1
|
Hucteau E, Mallard J, Barbi C, Venturelli M, Schott R, Trensz P, Pflumio C, Kalish-Weindling M, Pivot X, Favret F, Ducrocq GP, Dufour SP, Pagano AF, Hureau TJ. Impact of Eccentric versus Concentric Cycling Exercise on Neuromuscular Fatigue and Muscle Damage in Breast Cancer Patients. Med Sci Sports Exerc 2024; 56:2103-2116. [PMID: 38935539 DOI: 10.1249/mss.0000000000003506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
INTRODUCTION This study investigated the magnitude and etiology of neuromuscular fatigue and muscle damage induced by eccentric cycling compared with conventional concentric cycling in patients with breast cancer. METHODS After a gradual familiarization protocol for eccentric cycling, nine patients with early-stage breast cancer performed three cycling sessions in eccentric or concentric mode. The eccentric cycling session (ECC) was compared with concentric cycling sessions matched for power output (CON power ; 80% of concentric peak power output, 95 ± 23 W) or oxygen uptake ( ; 10 ± 2 mL·min·kg -1 ). Preexercise to postexercise changes (30-s through 10-min recovery) in knee extensor maximal voluntary contraction force (MVC), voluntary activation, and quadriceps potentiated twitch force ( Qtw ) were quantified to determine global, central, and peripheral fatigue, respectively. Creatine kinase and lactate dehydrogenase activities were measured in the plasma before and 24 h after exercise as markers of muscle damage. RESULTS Compared with CON power (-11% ± 9%) and (-5% ± 5%), the ECC session resulted in a greater decrease in MVC (-25% ± 12%) postexercise ( P < 0.001). Voluntary activation decreased only in ECC (-9% ± 6% postexercise, P < 0.001). The decrease in Qtw was similar postexercise between ECC and CON power (-39% ± 21% and -40% ± 16%, P > 0.99) but lower in ( P < 0.001). The CON power session resulted in twofold greater compared with the ECC and sessions ( P < 0.001). No change in creatine kinase or lactate dehydrogenase activity was reported from preexercise to 24 h postexercise. CONCLUSIONS The ECC session induced greater neuromuscular fatigue compared with the concentric cycling sessions without generating severe muscle damage. ECC is a promising exercise modality for counteracting neuromuscular maladaptation in patients with breast cancer.
Collapse
Affiliation(s)
| | | | | | - Massimo Venturelli
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, ITALY
| | - Roland Schott
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, FRANCE
| | - Philippe Trensz
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, FRANCE
| | - Carole Pflumio
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, FRANCE
| | | | - Xavier Pivot
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, FRANCE
| | | | | | | | | | | |
Collapse
|
2
|
Machado-Junior PA, Dias MSS, de Souza ABF, Lopes LSE, Menezes TP, Talvani A, Brochard L, Bezerra FS. A short duration of mechanical ventilation alters redox status in the diaphragm and aggravates inflammation in septic mice. Respir Physiol Neurobiol 2024; 331:104361. [PMID: 39433197 DOI: 10.1016/j.resp.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Mechanical ventilation (MV) is a life support method used to treat patients with respiratory failure. High tidal volumes during MV can cause ventilator-induced lung injury (VILI), but also affect other organs, such as the diaphragm (Dia) causing ventilator-induced diaphragmatic dysfunction (VIDD). VIDD is often associated with a complicated course on MV. Sepsis can induce inflammation and oxidative stress, contributing to the impairment of the Dia and worsening of the prognosis. This study evaluated the additive or synergistic effects of a short course of mechanical ventilation on Dia in healthy and septic adult mice. METHODS 32 adult male C57BL/6 mice were randomly into four groups: Control (CG), non-ventilated animals instilled with saline solution (PBS1x); Lipopolysaccharide (LPS), non-ventilated animals instilled with PBS solution containing lipopolysaccharide; Mechanical Ventilation (MV) for 1 h, ventilated animals instilled with PBS solution; and Mechanical Ventilation and LPS (MV+LPS), ventilated animals instilled with PBS solution containing LPS. At the end of the experimental protocol, the animals were euthanized, then blood and diaphragm tissue samples were collected. RESULTS Evaluation of leukocyte/blood parameters and diaphragm muscle showed that MV, LPS and the combination of both were able to increase neutrophil count, creatine kinase, inflammatory mediators and oxidative stress in all groups compared to the control. MV and sepsis combined had additive effects on inflammation and lipid peroxidation. CONCLUSIONS A short course of Mechanical ventilation promotes inflammation and oxidative stress and, its combination with sepsis further increases local and systemic inflammation.
