1
|
Ghio AJ, Stewart M, Sangani RG, Pavlisko EN, Roggli VL. Asbestos and Iron. Int J Mol Sci 2023; 24:12390. [PMID: 37569765 PMCID: PMC10419076 DOI: 10.3390/ijms241512390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Theories of disease pathogenesis following asbestos exposure have focused on the participation of iron. After exposure, an open network of negatively charged functional groups on the fiber surface complexes host metals with a preference for iron. Competition for iron between the host and the asbestos results in a functional metal deficiency. The homeostasis of iron in the host is modified by the cell response, including increased import to correct the loss of the metal to the fiber surface. The biological effects of asbestos develop in response to and are associated with the disruption of iron homeostasis. Cell iron deficiency in the host following fiber exposure activates kinases and transcription factors, which are associated with the release of mediators coordinating both inflammatory and fibrotic responses. Relative to serpentine chrysotile, the clearance of amphiboles is incomplete, resulting in translocation to the mesothelial surface of the pleura. Since the biological effect of asbestos is dependent on retention of the fiber, the sequestration of iron by the surface, and functional iron deficiency in the cell, the greater clearance (i.e., decreased persistence) of chrysotile results in its diminished impact. An inability to clear asbestos from the lower respiratory tract initiates a host process of iron biomineralization (i.e., asbestos body formation). Host cells attempt to mobilize the metal sequestered by the fiber surface by producing superoxide at the phagosome membrane. The subsequent ferrous cation is oxidized and undergoes hydrolysis, creating poorly crystalline iron oxyhydroxide (i.e., ferrihydrite) included in the coat of the asbestos body.
Collapse
Affiliation(s)
- Andrew J. Ghio
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Matthew Stewart
- Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Rahul G. Sangani
- Department of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Elizabeth N. Pavlisko
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; (E.N.P.); (V.L.R.)
| | - Victor L. Roggli
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; (E.N.P.); (V.L.R.)
| |
Collapse
|
2
|
Hedbrant A, Engström C, Andersson L, Eklund D, Westberg H, Persson A, Särndahl E. Occupational quartz and particle exposure affect systemic levels of inflammatory markers related to inflammasome activation and cardiovascular disease. Environ Health 2023; 22:25. [PMID: 36907865 PMCID: PMC10009934 DOI: 10.1186/s12940-023-00980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The inflammatory responses are central components of diseases associated with particulate matter (PM) exposure, including systemic diseases such as cardiovascular diseases (CVDs). The aim of this study was to determine if exposure to PM, including respirable dust or quartz in the iron foundry environment mediates systemic inflammatory responses, focusing on the NLRP3 inflammasome and novel or established inflammatory markers of CVDs. METHODS The exposure to PM, including respirable dust, metals and quartz were determined in 40 foundry workers at two separate occasions per worker. In addition, blood samples were collected both pre-shift and post-shift and quantified for inflammatory markers. The respirable dust and quartz exposures were correlated to levels of inflammatory markers in blood using Pearson, Kendall τ and mixed model statistics. Analyzed inflammatory markers included: 1) general markers of inflammation, including interleukins, chemokines, acute phase proteins, and white blood cell counts, 2) novel or established inflammatory markers of CVD, such as growth/differentiation factor-15 (GDF-15), CD40 ligand, soluble suppressor of tumorigenesis 2 (sST2), intercellular/vascular adhesion molecule-1 (ICAM-1, VCAM-1), and myeloperoxidase (MPO), and 3) NLRP3 inflammasome-related markers, including interleukin (IL)-1β, IL-18, IL-1 receptor antagonist (IL-1Ra), and caspase-1 activity. RESULTS The average respirator adjusted exposure level to respirable dust and quartz for the 40 foundry workers included in the study was 0.65 and 0.020 mg/m3, respectively. Respirable quartz exposure correlated with several NLRP3 inflammasome-related markers, including plasma levels of IL-1β and IL-18, and several caspase-1 activity measures in monocytes, demonstrating a reverse relationship. Respirable dust exposure mainly correlated with non-inflammasome related markers like CXCL8 and sST2. CONCLUSIONS The finding that NLRP3 inflammasome-related markers correlated with PM and quartz exposure suggest that this potent inflammatory cellular mechanism indeed is affected even at current exposure levels in Swedish iron foundries. The results highlight concerns regarding the safety of current exposure limits to respirable dust and quartz, and encourage continuous efforts to reduce exposure in dust and quartz exposed industries.
Collapse
Affiliation(s)
- Alexander Hedbrant
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden.
