitus (T2DM). The global rise in the prevalence of T2DM in one hand, and poor disease control with currently-available treatments on the other hand, along with an increased tendency towards the use of natural products make scientists seek herbal medicines for the management of diabetes and its complications by reducing C-reactive protein (CRP) as an inflammatory marker. PURPOSE To systematically review the literature to identify the efficacy of various medicinal plants with antioxidative and anti-inflammatory properties considering their effect on CRP in animal models of T2DM. STUDY DESIGN systematic review. METHODS Electronic databases including PubMed, Scopus, Web of Science and Cochran Library were searched using the search terms "herbal medicine", "diabetes", "c-reactive protein", "antioxidants" till August 2021. The quality of evidence was assessed using the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE's) tool. The study protocol was registered in PROSPERO with an ID number CRD42020207190. A manual search to detect any articles not found in the databases was also made. The identified studies were then critically reviewed and relevant data were extracted and summarized. RESULTS Among total of 9904 primarily-retrieved articles, twenty-three experimental studies were finally included. Our data indicated that numerous herbal medicines, compared to placebo or hypoglycemic medications, are effective in treatment of diabetes and its complications through decreasing CRP concentrations and oxidative stresses levels. Medicinal plants including Psidium guajava L., Punica granatum L., Ginkgo biloba L., Punica granatum L., Dianthus superbusn L.. Moreover, Eichhornia crassipes (Mart.) Solms, Curcuma longa L., Azadirachta indica A. Juss., Morus alba L., and Ficus racemosa L. demonstrated potential neuroprotective effects in animal models of diabetes. CONCLUSION Hypoglycemic medicinal plants discussed in this review seem to be promising regulators of CRP, and oxidative stress. Thus, these plants are suitable candidates for management of diabetes' complications. Nevertheless, further high-quality in vivo studies and clinical trials are required to confirm these effects.
Collapse
Affiliation(s)
- Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Mohseni
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sudabeh Alatab
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Husseyn Qulami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Bitarafan
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, As 1433, Norway
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Bocanegra A, Macho-González A, Garcimartín A, Benedí J, Sánchez-Muniz FJ. Whole Alga, Algal Extracts, and Compounds as Ingredients of Functional Foods: Composition and Action Mechanism Relationships in the Prevention and Treatment of Type-2 Diabetes Mellitus. Int J Mol Sci 2021; 22:3816. [PMID: 33917044 PMCID: PMC8067684 DOI: 10.3390/ijms22083816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is a major systemic disease which involves impaired pancreatic function and currently affects half a billion people worldwide. Diet is considered the cornerstone to reduce incidence and prevalence of this disease. Algae contains fiber, polyphenols, ω-3 PUFAs, and bioactive molecules with potential antidiabetic activity. This review delves into the applications of algae and their components in T2DM, as well as to ascertain the mechanism involved (e.g., glucose absorption, lipids metabolism, antioxidant properties, etc.). PubMed, and Google Scholar databases were used. Papers in which whole alga, algal extracts, or their isolated compounds were studied in in vitro conditions, T2DM experimental models, and humans were selected and discussed. This review also focuses on meat matrices or protein concentrate-based products in which different types of alga were included, aimed to modulate carbohydrate digestion and absorption, blood glucose, gastrointestinal neurohormones secretion, glycosylation products, and insulin resistance. As microbiota dysbiosis in T2DM and metabolic alterations in different organs are related, the review also delves on the effects of several bioactive algal compounds on the colon/microbiota-liver-pancreas-brain axis. As the responses to therapeutic diets vary dramatically among individuals due to genetic components, it seems a priority to identify major gene polymorphisms affecting potential positive effects of algal compounds on T2DM treatment.
Collapse
Affiliation(s)
- Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
| | - Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Francisco José Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
5
|
Nacer W, Baba Ahmed FZ, Merzouk H, Benyagoub O, Bouanane S. Evaluation of the anti-inflammatory and antioxidant effects of the microalgae Nannochloropsis gaditana in streptozotocin-induced diabetic rats. J Diabetes Metab Disord 2020; 19:1483-1490. [PMID: 33553035 PMCID: PMC7843831 DOI: 10.1007/s40200-020-00681-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE This study aims to evaluate the anti-inflammatory and antioxidant effects of N. gaditana on streptozotocin (STZ)-induced diabetes mellitus in Wistar rats. METHODS Diabetes was induced in male Wistar rats by single intraperitoneal injection of STZ (45 mg/kg). Male rats were fed on control diet supplemented or not with N. gaditana (10%) for a period of 2 months. At the end of the experiment, biochemical parameters and oxidant/antioxidant markers in liver and pancreas tissues, as well as mitochondria isolated from liver of rats, were determined. RESULTS It was notice that levels of glucose, glycated hemoglobin (HbA1c), lipid profile, kidney functions and liver enzymes in addition to markers of the inflammatory reactions interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) increased significantly (P < 0.05) in diabetic rats. Moreover, undesirable alterations of oxidative stress markers of tissue and mitochondria isolated from the liver were noted in these rats. N. gaditana supplementation was shown effective in lowering the levels of glucose, HbA1c and improving the renal and hepatic function and also in attenuating the oxidative stress and inflammation in diabetic rats. CONCLUSION N. gaditana possesses antioxidant properties that might have beneficial effect in treatment of diabetes.