Collapse
Affiliation(s)
- Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Marcelo Santiago Soares Dias
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Leonardo Spinelli Estevão Lopes
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Gottschalk F, Gennser M, Eiken O, Elia A. The effect of eccentric arm cycling on muscle damage and injury-related biomarkers. Clin Physiol Funct Imaging 2024. [PMID: 39400488 DOI: 10.1111/cpf.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE There is a scarcity of information regarding the effect of upper-body eccentric exercise on biomarkers of muscle damage. This study sought to investigate the effect of eccentric arm cycling on muscle damage [exercise-induced muscle damage (EIMD)]. METHOD Ten subjects performed a 15 min eccentric arm cycling protocol (cadence 49 ± 7 rpm, power absorbed 248 ± 34 W). Maximal voluntary contraction (MVC) of the elbow flexors was evaluated at rest and at 5 min, 24 h, and 48 h post-exercise. In addition, blood samples were drawn at rest and thereafter at 30 min, 24 h, and 48 h intervals after exercise for quantification of creatine kinase (CK), myoglobin, lactate dehydrogenase (LDH) and endothelin (ET-1) concentrations. Delayed onset muscle soreness (DOMS) was assessed using a category ratio scale (0-10). RESULTS Myoglobin was increased from baseline at 30 min post-exercise (+114%, 46.08 ± 22.17 µg/L, p = 0.018). Individual peak values were higher than baseline values for CK (+72.8%, 204 ± 138 U/L, p = 0.046) and LDH (+17%, 3.3 ± 0.88 nmole/min/mL, p = 0.017), but not for ET-1 (+9%, 1.4 ± 0.48 pg/mL, p = 0.45). DOMS was reported at 24 h (median 4) and 48 h (median 4) post-exercise and MVC of the elbow flexors were reduced from baseline (216 ± 44 N) at 5 min (-34%, 147 ± 61 N, p < 0.001), 24 h (-17%, 181 ± 56 N, p = 0.005) and 48 h (-9%, 191 ± 54 N, p = 0.003). CONCLUSION Eccentric arm cycling incites EIMD with reduced MVC and elevation of myoglobin, CK and LDH.
Collapse
Affiliation(s)
- Frode Gottschalk
- Division of Environmental Physiology, Swedish Aerospace Physiology Centre, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Experimental Traumatology, KI Karolinska Institutet, Stockholm, Sweden
| | - Mikael Gennser
- Department of Physiology and Pharmacology, KI Karolinska Institutet, Stockholm, Sweden
| | - Ola Eiken
- Department of Physiology and Pharmacology, KI Karolinska Institutet, Stockholm, Sweden
| | - Antonis Elia
- Department of Physiology and Pharmacology, KI Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Inacio PAQ, Gomes YSM, de Aguiar AJN, Lopes-Martins PSL, Aimbire F, Leonardo PS, Sá Filho AS, Lopes-Martins RAB. The Effects of Collagen Peptides as a Dietary Supplement on Muscle Damage Recovery and Fatigue Responses: An Integrative Review. Nutrients 2024; 16:3403. [PMID: 39408370 PMCID: PMC11478671 DOI: 10.3390/nu16193403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND/OBJECTIVES The oral administration of hydrolyzed collagen peptides is a scientifically validated intervention for enhancing skeletal muscle health and performance. This integrative review consolidates the evidence supporting the use of low molecular weight collagen peptides (2000-3500 daltons) for their superior bioavailability and absorption. Our objective was to review the effects of collagen peptide or hydrolyzed collagen supplementation on muscle damage, recovery, and construction related to physical exercise. METHODS A bibliographic search was conducted in major English-language databases, including PubMed/Medline, using terms like "Peptides Collagen and Damage" and "collagen peptides AND Soreness Muscle". This review followed PRISMA guidelines, with bias risk assessed via the PEDro scale. The inclusion criteria were (a) randomized clinical trials, (b) randomized studies in humans with a control or placebo group, (c) studies assessing muscle damage or delayed onset muscle soreness via physiological markers or strength performance tests, and (d) studies using hydrolyzed collagen or collagen peptides. RESULTS Initially, 752 articles were identified. After applying the inclusion and exclusion criteria, including duplicate removal, eight articles with 286 participants were included. Of these, 130 participants received collagen peptide supplementation, while 171 received a placebo or control. CONCLUSION This integrative review supports the potential of collagen peptide supplementation to mitigate muscle stress from acute strenuous resistance training. However, due to the methodological heterogeneity among the studies, further clinical trials are needed to clarify the mechanisms underlying muscle improvement with collagen supplementation.
