1
|
Devereaux J, Robinson AM, Stavely R, Davidson M, Dargahi N, Ephraim R, Kiatos D, Apostolopoulos V, Nurgali K. Alterations in tryptophan metabolism and de novo NAD + biosynthesis within the microbiota-gut-brain axis in chronic intestinal inflammation. Front Med (Lausanne) 2024; 11:1379335. [PMID: 39015786 PMCID: PMC11250461 DOI: 10.3389/fmed.2024.1379335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background Inflammatory bowel disease is an incurable and idiopathic disease characterized by recurrent gastrointestinal tract inflammation. Tryptophan metabolism in mammalian cells and some gut microbes comprise intricate chemical networks facilitated by catalytic enzymes that affect the downstream metabolic pathways of de novo nicotinamide adenine dinucleotide (NAD+) synthesis. It is hypothesized that a correlation exists between tryptophan de novo NAD+ synthesis and chronic intestinal inflammation. Methods Transcriptome analysis was performed using high-throughput sequencing of mRNA extracted from the distal colon and brain tissue of Winnie mice with spontaneous chronic colitis and C57BL/6 littermates. Metabolites were assessed using ultra-fast liquid chromatography to determine differences in concentrations of tryptophan metabolites. To evaluate the relative abundance of gut microbial genera involved in tryptophan and nicotinamide metabolism, we performed 16S rRNA gene amplicon sequencing of fecal samples from C57BL/6 and Winnie mice. Results Tryptophan and nicotinamide metabolism-associated gene expression was altered in distal colons and brains of Winnie mice with chronic intestinal inflammation. Changes in these metabolic pathways were reflected by increases in colon tryptophan metabolites and decreases in brain tryptophan metabolites in Winnie mice. Furthermore, dysbiosis of gut microbiota involved in tryptophan and nicotinamide metabolism was evident in fecal samples from Winnie mice. Our findings shed light on the physiological alterations in tryptophan metabolism, specifically, its diversion from the serotonergic pathway toward the kynurenine pathway and consequential effects on de novo NAD+ synthesis in chronic intestinal inflammation. Conclusion The results of this study reveal differential expression of tryptophan and nicotinamide metabolism-associated genes in the distal colon and brain in Winnie mice with chronic intestinal inflammation. These data provide evidence supporting the role of tryptophan metabolism and de novo NAD+ synthesis in IBD pathophysiology.
Collapse
Affiliation(s)
- Jeannie Devereaux
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Ainsley M. Robinson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- School of Rural Health, La Trobe University, Melbourne, VIC, Australia
- Department of Medicine, Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Dimitros Kiatos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Medicine, Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Medicine, Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| |
Collapse
|
2
|
Vaccaro JA, Naser SA. The Role of Methyl Donors of the Methionine Cycle in Gastrointestinal Infection and Inflammation. Healthcare (Basel) 2021; 10:healthcare10010061. [PMID: 35052225 PMCID: PMC8775811 DOI: 10.3390/healthcare10010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Abstract
Vitamin deficiency is well known to contribute to disease development in both humans and other animals. Nonetheless, truly understanding the role of vitamins in human biology requires more than identifying their deficiencies. Discerning the mechanisms by which vitamins participate in health is necessary to assess risk factors, diagnostics, and treatment options for deficiency in a clinical setting. For researchers, the absence of a vitamin may be used as a tool to understand the importance of the metabolic pathways in which it participates. This review aims to explore the current understanding of the complex relationship between the methyl donating vitamins folate and cobalamin (B12), the universal methyl donor S-adenosyl-L-methionine (SAM), and inflammatory processes in human disease. First, it outlines the process of single-carbon metabolism in the generation of first methionine and subsequently SAM. Following this, established relationships between folate, B12, and SAM in varying bodily tissues are discussed, with special attention given to their effects on gut inflammation.
Collapse
|
4
|
Wilson K, Mudra M, Furne J, Levitt M. Differentiation of the roles of sulfide oxidase and rhodanese in the detoxification of sulfide by the colonic mucosa. Dig Dis Sci 2008; 53:277-83. [PMID: 17551834 DOI: 10.1007/s10620-007-9854-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 04/23/2007] [Indexed: 02/08/2023]
Abstract
PURPOSE Identify the roles of sulfide oxidase and rhodanese in sulfide detoxification in rat colonic mucosa. RESULTS Gel filtration of colonic mucosa and purified bovine rhodanese showed that rhodanese and sulfide oxidizing activities resided in different proteins. In the presence of cyanide, rhodanese shifted the major mucosal metabolite of sulfide from thiosulfate to thiocyanate. The purported ability of purified rhodanese to metabolize sulfide reflects: (a) contamination with a sulfide oxidase, and (b) the spontaneous conversion of sulfide to thiosulfate during storage; rhodanese then catalyzes the conversion of this thiosulfate to thiocyanate. CONCLUSIONS Rhodanese does not metabolize sulfide. The rate-limiting step in sulfide detoxification is oxidation by a sulfide oxidase to thiosulfate. Rhodanese then converts this thiosulfate to thiocyanate, but this reaction does not increase the rate of sulfide detoxification. The recent use of rhodanese activity as a surrogate for the rate that colonic mucosa detoxifies sulfide is inappropriate.
