1
|
Wang C, Liu H, Li Z, Yang Q, Wang Q, Yang T, Tang D, Wang C, Liu J. Oleanolic acid 28-O-β-D-glucopyranoside: A novel therapeutic agent against ulcerative colitis via anti-inflammatory, barrier-preservation, and gut microbiota-modulation. Biomed Pharmacother 2024; 180:117534. [PMID: 39405905 DOI: 10.1016/j.biopha.2024.117534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Ulcerative colitis (UC), an incurable and recurrent inflammatory bowel disease, presents a significant threat to health and highlights the need for novel therapeutic strategies. Oleanolic acid 28-O-β-D-glucopyranoside (OAG) is a naturally occurring pentacyclic triterpenoid found in ginseng. In this study, we demonstrated that OAG exhibited remarkable anti-UC activity in LPS-induced Caco-2 cells and DSS-induced model mice. First, OAG alleviated the symptoms of UC by mitigating weight loss, reducing the DAI score, and increasing colon length. Second, the inflammatory response was inhibited after OAG intervention, evidenced decreases in the spleen coefficient, cytokine levels, and inflammatory cell infiltration in colon tissue. Thirdly, OAG also enhanced intestinal epithelial barrier function, as evidenced by elevated TEER values, increased expression of tight junction proteins, diminished bacterial translocation, and maintained intact ultrastructure of colonic mucosal cells. Notably, compared with 5-aminosalicylic acid, OAG demonstrated superior efficacy in enhancing mucosal barrier function. Fourth, OAG increased microbial diversity, promoted the abundance of beneficial bacteria, reduced the abundance of harmful bacteria, and rebalanced the gut microbiome. Finally, the PI3K-AKT and MAPK signaling pathways were identified as crucial mechanisms underlying the therapeutic effects of OAG against UC through multi-omics. In summary, we identified OAG as a novel therapeutic agent against UC, demonstrating anti-inflammatory, barrier-preserving, and gut microbiota-modulating effects, highlighting its promising potential as a candidate UC drug.
Collapse
Affiliation(s)
- Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hanlin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Qingya Yang
- Department of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Ting Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Daohao Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Su FZ, Bai CX, Zhang WS, Zhang YY, Liu M, Sun YP, Yang BY, Kuang HX, Wang QH. Polysaccharides from bile Arisaema exert an antipyretic effect on yeast-induced fever rats through regulating gut microbiota and metabolic profiling. Int J Biol Macromol 2024; 278:134823. [PMID: 39168226 DOI: 10.1016/j.ijbiomac.2024.134823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
In our previous study, bile Arisaema was elucidated to have a significant anti-febrile effect, but the pharmacodynamic material basis of this effect remains uncertain. Herein, we found that the soluble polysaccharide fraction from bile Arisaema presents a remarkable antipyretic effect through balancing the gut microbiota and regulating metabolic profiling. Bile Arisaema polysaccharide (BAP) was characterized for its monosaccharide composition with arabinose, galactose, glucose, mannose and xylose (0.028:0.072:0.821:0.05:0.029, molar ratios) and amino acid composition with arginine, threonine, alanine, glycine, serine, proline and tyrosine (109.33, 135.78, 7.22, 8.86, 21.07, 4.96, 12.31 μg/mg). A total of 50 peptides were identified from BAP using Ltq-Orbitrap MS/MS. The oral administration of 100 mg/kg BAP significantly increased the antipyretic effect in yeast-induced fever rats by comparing the rectal temperature. Mechanistically, the inflammation and disorders of neurotransmitters caused by fever were improved by treatment with BAP. The western blotting results suggested that BAP could suppress fever-induced inflammation by down-regulating the NF-κB/TLR4/MyD88 signaling pathway. We also demonstrated that BAP affects lipid metabolism, amino acid metabolism and carbohydrate metabolism and balances the gut microbiota. In summary, the present study provides a crucial foundation for determining polysaccharide activity in bile Arisaema and further investigating the underlying mechanism of action.