Collapse
Affiliation(s)
- Pedro Augusto Querido Inacio
- Laboratory of Applied Neurosciences, Evangelical University of Goiás, UniEvangélica, Av. Universitária S/N, Anápolis P.O. Box 75083-515, GO, Brazil; (P.A.Q.I.); (A.S.S.F.)
| | - Yasmin Salgado Mussel Gomes
- Laboratory of Biophotonics and Experimental Therapeutics, LABITEX, Evangelical University of Goiás, UniEvangélica, Av. Universitária S/N, Anápolis P.O. Box 75083-515, GO, Brazil; (Y.S.M.G.); (P.S.L.L.-M.)
| | - Ana Julia Nunes de Aguiar
- Laboratory of Applied Neurosciences, Evangelical University of Goiás, UniEvangélica, Av. Universitária S/N, Anápolis P.O. Box 75083-515, GO, Brazil; (P.A.Q.I.); (A.S.S.F.)
| | - Pedro Sardinha Leonardo Lopes-Martins
- Laboratory of Biophotonics and Experimental Therapeutics, LABITEX, Evangelical University of Goiás, UniEvangélica, Av. Universitária S/N, Anápolis P.O. Box 75083-515, GO, Brazil; (Y.S.M.G.); (P.S.L.L.-M.)
| | - Flávio Aimbire
- Translational Medicine, Federal University of São Paulo-UNIFESP, São José dos Campos P.O. Box 12247-014, SP, Brazil;
| | - Patrícia Sardinha Leonardo
- Laboratory of Health Technologies, LATES, Evangelical University of Goiás, UniEvangélica, Av. Universitária S/N, Anápolis P.O. Box 75083-515, GO, Brazil;
| | - Alberto Souza Sá Filho
- Laboratory of Applied Neurosciences, Evangelical University of Goiás, UniEvangélica, Av. Universitária S/N, Anápolis P.O. Box 75083-515, GO, Brazil; (P.A.Q.I.); (A.S.S.F.)
| | - Rodrigo Alvaro B. Lopes-Martins
- Laboratory of Biophotonics and Experimental Therapeutics, LABITEX, Evangelical University of Goiás, UniEvangélica, Av. Universitária S/N, Anápolis P.O. Box 75083-515, GO, Brazil; (Y.S.M.G.); (P.S.L.L.-M.)
- Post-Graduate Program in Bioengineering, University Brasil, Av. Carolina Fonseca 236, Itaquera, São Paulo P.O. Box 08230-030, SP, Brazil
| |
Collapse
|
5
|
Okubo H, Ando H, Nakamura S, Takasaki Y, Ito K, Fukuo Y, Ikejima K, Isayama H. Real world data of cabozantinib in patients with hepatocellular carcinoma: Focusing on dose setting and modification. Cancer Med 2024; 13:e70222. [PMID: 39315523 PMCID: PMC11420626 DOI: 10.1002/cam4.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
AIM To investigate the outcomes of cabozantinib in patients with unresectable hepatocellular carcinoma (uHCC), focusing on dose setting and modification. METHODS We retrospectively analyzed 34 Japanese patients who received cabozantinib for uHCC. Trough concentrations (Ctrough) of cabozantinib were also measured weekly for 6 weeks in the 18 patients. RESULTS Sixteen patients received ≥40 mg (high-dose group), and 18 patients received 20 mg (low-dose group). Dose escalations were performed in 27.8% of the patients in the low-dose group. Although median duration of the first dose reduction or interruption in the low-dose group was twice that in the high-dose group (28 vs. 14 days, p < 0.001), there were no significant differences in the relative dose intensity (RDI) during 6 weeks, progression free survival (PFS), and overall survival (p = 0.162, p = 0.950, p = 0.817, respectively) between the two groups. Patients who received RDI during 6 weeks ≥33.4% showed a trend toward longer median PFS (p = 0.054). Each serum aldolase value during the 6 weeks was significantly correlated with the Ctrough at any point (r = 0.500, p < 0.001). In multivariate analyses, aldolase ≥8.7 U/L within 2 weeks was significantly associated with the very early dose reduction or interruption (odds ratio 20.0, p = 0.002). CONCLUSIONS An initial dose of 20 mg cabozantinib could be a safe option in Japanese patients. The serum aldolase value could be useful for making appropriate dose modifications of cabozantinib.