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden.
| | - Christopher Engström
- Division of Mathematics and Physics, The School of Education, Culture and Communication, Mälardalen University, Box 883, 721 23, Västerås, Sweden
| | - Lena Andersson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University Hospital, 701 85, Örebro, Sweden
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
| | - Håkan Westberg
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University Hospital, 701 85, Örebro, Sweden
| | - Alexander Persson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
| |
Collapse
|
3
|
Gillooly SE, Michanowicz DR, Jackson M, Cambal LK, Shmool JLC, Tunno BJ, Tripathy S, Bain DJ, Clougherty JE. Evaluating deciduous tree leaves as biomonitors for ambient particulate matter pollution in Pittsburgh, PA, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:711. [PMID: 31676989 DOI: 10.1007/s10661-019-7857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Fine particulate matter (PM2.5) air pollution varies spatially and temporally in concentration and composition and has been shown to cause or exacerbate adverse effects on human and ecological health. Biomonitoring using airborne tree leaf deposition as a proxy for particulate matter (PM) pollution has been explored using a variety of study designs, tree species, sampling strategies, and analytical methods. In the USA, relatively few have applied these methods using co-located fine particulate measurements for comparison and relying on one tree species with extensive spatial coverage, to capture spatial variation in ambient air pollution across an urban area. Here, we evaluate the utility of this approach, using a spatial saturation design and pairing tree leaf samples with filter-based PM2.5 across Pittsburgh, Pennsylvania, with the goal of distinguishing mobile and stationary sources using PM2.5 composition. Co-located filter and leaf-based measurements revealed some significant associations with traffic and roadway proximity indicators. We compared filter and leaf samples with differing protection from the elements (e.g., meteorology) and PM collection time, which may account for some variance in PM source and/or particle size capture between samples. To our knowledge, this study is among the first to use deciduous tree leaves from a single tree species as biomonitors for urban PM2.5 pollution in the northeastern USA.
Collapse
Affiliation(s)
- Sara E Gillooly
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Room 429-A, Landmark Center, Boston, MA, 02215, USA.
| | - Drew R Michanowicz
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Mike Jackson
- University of Minnesota Institute for Rock Magnetism, Minneapolis, MN, USA
| | - Leah K Cambal
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Jessie L C Shmool
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Brett J Tunno
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Sheila Tripathy
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Daniel J Bain
- Department of Geology and Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Alphandéry E. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology 2019; 13:573-596. [PMID: 30938215 DOI: 10.1080/17435390.2019.1572809] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IONP (iron oxide nanoparticles) commercialized for treatments of iron anemia or cancer diseases can be administered at doses exceeding 1 g per patient, indicating their bio-compatibility when they are prepared in the right conditions. Various parameters influence IONP biodistribution such as nanoparticle size, hydrophobicity/hydrophilicity, surface charge, core composition, coating properties, route of administration, quantity administered, and opsonization. IONP biodistribution trends include their capture by the reticuloendothelial system (RES), accumulation in liver and spleen, leading to nanoparticle degradation by macrophages and liver Kupffer cells, possibly followed by excretion in feces. To result in efficient tumor treatment, IONP need to reach the tumor in a sufficiently large quantity, using: (i) passive targeting, i.e. the extravasation of IONP through the blood vessel irrigating the tumor, (ii) molecular targeting achieved by a ligand bound to IONP specifically recognizing a cell receptor, and (iii) magnetic targeting in which a magnetic field gradient guides IONP towards the tumor. As a whole, targeting efficacy is relatively similar for different targeting, yielding a percentage of injected IONP in the tumor of 5.10-4% to 3%, 0.1% to 7%, and 5.10-3% to 2.6% for passive, molecular, and magnetic targeting, respectively. For the treatment of iron anemia disease, IONP are captured by the RES, and dissolved into free iron, which is then made available for the organism. For the treatment of cancer, IONP either deliver chemotherapeutic drugs to tumors, produce localized heat under the application of an alternating magnetic field or a laser, or activate in a controlled manner a sono-sensitizer following ultrasound treatment.
Collapse
Affiliation(s)
- Edouard Alphandéry
- a Paris Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC , Paris , France.,b Nanobacterie SARL , Paris , France.,c Institute of Anatomy, UZH University of Zurich, Institute of Anatomy , Zurich , Switzerland
| |
Collapse
|
5
|
Čabanová K, Hrabovská K, Matějková P, Dědková K, Tomášek V, Dvořáčková J, Kukutschová J. Settled iron-based road dust and its characteristics and possible association with detection in human tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2950-2959. [PMID: 30499095 DOI: 10.1007/s11356-018-3841-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Settled road dust was examined to detect the presence of non-airborne submicron and nano-sized iron-based particles and to characterize these particles. Samples were collected from a road surface near a busy road junction in the city of Ostrava, Czech Republic, once a month from March to October. The eight collected samples were subjected to a combination of experimental techniques including elemental analysis, Raman microspectroscopy, scanning electron microscopy (SEM) analysis, and magnetometry. The data thereby obtained confirmed the presence of non-agglomerated spherical nano-sized iron-based particles, with average sizes ranging from 2 down to 490 nm. There are several sources in road traffic which generate road dust particles, including exhaust and non-exhaust processes. Some of them (e.g., brake wear) produce iron as the dominant metallic element. Raman microspectroscopy revealed forms of iron (mainly as oxides, Fe2O3, and mixtures of Fe2O3 and Fe3O4). Moreover, Fe3O4 was also detected in samples of human tissues from the upper and lower respiratory tract. In view of the fact that no agglomeration of those particles was found by SEM, it is supposed that these particles may be easily resuspended and represent a risk to human health due to inhalation exposure, as proved by the detection of particles with similar morphology and phase composition in human tissues.