Collapse
Affiliation(s)
- Fa-Zhi Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Chen-Xi Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Wen-Sen Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yuan-Yuan Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Meng Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yan-Ping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Qiu-Hong Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Contran N, Arrigoni G, Battisti I, D'Incà R, Angriman I, Franchin C, Scapellato ML, Padoan A, Moz S, Aita A, Savarino E, Lorenzon G, Zingone F, Spolverato G, Pucciarelli S, Nordi E, Galozzi P, Basso D. Colorectal cancer and inflammatory bowel diseases share common salivary proteomic pathways. Sci Rep 2024; 14:17711. [PMID: 39085299 PMCID: PMC11291686 DOI: 10.1038/s41598-024-68400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Inflammatory bowels diseases (IBD) are high risk conditions for colorectal cancer (CRC). The discovery of IBD and CRC noninvasive protein/peptide biomarkers using saliva and feces was the aim of this study involving 20 controls, 25 IBD (12 Crohn's Disease-CD), 37 CRC. By untargeted proteomic (LTQ-Orbitrap/MS), a total of 152 proteins were identified in saliva. Absent in controls, 73 proteins were present in both IBD and CRC, being mainly related to cell-adhesion, cadherin-binding and enzyme activity regulation (g-Profiler). Among the remaining 79 proteins, 14 were highly expressed in CD and 11 in CRC. These proteins clustered in DNA replication/expression and innate/adaptive immunity. In stool, endogenous peptides from 30 different proteins were identified, two being salivary and CD-associated: Basic Proline-rich Protein 1 (PRBs) and Acidic Proline-rich Phosphoprotein. Biological effects of the PRBs-related peptides GQ-15 and GG-17 found in CD stool were evaluated using CRC cell lines. These peptides induced cell proliferation and activated Erk1/2, Akt and p38 pathways. In conclusion, the salivary proteome unveiled DNA stability and immunity clusters shared between IBD and CRC. Salivary PRB-derived peptides, enriched in CD stool, stimulate CRC cell proliferation and the pro-oncogenic RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways suggesting a potential involvement of PRBs in IBD and cancer pathogenesis.
Collapse
Affiliation(s)
- Nicole Contran
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy.
| | - Giorgio Arrigoni
- Department of Biomedical Sciences (DBS), University of Padova, 35128, Padova, Italy
| | - Ilaria Battisti
- Department of Biomedical Sciences (DBS), University of Padova, 35128, Padova, Italy
| | - Renata D'Incà
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Imerio Angriman
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences (DBS), University of Padova, 35128, Padova, Italy
| | - Maria L Scapellato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128, Padova, Italy
| | - Andrea Padoan
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Stefania Moz
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Ada Aita
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Gaya Spolverato
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Salvatore Pucciarelli
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Evelyn Nordi
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Paola Galozzi
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Daniela Basso
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| |
Collapse
|
4
|
Shajari E, Gagné D, Malick M, Roy P, Noël JF, Gagnon H, Brunet MA, Delisle M, Boisvert FM, Beaulieu JF. Application of SWATH Mass Spectrometry and Machine Learning in the Diagnosis of Inflammatory Bowel Disease Based on the Stool Proteome. Biomedicines 2024; 12:333. [PMID: 38397935 PMCID: PMC10886680 DOI: 10.3390/biomedicines12020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammatory bowel disease (IBD) flare-ups exhibit symptoms that are similar to other diseases and conditions, making diagnosis and treatment complicated. Currently, the gold standard for diagnosing and monitoring IBD is colonoscopy and biopsy, which are invasive and uncomfortable procedures, and the fecal calprotectin test, which is not sufficiently accurate. Therefore, it is necessary to develop an alternative method. In this study, our aim was to provide proof of concept for the application of Sequential Window Acquisition of All Theoretical Mass Spectra-Mass spectrometry (SWATH-MS) and machine learning to develop a non-invasive and accurate predictive model using the stool proteome to distinguish between active IBD patients and symptomatic non-IBD patients. Proteome profiles of 123 samples were obtained and data processing procedures were optimized to select an appropriate pipeline. The differentially abundant analysis identified 48 proteins. Utilizing correlation-based feature selection (Cfs), 7 proteins were selected for proceeding steps. To identify the most appropriate predictive machine learning model, five of the most popular methods, including support vector machines (SVMs), random forests, logistic regression, naive Bayes, and k-nearest neighbors (KNN), were assessed. The generated model was validated by implementing the algorithm on 45 prospective unseen datasets; the results showed a sensitivity of 96% and a specificity of 76%, indicating its performance. In conclusion, this study illustrates the effectiveness of utilizing the stool proteome obtained through SWATH-MS in accurately diagnosing active IBD via a machine learning model.