Collapse
Affiliation(s)
- Hironao Okubo
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Shunsuke Nakamura
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Yusuke Takasaki
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Koichi Ito
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Yuka Fukuo
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Kenichi Ikejima
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Isayama
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Juškevičiūtė E, Neuberger E, Eimantas N, Heinkel K, Simon P, Brazaitis M. Cell-free DNA kinetics in response to muscle-damaging exercise: A drop jump study. Exp Physiol 2024; 109:1341-1352. [PMID: 38875105 PMCID: PMC11291858 DOI: 10.1113/ep091986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
A significant increase in circulating cell-free DNA (cfDNA) occurs with physical exercise, which depends on the type of exertion and the duration. The aims of this study were as follows: (1) to investigate the time course of cfDNA and conventional markers of muscle damage from immediately after to 96 h after muscle-damaging exercise; and (2) to investigate the relationship between cfDNA and indicators of primary (low-frequency fatigue and maximal voluntary isometric contraction) and secondary (creatine kinase and delayed-onset muscle soreness) muscle damage in young healthy males. Fourteen participants (age, 22 ± 2 years; weight, 84.4 ± 11.2 kg; height, 184.0 ± 7.4 cm) performed 50 intermittent drop jumps at 20 s intervals. We measured cfDNA and creatine kinase concentrations, maximal voluntary isometric contraction torque, low-frequency fatigue and delayed-onset muscle soreness before and at several time points up to 96 h after exercise. Plasma cfDNA levels increased from immediately postexercise until 72 h postexercise (P < 0.01). Elevation of postexercise cfDNA was correlated with both more pronounced low-frequency fatigue (r = -0.52, P = 3.4 × 10-11) and delayed-onset muscle soreness (r = 0.32, P = 0.00019). Levels of cfDNA change in response to severe primary and secondary muscle damage after exercise. Levels of cfDNA exhibit a stronger correlation with variables related to primary muscle damage than to secondary muscle damage, suggesting that cfDNA is a more sensitive marker of acute loss of muscle function than of secondary inflammation or damaged muscle fibres.
Collapse
Affiliation(s)
- Ema Juškevičiūtė
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
- Department of Sports Medicine, Disease Prevention and RehabilitationJohannes Gutenberg University MainzMainzGermany
| | - Elmo Neuberger
- Department of Sports Medicine, Disease Prevention and RehabilitationJohannes Gutenberg University MainzMainzGermany
| | - Nerijus Eimantas
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| | - Kirsten Heinkel
- Department of Sports Medicine, Disease Prevention and RehabilitationJohannes Gutenberg University MainzMainzGermany
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and RehabilitationJohannes Gutenberg University MainzMainzGermany
| | - Marius Brazaitis
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| |
Collapse
|
7
|
Niewczas M, İlbak İ, Düz S, Pałka T, Ambroży T, Duda H, Wąsacz W, Król P, Czaja R, Rydzik Ł. Acute Effects of Kickboxing K1 Matches on Hematological Parameters of Kickboxers. J Funct Morphol Kinesiol 2024; 9:130. [PMID: 39189215 PMCID: PMC11348180 DOI: 10.3390/jfmk9030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
While there is clear evidence in the literature that the hematological parameters in athletes of different sports are affected by exercise and varying loads, to our knowledge, there are limited studies on the real impact of kickboxing matches on kickboxers' hematological parameters. In this context, this cross-sectional study was conducted to examine the acute changes in the hematological parameters of kickboxers following K1 matches. With the participation of 10 kickboxing K1 athletes, the hematological parameters, including the WBC, Plt, Neut, Lymph, Mono, RBC, Hgb, Hct, CK, La, and glucose levels, were examined before and after matches. Paired sample t-tests were used to compare the pre-test and post-test hematological parameters of the participants. The findings indicated statistically significant differences in the post-match WBC, Plt, Neut, Lymph, CK, La, and glucose levels, while no statistically significant differences were observed in the RBC, Hct, Hgb, and CK levels (p < 0.05). These results not only emphasize the complexity of physiological changes in athletes, but also show consistency with various findings in the literature, while contradicting some. Therefore, it is highlighted that further research is needed to understand the effects of K1 matches on hematological parameters.