Collapse
Affiliation(s)
- Kristina Čabanová
- Center for Advanced Innovation Technologies, VŠB-Technical University of Ostrava,, 70800, Ostrava, Czech Republic.
| | - Kamila Hrabovská
- Department of Physics, VŠB-Technical University of Ostrava, 70800, Ostrava, Czech Republic
| | - Petra Matějková
- Center for Advanced Innovation Technologies, VŠB-Technical University of Ostrava,, 70800, Ostrava, Czech Republic
| | - Kateřina Dědková
- Center for Advanced Innovation Technologies, VŠB-Technical University of Ostrava,, 70800, Ostrava, Czech Republic
| | - Vladimír Tomášek
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 70800, Ostrava, Czech Republic
| | - Jana Dvořáčková
- Faculty of Medicine, University of Ostrava, 703 00, Ostrava, Czech Republic
| | - Jana Kukutschová
- Center for Advanced Innovation Technologies, VŠB-Technical University of Ostrava,, 70800, Ostrava, Czech Republic
| |
Collapse
|
6
|
Sutunkova MP, Katsnelson BA, Privalova LI, Gurvich VB, Konysheva LK, Shur VY, Shishkina EV, Minigalieva IA, Solovjeva SN, Grebenkina SV, Zubarev IV. On the contribution of the phagocytosis and the solubilization to the iron oxide nanoparticles retention in and elimination from lungs under long-term inhalation exposure. Toxicology 2016; 363-364:19-28. [PMID: 27424278 DOI: 10.1016/j.tox.2016.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/06/2016] [Accepted: 07/12/2016] [Indexed: 01/20/2023]
Abstract
The aim of our study was to test a hypothesis according to which the pulmonary clearance vs. retention of metal oxide nanoparticles (NPs) is controlled not only by physiological mechanisms but also by their solubilization which in some cases may even prevail. Airborne Fe2O3 NPs with the mean diameter of 14±4nm produced by sparking from 99.99% pure iron rods were fed into a nose-only exposure tower. Rats were exposed to these NPs for 4h a day, 5days a week during 3, 6 or 10 months at the mean concentration of 1.14±0.01mg/m(3). NPs collected from the air exhausted from the exposure tower proved insoluble in water but dissolved markedly in the cell free broncho-alveolar lavage fluid supernatant and in the sterile bovine blood serum. The Fe2O3 content of the lungs and lung-associated lymph nodes was measured by the Electron Paramagnetic Resonance (EPR) spectroscopy. We found a relatively low but significant pulmonary accumulation of Fe2O3, gradually increasing with time. Besides, we obtained TEM-images of nanoparticles within alveolocytes and the myelin sheaths of brain fibers associated with ultrastructural damage. We have developed a multicompartmental system model describing the toxicokinetics of inhaled nanoparticles after their deposition in the lower airways as a process controlled by their (a) high ability to penetrate through the alveolar membrane; (b) active endocytosis; (c) in vivo dissolution. To conclude, both experimental data and the identification of the system model confirmed our initial hypothesis and demonstrated that, as concerns iron oxide NPs of the dimensions used, the dissolution-depending mechanisms proved to be dominant.
Collapse
Affiliation(s)
- M P Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - B A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia.