Collapse
Affiliation(s)
- Elmira Shajari
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - David Gagné
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Allumiqs, 975 Rue Léon-Trépanier, Sherbrooke, QC J1G 5J6, Canada
| | - Mandy Malick
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Patricia Roy
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | - Hugo Gagnon
- Allumiqs, 975 Rue Léon-Trépanier, Sherbrooke, QC J1G 5J6, Canada
| | - Marie A. Brunet
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Maxime Delisle
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - François-Michel Boisvert
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
5
|
D’Incà R, Sturniolo G. Biomarkers in IBD: What to Utilize for the Diagnosis? Diagnostics (Basel) 2023; 13:2931. [PMID: 37761298 PMCID: PMC10527829 DOI: 10.3390/diagnostics13182931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The role of biomarkers in the diagnosis of inflammatory bowel disease is not fully characterized. C-reactive protein has a short half-life and elevates quickly after the onset of an inflammatory process; the performance is better in Crohn's disease than in ulcerative colitis. Erythrocyte sedimentation rate is easy to determine, widely available, and cheap, but the long half-life, the influence of age, anemia, smoking, and drugs limit its usefulness. Fecal markers have good specificity, but suboptimal accuracy. Microbial antibodies and novel immunological markers show promise but need further evidence before entering clinical practice. Proteomic methods could represent the dawn of a new era of stool protein/peptide biomarker panels able to select patients at risk of inflammatory bowel disease.
Collapse
Affiliation(s)
- Renata D’Incà
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35124 Padua, Italy
| | - Giulia Sturniolo
- Department of Women’s and Children’s Health, University of Padua, 35128 Padova, Italy
| |
Collapse
|
6
|
Kamal S, Parkash N, Beattie W, Christensen B, Segal JP. Are We Ready to Reclassify Crohn's Disease Using Molecular Classification? J Clin Med 2023; 12:5786. [PMID: 37762727 PMCID: PMC10532006 DOI: 10.3390/jcm12185786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease. The number of IBD cases worldwide was estimated to be 4.9 million in 2019. CD exhibits heterogeneity in clinical presentation, anatomical involvement, disease behaviour, clinical course and response to treatment. The classical description of CD involves transmural inflammation with skip lesions anywhere along the entire gastrointestinal tract. The complexity and heterogeneity of Crohn's disease is not currently reflected in the conventional classification system. Though the knowledge of Crohn's pathophysiology remains far from understood, the established complex interplay of the omics-genomics, transcriptomics, proteomics, epigenomics, metagenomics, metabolomics, lipidomics and immunophenomics-provides numerous targets for potential molecular markers of disease. Advancing technology has enabled identification of small molecules within these omics, which can be extrapolated to differentiate types of Crohn's disease. The multi-omic future of Crohn's disease is promising, with potential for advancements in understanding of its pathogenesis and implementation of personalised medicine.
Collapse
Affiliation(s)
- Shahed Kamal
- Department of Gastroenterology, Northern Hospital, Epping, Melbourne VIC 3076, Australia
| | - Nikita Parkash
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
| | - William Beattie
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
| | - Britt Christensen
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
- Department of Gastroenterology, The University of Melbourne, Parkville, Melbourne VIC 3010, Australia
| | - Jonathan P. Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
- Department of Gastroenterology, The University of Melbourne, Parkville, Melbourne VIC 3010, Australia
| |
Collapse
|
7
|
Padoan A, Musso G, Contran N, Basso D. Inflammation, Autoinflammation and Autoimmunity in Inflammatory Bowel Diseases. Curr Issues Mol Biol 2023; 45:5534-5557. [PMID: 37504266 PMCID: PMC10378236 DOI: 10.3390/cimb45070350] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
In this review, the role of innate and adaptive immunity in the pathogenesis of inflammatory bowel diseases (IBD) is reported. In IBD, an altered innate immunity is often found, with increased Th17 and decreased Treg cells infiltrating the intestinal mucosa. An associated increase in inflammatory cytokines, such as IL-1 and TNF-α, and a decrease in anti-inflammatory cytokines, such as IL-10, concur in favoring the persistent inflammation of the gut mucosa. Autoinflammation is highlighted with insights in the role of inflammasomes, which activation by exogenous or endogenous triggers might be favored by mutations of NOD and NLRP proteins. Autoimmunity mechanisms also take place in IBD pathogenesis and in this context of a persistent immune stimulation by bacterial antigens and antigens derived from intestinal cells degradation, the adaptive immune response takes place and results in antibodies and autoantibodies production, a frequent finding in these diseases. Inflammation, autoinflammation and autoimmunity concur in altering the mucus layer and enhancing intestinal permeability, which sustains the vicious cycle of further mucosal inflammation.