Collapse
Affiliation(s)
- Marta Niewczas
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (M.N.); (P.K.); (R.C.)
| | - İsmail İlbak
- Institute of Health Sciences, İnönü University, 44000 Malatya, Türkiye;
| | - Serkan Düz
- Faculty of Sports Sciences, Coaching Education, İnönü University, 44000 Malatya, Türkiye;
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, 31-571 Krakow, Poland;
| | - Tadeusz Ambroży
- Institute of Sports Sciences, University of Physical Education, 31-571 Krakow, Poland; (T.A.); (H.D.); (W.W.)
| | - Henryk Duda
- Institute of Sports Sciences, University of Physical Education, 31-571 Krakow, Poland; (T.A.); (H.D.); (W.W.)
| | - Wojciech Wąsacz
- Institute of Sports Sciences, University of Physical Education, 31-571 Krakow, Poland; (T.A.); (H.D.); (W.W.)
| | - Paweł Król
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (M.N.); (P.K.); (R.C.)
| | - Robert Czaja
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (M.N.); (P.K.); (R.C.)
| | - Łukasz Rydzik
- Institute of Sports Sciences, University of Physical Education, 31-571 Krakow, Poland; (T.A.); (H.D.); (W.W.)
| |
Collapse
|
8
|
Jeong YJ, Kim JH, Jung YJ, Kwak MS, Sung MH, Imm JY. KL-Biome (Postbiotic Formulation of Lactiplantibacillus plantarum KM2) Improves Dexamethasone-Induced Muscle Atrophy in Mice. Int J Mol Sci 2024; 25:7499. [PMID: 39000606 PMCID: PMC11242066 DOI: 10.3390/ijms25137499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Sarcopenia refers to an age-related decrease in muscle mass and strength. The gut-muscle axis has been proposed as a promising target to alleviate muscle atrophy. The effect of KL-Biome-a postbiotic preparation comprising heat-killed Lactiplantibacillus plantarum KM-2, its metabolites, and an excipient (soybean powder)-on muscle atrophy was evaluated using dexamethasone (DEX)-induced atrophic C2C12 myoblasts and C57BL/6J mice. KL-Biome significantly downregulated the expression of genes (Atrogin-1 and MuRF1) associated with skeletal muscle degradation but increased the anabolic phosphorylation of FoxO3a, Akt, and mTOR in C2C12 cells. Oral administration of KL-Biome (900 mg/kg) for 8 weeks significantly improved muscle mass, muscle function, and serum lactate dehydrogenase levels in DEX-treated mice. KL-Biome administration increased gut microbiome diversity and reversed DEX-mediated gut microbiota alterations. Furthermore, it significantly increased the relative abundances of the genera Subdologranulum, Alistipes, and Faecalibacterium prausnitzii, which are substantially involved in short-chain fatty acid production. These findings suggest that KL-Biome exerts beneficial effects on muscle atrophy by regulating gut microbiota.
Collapse
Affiliation(s)
- Yu-Jin Jeong
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Republic of Korea;
| | - Jong-Hoon Kim
- KookminBio Corporation, Seoul 02826, Republic of Korea; (J.-H.K.); (Y.-J.J.); (M.-S.K.); (M.-H.S.)
| | - Ye-Jin Jung
- KookminBio Corporation, Seoul 02826, Republic of Korea; (J.-H.K.); (Y.-J.J.); (M.-S.K.); (M.-H.S.)
| | - Mi-Sun Kwak
- KookminBio Corporation, Seoul 02826, Republic of Korea; (J.-H.K.); (Y.-J.J.); (M.-S.K.); (M.-H.S.)
| | - Moon-Hee Sung
- KookminBio Corporation, Seoul 02826, Republic of Korea; (J.-H.K.); (Y.-J.J.); (M.-S.K.); (M.-H.S.)