Collapse
Affiliation(s)
- Wassila Nacer
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, 13000 Tlemcen, Algeria
| | - Fatima Zohra Baba Ahmed
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, 13000 Tlemcen, Algeria
| | - Hafida Merzouk
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, 13000 Tlemcen, Algeria
| | - Ouahiba Benyagoub
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, 13000 Tlemcen, Algeria
| | - Samira Bouanane
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, 13000 Tlemcen, Algeria
| |
Collapse
|
6
|
Al-Jaghthmi OHA, Zeid IELDMELAA. Hypoglycemic and hepatoprotective effect of Rhizophora mucronata and Avicennia marina against streptozotocin-induced diabetes in male rats. J Adv Vet Anim Res 2020; 7:177-185. [PMID: 32219125 PMCID: PMC7096112 DOI: 10.5455/javar.2020.g408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives: Aqueous extracts of Rhizophora mucronata and Avicennia marina leaves were investigated for their hepatoprotective potential in diabetic rats. Materials and methods: One hundred twenty male albino rats were randomly assigned to eight equal groups (n = 15). The first group (control) comprised normal healthy rats, while the second to fifth groups were intraperitoneally injected with a single dose of streptozotocin (STZ) [60 mg/kg body weight (BW)] for induction of diabetes. Group 2 was kept as positive diabetic control, while groups 3–5 were orally treated with aqueous extracts of R. mucronata (400 mg/kg BW), A. marina (400 mg/kg BW) and with a combination of ½ a dose of the two plants, respectively, for six weeks. Groups 6–8 were non-diabetic rats that orally received aqueous extracts of R. mucronata (400 mg/kg BW), A. marina (400 mg/kg BW), and a combination of ½ a dose of the two plants, respectively, for 6 weeks. Results: STZ-induced diabetic rats showed a significant reduction in serum glucose and liver enzymes, increased serum insulin, Homeostasis Model Assessment of β-cells (HOMA-β), and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR). Histopathological and immunohistochemical examinations of the liver revealed improved pathologic criteria in the plant extract treated diabetic rats compared with the remarkable changes which had been seen in STZ-induced diabetic rats. Conclusion: This study suggests that the aqueous extract of R. mucronata or its combination with A. marina showed potent hypoglycemic and hepatoprotective effects for liver dysfunction, as well as histopathological and immunohistochemical changes in the liver of STZ-induced diabetic rats.
Collapse
Affiliation(s)
| | - Isam ELDin Mohamed ELAmin Abu Zeid
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Lu CH, Shen CY, Hsieh DJY, Lee CY, Chang RL, Ju DT, Pai PY, Viswanadha VP, Ou HC, Huang CY. Deep ocean minerals inhibit IL-6 and IGFIIR hypertrophic signaling pathways to attenuate diabetes-induced hypertrophy in rat hearts. J Appl Physiol (1985) 2019; 127:356-364. [PMID: 31095463 DOI: 10.1152/japplphysiol.00184.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We previously reported that deep sea water (DSW) prolongs the life span of streptozotocin (STZ)-induced diabetic rats by the compensatory augmentation of the insulin like growth factor (IGF)-I survival signaling and inhibition of apoptosis. Here, we investigated the effects of DSW on cardiac hypertrophy in diabetic rats. Cardiac hypertrophy was induced in rats by using STZ (65 mg/kg) administered via IP injection. DSW was prepared by mixing DSW mineral extracts and desalinated water. Different dosages of DSW-1X (equivalent to 37 mg Mg2+·kg-1·day-1), 2X (equivalent to 74 mg Mg2+·kg-1·day-1) and 3X (equivalent to 111 mg Mg2+·kg-1·day-1) were administered to the rats through gavage for 4 wk. Cardiac hypertrophy was evaluated by the heart weight-to-body weight ratio and the cardiac tissue cross-sectional area after hematoxylin and eosin staining. The protein levels of the cardiac hypertrophy signaling molecules were determined by Western blot. Our results showed that the suppressive effects of the DSW treatment on STZ-induced cardiac hypertrophy were comparable to those of MgSO4 administration and that the hypertrophic marker brain natriuretic peptide (BNP) was decreased by DSW. In addition, DSW attenuated both the eccentric hypertrophy signaling pathway, IL-6-MEK-STAT3, and the concentric signaling pathway, IGF-II-PKCα-CaMKII, in DM rat hearts. The cardiac hypertrophy-associated activation of extracellular signal-regulated kinase (ERK) and the upregulation of the transcription factor GATA binding protein 4 (GATA4) were also negated by treatment with DSW. The results from this study suggest that DSW could be a potential therapeutic agent for the prevention and treatment of diabetic cardiac hypertrophy.NEW & NOTEWORTHY Deep sea water, containing high levels of minerals, improve cardiac hypertrophy in diabetic rats through attenuating the eccentric signaling pathway, IL-6-MEK5-STAT3, and concentric signaling pathway, IGF2-PKCα-CaMKII. The results from this study suggest that deep sea water could be a potential therapeutic agent for the prevention and treatment of diabetic cardiac hypertrophy.