Collapse
Affiliation(s)
- Andrea Padoan
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giulia Musso
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Nicole Contran
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Daniela Basso
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
8
|
Fabian O, Bajer L, Drastich P, Harant K, Sticova E, Daskova N, Modos I, Tichanek F, Cahova M. A Current State of Proteomics in Adult and Pediatric Inflammatory Bowel Diseases: A Systematic Search and Review. Int J Mol Sci 2023; 24:ijms24119386. [PMID: 37298338 DOI: 10.3390/ijms24119386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are systemic immune-mediated conditions with predilection for the gastrointestinal tract and include Crohn's disease and ulcerative colitis. Despite the advances in the fields of basic and applied research, the etiopathogenesis remains largely unknown. As a result, only one third of the patients achieve endoscopic remission. A substantial portion of the patients also develop severe clinical complications or neoplasia. The need for novel biomarkers that can enhance diagnostic accuracy, more precisely reflect disease activity, and predict a complicated disease course, thus, remains high. Genomic and transcriptomic studies contributed substantially to our understanding of the immunopathological pathways involved in disease initiation and progression. However, eventual genomic alterations do not necessarily translate into the final clinical picture. Proteomics may represent a missing link between the genome, transcriptome, and phenotypical presentation of the disease. Based on the analysis of a large spectrum of proteins in tissues, it seems to be a promising method for the identification of new biomarkers. This systematic search and review summarize the current state of proteomics in human IBD. It comments on the utility of proteomics in research, describes the basic proteomic techniques, and provides an up-to-date overview of available studies in both adult and pediatric IBD.
Collapse
Affiliation(s)
- Ondrej Fabian
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Charles University and Thomayer Hospital, 140 59 Prague, Czech Republic
| | - Lukas Bajer
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Pavel Drastich
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Eva Sticova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Department of Pathology, Royal Vinohrady Teaching Hospital, Srobarova 1150/50, 100 00 Prague, Czech Republic
| | - Nikola Daskova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Istvan Modos
- Department of Informatics, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Filip Tichanek
- Department of Informatics, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Monika Cahova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| |
Collapse
|
9
|
Yan P, Sun Y, Luo J, Liu X, Wu J, Miao Y. Integrating the serum proteomic and fecal metaproteomic to analyze the impacts of overweight/obesity on IBD: a pilot investigation. Clin Proteomics 2023; 20:6. [PMID: 36759757 PMCID: PMC9909917 DOI: 10.1186/s12014-023-09396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) encompasses a group of chronic relapsing disorders which include ulcerative colitis (UC) and Crohn's disease (CD). The incidences of IBD and overweight/obesity are increasing in parallel. Here, we investigated alterations in proteomic in serum and metaproteomic in feces of IBD patients with overweight/obesity and aimed to explore the effect of overweight/ obesity on IBD and the underlying mechanism. METHODS This prospective observational study (n = 64) comprised 26 health control subjects (HC, 13 with overweight/obesity) and 38 IBD patients (19 with overweight/obesity) at a tertiary hospital. Overweight/obesity was evaluated by body mass index (BMI) and defined as a BMI greater than 24 kg/m2. The comprehensive serum proteomic and fecal metaproteomic analyses were conducted by ultra-performance liquid chromatography-Orbitrap Exploris 480 mass spectrometry. RESULTS UC and CD presented similar serum molecular profiles but distinct gut microbiota. UC and CD serum exhibited higher levels of cytoskeleton organization- associated and inflammatory response-related proteins than the HC serum. Compared the serum proteome of UC and CD without overweight/obesity, inflammatory response-associated proteins were dramatically decreased in UC and CD with overweight/obesity. Fecal metaproteome identified 66 species in the feces. Among them, Parasutterella excrementihominis was increased in CD compared with that in HC. UC group had a significant enrichment of Moniliophthora roreri, but had dramatically decreased abundances of Alistipes indistinctus, Clostridium methylpentosum, Bacteroides vulgatus, and Schizochytrium aggregatum. In addition, overweight/obesity could improve the microbial diversity of UC. Specifically, the UC patients with overweight/obesity had increased abundance of some probiotics in contrast to those without overweight/obesity, including Parabacteroides distasonis, Alistipes indistincus, and Ruminococcus bromii. CONCLUSION This study provided high-quality multi-omics data of IBD serum and fecal samples, which enabled deciphering the molecular bases of clinical phenotypes of IBD, revealing the impacts of microbiota on IBD, and emphasizing the important role of overweight/obesity in IBD.