Collapse
Affiliation(s)
- Kirk Wilson
- Research Service (151) Mpls, Veterans Affairs Medical Center (VAMC), Minneapolis, MN 55417, USA
| | | | | | | |
Collapse
|
5
|
Lewis S, Cochrane S. Alteration of sulfate and hydrogen metabolism in the human colon by changing intestinal transit rate. Am J Gastroenterol 2007; 102:624-33. [PMID: 17156141 DOI: 10.1111/j.1572-0241.2006.01020.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Changes in intestinal transit rate are also implicated in the etiology of many colonic diseases and strongly influence many metabolic processes in the colon. We set out to investigate whether intestinal transit time could influence the activity of the hydrogen-consuming bacterial flora and sulfate metabolism. METHODS Normal volunteers underwent four interventions while taking a low-sulfate diet: placebo, sulfate supplements, or sulfate supplements with either senna or loperamide. Stools were cultured and analyzed for sulfate, sulfide, methionine, sulfate reduction rates, methionine reduction rates, acetic acid production rates, methane production rates, short-chain fatty acids, and bile acids. Urine was analyzed for sulfate. RESULTS The addition of sulfate alone increased fecal and urinary excretion of sulfate, fecal sulfide, sulfate reduction rates, and acetic acid production rates; it reduced fecal methanogenic bacterial concentrations. Faster intestinal transit increased fecal sulfate, sulfide, bile acids, the reduction rates of sulfate, and methionine and the production rates of acetic acid. Reduction in fecal methanogens and methane production was seen. The reverse effects were seen with loperamide. CONCLUSIONS Both sulfate supplements and changes in intestinal transit rate markedly alter the activity of the colonic bacterial flora with respect to sulfate metabolism and hydrogen disposal. Dietary influences on intestinal transit and sulfate consumption may influence disease processes. While a variety of processes govern sulfate metabolism and hydrogen disposal, our knowledge is far from complete. How far the observed changes in sulfate metabolism seen in certain diseases are relevant to the pathogenesis of the disease or secondary to the disease itself is unclear.
Collapse
Affiliation(s)
- Stephen Lewis
- Department of Gastroenterology, Derriford Hospital, Plymouth, UK
| | | |
Collapse
|
6
|
Fiorucci S, Distrutti E, Cirino G, Wallace JL. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology 2006; 131:259-71. [PMID: 16831608 DOI: 10.1053/j.gastro.2006.02.033] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 02/15/2006] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide, like nitric oxide, was best known as a toxic pollutant before becoming recognized as a key regulator of several physiologic processes. In recent years, evidence has accumulated to suggest important roles for hydrogen sulfide as a mediator of several aspects of gastrointestinal and liver function. Moreover, alterations in hydrogen sulfide production could contribute to disorders of the gastrointestinal tract and liver. For example, nonsteroidal anti-inflammatory drugs can reduce production of hydrogen sulfide in the stomach, and this has been shown to contribute to the generation of mucosal injury. Hydrogen sulfide has also been shown to play a key role in modulation of visceral hyperalgesia. Inhibitors of hydrogen sulfide synthesis and drugs that can generate safe levels of hydrogen sulfide in vivo have been developed and are permitting interventional studies in experimental models and, in the near future, humans.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimenti di Medicina Clinica and Patologia, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
7
|
Zhang DJ, Jiang JX, Chen YH, Zhu PF. Expression of lipopolysaccharide-associated receptors in different human intestinal epithelial cells. Shijie Huaren Xiaohua Zazhi 2004; 12:2099-2102. [DOI: 10.11569/wcjd.v12.i9.2099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of lipopolysaccharide (LPS)-associated receptors-CD14, Toll-like receptor 4 (TLR4) and MD-2 in human intestinal epithelial cells (IECs) and to discuss the molecular mechanism by which IECs tolerated to LPS.
METHODS: The expression of CD14, TLR4 and MD-2 mRNA of human normal intestinal epithelial cells (HNIEC) and human intestinal epithelial cell line (HIC) was detected by RNase protection assay (RPA). The expression of CD14, TLR4 and MD-2 proteins on normal human small intestinal and colonic epithelial cells was detected by immunohis-tochemistry, and THP1 cells were used as positive control.
RESULTS: HNIEC expressed very low CD14, TLR4 and MD-2 mRNA and HICs did not express them. Neither normal human small intestinal nor colonic epithelial cells expressed TLR4, CD14 and MD2 proteins.
CONCLUSION: Low or loss of expression of TLR4, CD14 and MD-2 on IECs may be an important molecular mechanism by which IECs tolerate to lipopolysaccharide, and this will be helpful to understand the pathogenesis of inflammatory bowel disease.
Collapse
|