Collapse
Affiliation(s)
- Chieh-Hsiang Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Yu Lee
- Department of Cardiology, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Ruey-Lin Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Ying Pai
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | | | - Hsiu-Chung Ou
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.,Cardiovascular and Mitochondrial Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| |
Collapse
|
8
|
Nasirian F, Sarir H, Moradi-kor N. Antihyperglycemic and antihyperlipidemic activities of Nannochloropsis oculata microalgae in Streptozotocin-induced diabetic rats. Biomol Concepts 2019; 10:37-43. [DOI: 10.1515/bmc-2019-0004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/02/2019] [Indexed: 01/09/2023] Open
Abstract
AbstractBackgroundIt is well documented that biologically active components of microalgae can be utilized for treatment of different diseases. This study was conducted to evaluate the antihyperglycemic and antihyperlipidemic activities and weight control of Nannochloropsis oculata microalgae (NOM) in Streptozotocin-induced diabetic male rats.MethodsDiabetes was induced by intraperitoneal administration of Streptozotocin (55 mg/kg). Healthy and diabetic rats were divided in to six groups. Healthy and diabetic rats orally received distilled water or NOM (10 and 20 mg/kg) for three weeks.ResultsOral administration of NOM to diabetic rats significantly reduced the serum concentrations of glucose, cholesterol, triglycerides, LDL and increased the serum concentration of insulin and HDL-C (P<0.05). Treatment with NOM had no significant effect on blood parameters in healthy rats (P>0.05). Also, NOM maintained body weight in diabetic rats (P<0.05).ConclusionIt can be concluded that NOM has antihyperglycemic and antihyperlipidemic activities in diabetic rats.
Collapse
Affiliation(s)
- Fariba Nasirian
- Department of Animal Sciences, University of Birjand, Birjand, Iran
| | - Hadi Sarir
- Department of Animal Sciences, University of Birjand, Birjand, Iran
| | | |
Collapse
|
9
|
Davoodi M, Karimooy FN, Budde T, Ortega-Martinez S, Moradi-Kor N. Beneficial effects of Japanese sake yeast supplement on biochemical, antioxidant, and anti-inflammatory factors in streptozotocin-induced diabetic rats. Diabetes Metab Syndr Obes 2019; 12:1667-1673. [PMID: 31564934 PMCID: PMC6730545 DOI: 10.2147/dmso.s220181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/09/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Using chemical agents in the treatment of diabetes mellitus type 2 may have some limitations due to frequent side effects. Some novel and natural agents may be promising alternatives in this case. This study was designed to evaluate the effects of oral Japanese sake yeast supplement, as a novel agent, on biochemical antioxidant and anti-inflammatory parameters in experimentally induced diabetic rats. MATERIALS AND METHODS After inducing diabetes (55 mg/kg intraperitoneal injection of streptozotocin), 120 male adult Wistar rats were randomly divided into 5 groups and each group received 0 (control), 15, 30, or 45 mg/kg of sake yeast or was considered a nondiabetic control. Then, the serum levels of tumor necrosis factor-α, IL-6, C-reactive protein, malondialdehyde, glutathione, total antioxidant status, glucose, cholesterol, triglycerides, and insulin were evaluated and compared to baseline measures. RESULTS The results showed that oral administration of sake yeast at different concentrations reduced levels of malondialdehyde, glucose, cholesterol, and triglycerides and increased levels of insulin, glutathione, and total antioxidants (P<0.05). The best responses were observed in the nondiabetic control group. CONCLUSION Sake yeast supplement may be useful as a novel agent in the treatment of diabetes.
Collapse
Affiliation(s)
- Marzieh Davoodi
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Faezeh Nemati Karimooy
- Department of Neuroscience, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-University, Münster, Germany
| | | | - Nasroallah Moradi-Kor
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Correspondence: Nasroallah Moradi-KorResearch Center of Physiology, Semnan University of Medical Sciences, Damghan Road, PO Box 35195-163, Semnan, IranTel +98 233 365 4207Email
| |
Collapse
|