Collapse
Affiliation(s)
- Ping Yan
- grid.285847.40000 0000 9588 0960Kunming Medical University, Kunming, China ,grid.440682.c0000 0001 1866 919XDepartment of Gastroenterology, First Affiliated Hospital of Dali University, Dali, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yang Sun
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Juan Luo
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Xiaolin Liu
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Jing Wu
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China. .,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China.
| |
Collapse
|
10
|
Big Data in Gastroenterology Research. Int J Mol Sci 2023; 24:ijms24032458. [PMID: 36768780 PMCID: PMC9916510 DOI: 10.3390/ijms24032458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Studying individual data types in isolation provides only limited and incomplete answers to complex biological questions and particularly falls short in revealing sufficient mechanistic and kinetic details. In contrast, multi-omics approaches to studying health and disease permit the generation and integration of multiple data types on a much larger scale, offering a comprehensive picture of biological and disease processes. Gastroenterology and hepatobiliary research are particularly well-suited to such analyses, given the unique position of the luminal gastrointestinal (GI) tract at the nexus between the gut (mucosa and luminal contents), brain, immune and endocrine systems, and GI microbiome. The generation of 'big data' from multi-omic, multi-site studies can enhance investigations into the connections between these organ systems and organisms and more broadly and accurately appraise the effects of dietary, pharmacological, and other therapeutic interventions. In this review, we describe a variety of useful omics approaches and how they can be integrated to provide a holistic depiction of the human and microbial genetic and proteomic changes underlying physiological and pathophysiological phenomena. We highlight the potential pitfalls and alternatives to help avoid the common errors in study design, execution, and analysis. We focus on the application, integration, and analysis of big data in gastroenterology and hepatobiliary research.
Collapse
|
11
|
A potent HNF4α agonist reveals that HNF4α controls genes important in inflammatory bowel disease and Paneth cells. PLoS One 2022; 17:e0266066. [PMID: 35385524 PMCID: PMC8985954 DOI: 10.1371/journal.pone.0266066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
HNF4α has been implicated in IBD through a number of genome-wide association studies. Recently, we developed potent HNF4α agonists, including N-trans caffeoyltyramine (NCT). NCT was identified by structural similarity to previously the previously identified but weak HNF4α agonists alverine and benfluorex. Here, we administered NCT to mice fed a high fat diet, with the goal of studying the role of HNF4α in obesity-related diseases. Intestines from NCT-treated mice were examined by RNA-seq to determine the role of HNF4α in that organ. Surprisingly, the major classes of genes altered by HNF4α were involved in IBD and Paneth cell biology. Multiple genes downregulated in IBD were induced by NCT. Paneth cells identified by lysozyme expression were reduced in high fat fed mice. NCT reversed the effect of high fat diet on Paneth cells, with multiple markers being induced, including a number of defensins, which are critical for Paneth cell function and intestinal barrier integrity. NCT upregulated genes that play important role in IBD and that are downregulated in that disease. It reversed the loss of Paneth cell markers that occurred in high fat diet fed mice. These data suggest that HNF4α could be a therapeutic target for IBD and that the agonists that we have identified could be candidate therapeutics.