| | - L I Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - V B Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - L K Konysheva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - V Ya Shur
- The Ural Center for Shared Use "Modern Nanotechnology", Ural Federal University, Ekaterinburg, Russia
| | - E V Shishkina
- The Ural Center for Shared Use "Modern Nanotechnology", Ural Federal University, Ekaterinburg, Russia
| | - I A Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - S N Solovjeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - S V Grebenkina
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - I V Zubarev
- The Ural Center for Shared Use "Modern Nanotechnology", Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
7
|
Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Syslova K, Navratil T, Schwarz J, Zikova N, Barosova H, Turci F, Komarc M, Pelcl T, Belacek J, Kukutschova J, Zakharov S. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J Breath Res 2016; 10:016004. [PMID: 26828137 DOI: 10.1088/1752-7155/10/1/016004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Markers of oxidative stress and inflammation were analysed in the exhaled breath condensate (EBC) and urine samples of 14 workers (mean age 43 ± 7 years) exposed to iron oxide aerosol for an average of 10 ± 4 years and 14 controls (mean age 39 ± 4 years) by liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry (LC-ESI-MS/MS) after solid-phase extraction. Aerosol exposure in the workplace was measured by particle size spectrometers, a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS), and by aerosol concentration monitors, P-TRAK and DustTRAK DRX. Total aerosol concentrations in workplace locations varied greatly in both time and space. The median mass concentration was 0.083 mg m(-3) (IQR 0.063-0.133 mg m(-3)) and the median particle concentration was 66 800 particles cm(-3) (IQR 16,900-86,900 particles cm(-3)). In addition, more than 80% of particles were smaller than 100 nm in diameter. Markers of oxidative stress, malondialdehyde (MDA), 4-hydroxy-trans-hexenale (HHE), 4-hydroxy-trans-nonenale (HNE), 8-isoProstaglandin F2α (8-isoprostane) and aldehydes C6-C12, in addition to markers of nucleic acid oxidation, including 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), 5-hydroxymethyl uracil (5-OHMeU), and of proteins, such as o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr), and 3-nitrotyrosine (3-NOTyr) were analysed in EBC and urine by LC-ESI-MS/MS. Almost all markers of lipid, nucleic acid and protein oxidation were elevated in the EBC of workers comparing with control subjects. Elevated markers were MDA, HNE, HHE, C6-C10, 8-isoprostane, 8-OHdG, 8-OHG, 5-OHMeU, 3-ClTyr, 3-NOTyr, o-Tyr (all p < 0.001), and C11 (p < 0.05). Only aldehyde C12 and the pH of samples did not differ between groups. Markers in urine were not elevated. These findings suggest the adverse effects of nano iron oxide aerosol exposure and support the utility of oxidative stress biomarkers in EBC. The analysis of urine oxidative stress biomarkers does not support the presence of systemic oxidative stress in iron oxide pigment production workers.
Collapse
Affiliation(s)
- Daniela Pelclova
- Charles University in Prague and General University Hospital in Prague, First Faculty of Medicine, Department of Occupational Medicine, Na Bojišti 1, 128 00 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Graczyk H, Lewinski N, Zhao J, Concha-Lozano N, Riediker M. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders. ANNALS OF OCCUPATIONAL HYGIENE 2015; 60:205-19. [PMID: 26464505 PMCID: PMC4738234 DOI: 10.1093/annhyg/mev074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022]
Abstract
Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training.
Collapse
Affiliation(s)
- Halshka Graczyk
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland
| | - Nastassja Lewinski
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland; 2.Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jiayuan Zhao
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland
| | - Nicolas Concha-Lozano
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland
| | - Michael Riediker
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland; 3.SAFENANO, IOM Singapore, Singapore 048622
| |
Collapse
|
9
|
Graczyk H, Bryan LC, Lewinski N, Suarez G, Coullerez G, Bowen P, Riediker M. Physicochemical characterization of nebulized superparamagnetic iron oxide nanoparticles (SPIONs). J Aerosol Med Pulm Drug Deliv 2014; 28:43-51. [PMID: 24801912 DOI: 10.1089/jamp.2013.1117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Aerosol-mediated delivery of nano-based therapeutics to the lung has emerged as a promising alternative for treatment and prevention of lung diseases. Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted significant attention for such applications due to their biocompatibility and magnetic properties. However, information is lacking about the characteristics of nebulized SPIONs for use as a therapeutic aerosol. To address this need, we conducted a physicochemical characterization of nebulized Rienso, a SPION-based formulation for intravenous treatment of anemia. METHODS Four different concentrations of SPION suspensions were nebulized with a one-jet nebulizer. Particle size was measured in suspension by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and nanoparticle tracking analysis (NTA), and in the aerosol by a scanning mobility particle sizer (SMPS). RESULTS The average particle size in suspension as measured by TEM, PCS, and NTA was 9±2 nm, 27±7 nm, and 56±10 nm, respectively. The particle size in suspension remained the same before and after the nebulization process. However, after aerosol collection in an impinger, the suspended particle size increased to 159±46 nm as measured by NTA. The aerosol particle concentration increased linearly with increasing suspension concentration, and the aerodynamic diameter remained relatively stable at around 75 nm as measured by SMPS. CONCLUSIONS We demonstrated that the total number and particle size in the aerosol were modulated as a function of the initial concentration in the nebulizer. The data obtained mark the first known independent characterization of nebulized Rienso and, as such, provide critical information on the behavior of Rienso nanoparticles in an aerosol. The data obtained in this study add new knowledge to the existing body of literature on potential applications of SPION suspensions as inhaled aerosol therapeutics.
Collapse
Affiliation(s)
- Halshka Graczyk
- 1 Institute for Work and Health, University of Lausanne and Geneva , 1066 Epalinges-Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|