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Republic of Korea;
| |
Collapse
|
9
|
Figueiredo T, Frazão M, Werlang LA, Kunz A, Peltz M, Furtado VC, Júnior EB, Júnior JM, Silva RM, Sobral Filho DC. Safety and feasibility of a functional electrical stimulation cycling-based muscular dysfunction diagnostic method in mechanically ventilated patients. Artif Organs 2024; 48:713-722. [PMID: 38400618 DOI: 10.1111/aor.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND A nonvolitional diagnostic method based on FES-Cycling technology has recently been demonstrated for mechanically ventilated patients. This method presents good sensitivity and specificity for detecting muscle dysfunction and survival prognosis, even in unconscious patients. As the clinical relevance of this method has already been reported, we aimed to evaluate its safety and feasibility. METHODS An observational prospective study was carried out with 20 critically ill, mechanically ventilated patients. The FES-cycling equipment was set in a specific diagnostic mode. For safety determination, hemodynamic parameters and peripheral oxygen saturation were measured before and immediately after the diagnostic protocol, as well as venous oxygen saturation and blood lactate. The creatine phosphokinase level (CPK) was measured before and 24, 48, and 72 h after the test. The time taken to carry out the entire diagnostic protocol and the number of patients with visible muscle contraction (capacity of perceptive muscular recruitment) were recorded to assess feasibility. RESULTS Heart rate [91 ± 23 vs. 94 ± 23 bpm (p = 0.0837)], systolic [122 ± 19 vs. 124 ± 19 mm Hg (p = 0.4261)] and diastolic blood pressure [68 ± 13 vs. 70 ± 15 mm Hg (p = 0.3462)], and peripheral [98 (96-99) vs. 98 (95-99) % (p = 0.6353)] and venous oxygen saturation [71 ± 14 vs. 69 ± 14% (p = 0.1317)] did not change after the diagnostic protocol. Moreover, blood lactate [1.48 ± 0.65 vs. 1.53 ± 0.71 mmol/L (p = 0.2320)] did not change. CPK did not change up to 72 h after the test [99 (59-422) vs. 125 (66-674) (p = 0.2799) vs. 161 (66-352) (p > 0.999) vs. 100 (33-409) (p = 0.5901)]. The time taken to perform the diagnostic assessment was 11.3 ± 1.1 min. In addition, 75% of the patients presented very visible muscle contractions, and 25% of them presented barely visible muscle contractions. CONCLUSIONS The FES cycling-based muscular dysfunction diagnostic method is safe and feasible. Hemodynamic parameters, peripheral oxygen saturation, venous oxygen saturation, and blood lactate did not change after the diagnostic protocol. The muscle damage marker (CPK) did not increase up to 72 h after the diagnostic protocol.
Collapse
Affiliation(s)
- Thainá Figueiredo
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | - Murillo Frazão
- Lauro Wanderley University Hospital, Federal University of Paraíba, João Pessoa, Brazil
- CLINAR Exercise Physiology, João Pessoa, Brazil
| | - Luís A Werlang
- INBRAMED-Brazilian Medical Equipment Industry, Porto Alegre, Brazil
| | - Adelar Kunz
- INBRAMED-Brazilian Medical Equipment Industry, Porto Alegre, Brazil
| | - Maikel Peltz
- INBRAMED-Brazilian Medical Equipment Industry, Porto Alegre, Brazil
| | - Veridiana C Furtado
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | - Edgar B Júnior
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | - Júlio M Júnior
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | - Rosane M Silva
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
10
|
Cha M, Bak H, Bai SJ, Lee BH, Jang JH. Quadriceps recovery and pain relief in knee osteoarthritis rats by cog polydioxanone filament insertion. Regen Biomater 2024; 11:rbae077. [PMID: 38974667 PMCID: PMC11226885 DOI: 10.1093/rb/rbae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024] Open
Abstract
Quadriceps muscles play a pivotal role in knee osteoarthritis (OA) progression and symptom manifestation, particularly pain. This research investigates the therapeutic effectiveness of muscle enhancement and support therapy (MEST), a recently developed device intended for intramuscular insertion of cog polydioxanone filaments, in quadriceps restoration to alleviate OA pain. Knee OA was induced in Sprague Dawley rats via monoiodoacetate injections. MEST or sham treatment was performed in OA or Naive rat quadriceps. Pain was assessed using paw withdrawal threshold and weight bearing. Quadriceps injury and recovery via MEST were evaluated using biomarkers, tissue morphology, muscle mass, contractile force and hindlimb torque. Satellite cell and macrophage activation, along with their activators, were also assessed. Data were compared at 1- and 3-weeks post-MEST treatment (M-W1 and M-W3). MEST treatment in OA rats caused muscle injury, indicated by elevated serum aspartate transferase and creatinine kinase levels, and local β-actin changes at M-W1. This injury triggered pro-inflammatory macrophage and satellite cell activation, accompanied by heightened interleukin-6 and insulin-like growth factor-1 levels. However, by M-W3, these processes gradually shifted toward inflammation resolution and muscle restoration. This was seen in anti-inflammatory macrophage phenotypes, sustained satellite cell activation and injury markers regressing to baseline. Quadriceps recovery in mass and strength from atrophy correlated with substantial OA pain reduction at M-W3. This study suggests that MEST-induced minor muscle injury triggers macrophage and satellite cell activation, leading to recovery of atrophied quadriceps and pain relief in OA rats.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heyji Bak