Collapse
|
12
|
Fiocchi C, Dragoni G, Iliopoulos D, Katsanos K, Ramirez VH, Suzuki K, Torres J, Scharl M. Results of the Seventh Scientific Workshop of ECCO: Precision Medicine in IBD-What, Why, and How. J Crohns Colitis 2021; 15:1410-1430. [PMID: 33733656 DOI: 10.1093/ecco-jcc/jjab051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many diseases that affect modern humans fall in the category of complex diseases, thus called because they result from a combination of multiple aetiological and pathogenic factors. Regardless of the organ or system affected, complex diseases present major challenges in diagnosis, classification, and management. Current forms of therapy are usually applied in an indiscriminate fashion based on clinical information, but even the most advanced drugs only benefit a limited number of patients and to a variable and unpredictable degree. This 'one measure does not fit all' situation has spurred the notion that therapy for complex disease should be tailored to individual patients or groups of patients, giving rise to the notion of 'precision medicine' [PM]. Inflammatory bowel disease [IBD] is a prototypical complex disease where the need for PM has become increasingly clear. This prompted the European Crohn's and Colitis Organisation to focus the Seventh Scientific Workshop on this emerging theme. The articles in this special issue of the Journal address the various complementary aspects of PM in IBD, including what PM is; why it is needed and how it can be used; how PM can contribute to prediction and prevention of IBD; how IBD PM can aid in prognosis and improve response to therapy; and the challenges and future directions of PM in IBD. This first article of this series is structured on three simple concepts [what, why, and how] and addresses the definition of PM, discusses the rationale for the need of PM in IBD, and outlines the methodology required to implement PM in IBD in a correct and clinically meaningful way.
Collapse
Affiliation(s)
- Claudio Fiocchi
- Department of Inflammation & Immunity, Lerner Research Institute, and Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gabriele Dragoni
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence,Italy.,IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence,Italy
| | | | - Konstantinos Katsanos
- Division of Gastroenterology, Department of Internal Medicine, University of Ioannina School of Health Sciences, Ioannina,Greece
| | - Vicent Hernandez Ramirez
- Department of Gastroenterology, Xerencia Xestión Integrada de Vigo, and Research Group in Digestive Diseases, Galicia Sur Health Research Institute [IIS Galicia Sur], SERGAS-UVIGO, Vigo, Spain
| | - Kohei Suzuki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX,USA
| | | | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
13
|
Longo S, Chieppa M, Cossa LG, Spinelli CC, Greco M, Maffia M, Giudetti AM. New Insights into Inflammatory Bowel Diseases from Proteomic and Lipidomic Studies. Proteomes 2020; 8:proteomes8030018. [PMID: 32784952 PMCID: PMC7565982 DOI: 10.3390/proteomes8030018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) represent the two main forms of chronic inflammatory bowel diseases (IBD). The exact IBD etiology is not yet revealed but CD and UC are likely induced by an excessive immune response against normal constituents of the intestinal microbial flora. IBD diagnosis is based on clinical symptoms often combined with invasive and costly procedures. Thus, the need for more non-invasive markers is urgent. Several routine laboratory investigations have been explored as indicators of intestinal inflammation in IBD, including blood testing for C-reactive protein, erythrocyte sedimentation rate, and specific antibodies, in addition to stool testing for calprotectin and lactoferrin. However, none has been universally adopted, some have been well-characterized, and others hold great promise. In recent years, the technological developments within the field of mass spectrometry (MS) and bioinformatics have greatly enhanced the ability to retrieve, characterize, and analyze large amounts of data. High-throughput research allowed enhancing the understanding of the biology of IBD permitting a more accurate biomarker discovery than ever before. In this review, we summarize currently used IBD serological and stool biomarkers and how proteomics and lipidomics are contributing to the identification of IBD biomarkers.
Collapse
Affiliation(s)
- Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (S.L.); (L.G.C.); (C.C.S.)
| | - Marcello Chieppa
- National Institute of Gastroenterology “S. de Bellis”, Institute of Research, Via Turi, 27, 70013 Castellana Grotte, Italy;
| | - Luca G. Cossa
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (S.L.); (L.G.C.); (C.C.S.)
| | - Chiara C. Spinelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (S.L.); (L.G.C.); (C.C.S.)
| | - Marco Greco
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, via Monteroni, 73100 Lecce, Italy;
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (S.L.); (L.G.C.); (C.C.S.)
- Correspondence: (M.M.); (A.M.G.)
| | - Anna M. Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (S.L.); (L.G.C.); (C.C.S.)
- Correspondence: (M.M.); (A.M.G.)
| |
Collapse
|
14
|
Heaney LM. Advancements in mass spectrometry as a tool for clinical analysis: part II. ACTA ACUST UNITED AC 2020; 58:855-857. [DOI: 10.1515/cclm-2020-0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liam M. Heaney
- School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough LE11 3TU , UK
| |
Collapse
|