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sun Joon Bai
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun Ho Jang
- R&D Center, OV MEDI Co., Ltd, Gunpo 15847, Republic of Korea
| |
Collapse
|
11
|
Kusmierczyk J, Wiecek M, Bawelski M, Szygula Z, Rafa-Zablocka K, Kantorowicz M, Szymura J. Pre-exercise cryotherapy reduces myoglobin and creatine kinase levels after eccentric muscle stress in young women. Front Physiol 2024; 15:1413949. [PMID: 38962071 PMCID: PMC11220252 DOI: 10.3389/fphys.2024.1413949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction: The aim of this study was to investigate the effect of pre-exercise whole-body cryotherapy (WBC) on muscle damage indicators following eccentric treadmill exercise in young women. Methods: Twenty-seven participants underwent two 1-h downhill treadmill runs, replicating 60% of their maximal oxygen uptake, with a 4-week intermission for recovery and treatment application. In this intermission, one group underwent 20 sessions of WBC, delivered five times a week at -120°C for 3 min each, while the comparison group received no such treatment. Markers of muscle injury-serum myoglobin concentration, creatine kinase and lactate dehydrogenase activity and also uric acid, and cell-free DNA concentration-were measured before and after downhill runs. Results: The study observed a notable reduction in post-exercise myoglobin and CK levels in the WBC group after the second running session. Discussion: The results suggest that WBC can have a protective effects against muscle damage resulting from eccentric exercise.
Collapse
Affiliation(s)
- Justyna Kusmierczyk
- Department of Physiology and Biochemistry, University of Physical Education in Kraków, Kraków, Poland
| | - Magdalena Wiecek
- Department of Physiology and Biochemistry, University of Physical Education in Kraków, Kraków, Poland
| | - Marek Bawelski
- Department of Physiology and Biochemistry, University of Physical Education in Kraków, Kraków, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Kraków, Kraków, Poland
| | - Katarzyna Rafa-Zablocka
- Department Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | - Jadwiga Szymura
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Kraków, Kraków, Poland
- Department of Clinical Rehabilitation, University of Physical Education in Kraków, Kraków, Poland
| |
Collapse
|
12
|
Nozdrenko D, Motuziuk O, Prylutska S, Matviienko T, Bogutska K, Franskevych D, Nurishchenko N, Abramchuk O, Prylutskyy Y. С 60 fullerene protective effect against the rat muscle soleus trauma. Heliyon 2024; 10:e32677. [PMID: 38961948 PMCID: PMC11219981 DOI: 10.1016/j.heliyon.2024.e32677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Muscle trauma is one of the most common body injuries. Severe consequences of muscle trauma are ischemic injuries of the extremities. It is known that the intensification of free radical processes takes place in almost most acute diseases and conditions, including muscle trauma. C60 fullerene (C60) with powerful antioxidant properties can be considered a potential nanoagent for developing an effective therapy for skeletal muscle trauma. Here the water-soluble C60 was prepared and its structural organization has been studied by the atomic force microscopy and dynamic light scattering techniques. The selective biomechanical parameters of muscle soleus contraction and biochemical indicators of blood in rats were evaluated after intramuscular injection of C60 1 h before the muscle trauma initiation. Analysis of the force muscle response after C60 injection (1 mg kg-1 dose) showed its protective effect against ischemia and mechanical injury at the level of 30 ± 2 % and 17 ± 1 %, accordingly, relative to the pathology group. Analysis of biomechanical parameters that are responsible for correcting precise positioning confirmed the effectiveness of C60 at a level of more than 50 ± 3 % relative to the pathology group. Moreover, a decrease in the biochemical indicators of blood by about 33 ± 2 % and 10 ± 1 % in ischemia and mechanical injury, correspondingly, relative to the pathology group occurs. The results obtained demonstrate the ability of C60 to correct the functional activity of damaged skeletal muscle.
Collapse
Affiliation(s)
- Dmytro Nozdrenko
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
| | - Olexandr Motuziuk
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, 43025, Ukraine
| | - Svitlana Prylutska
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Science of Ukraine, Kyiv, 03041, Ukraine
| | - Tetiana Matviienko
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
| | - Kateryna Bogutska
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
| | - Daria Franskevych
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
| | - Nataliya Nurishchenko
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
| | - Olga Abramchuk
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, 43025, Ukraine
| | - Yuriy Prylutskyy
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601, Ukraine
| |
Collapse
|
13
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
14
|
Rossi C, Vasiljevic I, Manojlovic M, Trivic T, Ranisavljev M, Stajer V, Thomas E, Bianco A, Drid P. Optimizing strength training protocols in young females: A comparative study of velocity-based and percentage-based training programs. Heliyon 2024; 10:e30644. [PMID: 38742077 PMCID: PMC11089354 DOI: 10.1016/j.heliyon.2024.e30644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
The purpose of this study was to compare the effects of velocity-based strength training (VBT) and percentage-based strength training (PBT) on absolute strength, explosive strength, speed, and agility, as well as markers of muscle damage after 6 weeks of exercise programs. The study included 30 young female individuals, divided into three groups of 10 participants: VBT, PBT, and control group. The main findings indicated that the VBT group and PBT group showed significant improvement in 1RM squat exercise (Δ% 27.87 and Δ% 8.98, respectively) and 1RM bench press (Δ% 14.47 and Δ% 8.65, respectively), but a greater enhancement was observed in the VBT group. In addition, VBT induced substantial changes in SJ (Δ% 14.32) and CMJ height (Δ% 7.69), while PBT had an improvement only in the SJ test (Δ% 6.72). The improvement noted in the VBT group could be attributed to its ability to tailor training intensity according to the speed of movement execution. This approach allows athletes to perform each repetition as fast as possible, thus maintaining an optimal intensity for explosive strength development. The capacity of VBT to adapt training intensity based on the speed of movement execution may be the key factor contributing to these results. Therefore, coaches and athletes should consider implementing VBT as a valuable tool to optimize strength and power development. In conclusion, VBT induced greater improvement in the 1RM squat, 1RM bench press, SJ, and CMJ compared to the group that performed the traditional strength training modality. Therefore, VBT is considered a more effective training tool regarding the development of absolute and explosive strength in young women.
Collapse
Affiliation(s)
- Carlo Rossi
- Sport and Exercise Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144, Palermo, Italy
| | - Isidora Vasiljevic
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Manojlovic
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Tatjana Trivic
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marijana Ranisavljev
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Valdemar Stajer
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ewan Thomas
- Sport and Exercise Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144, Palermo, Italy
| | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
15
|
Schoser B, Kishnani PS, Bratkovic D, Byrne BJ, Claeys KG, Díaz-Manera J, Laforêt P, Roberts M, Toscano A, van der Ploeg AT, Castelli J, Goldman M, Holdbrook F, Sitaraman Das S, Wasfi Y, Mozaffar T. 104-week efficacy and safety of cipaglucosidase alfa plus miglustat in adults with late-onset Pompe disease: a phase III open-label extension study (ATB200-07). J Neurol 2024; 271:2810-2823. [PMID: 38418563 PMCID: PMC11055775 DOI: 10.1007/s00415-024-12236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
The phase III double-blind PROPEL study compared the novel two-component therapy cipaglucosidase alfa + miglustat (cipa + mig) with alglucosidase alfa + placebo (alg + pbo) in adults with late-onset Pompe disease (LOPD). This ongoing open-label extension (OLE; NCT04138277) evaluates long-term safety and efficacy of cipa + mig. Outcomes include 6-min walk distance (6MWD), forced vital capacity (FVC), creatine kinase (CK) and hexose tetrasaccharide (Hex4) levels, patient-reported outcomes and safety. Data are reported as change from PROPEL baseline to OLE week 52 (104 weeks post-PROPEL baseline). Of 118 patients treated in the OLE, 81 continued cipa + mig treatment from PROPEL (cipa + mig group; 61 enzyme replacement therapy [ERT] experienced prior to PROPEL; 20 ERT naïve) and 37 switched from alg + pbo to cipa + mig (switch group; 29 ERT experienced; 8 ERT naive). Mean (standard deviation [SD]) change in % predicted 6MWD from baseline to week 104 was + 3.1 (8.1) for cipa + mig and - 0.5 (7.8) for the ERT-experienced switch group, and + 8.6 (8.6) for cipa + mig and + 8.9 (11.7) for the ERT-naïve switch group. Mean (SD) change in % predicted FVC was - 0.6 (7.5) for cipa + mig and - 3.8 (6.2) for the ERT-experienced switch group, and - 4.8 (6.5) and - 3.1 (6.7), respectively, in ERT-naïve patients. CK and Hex4 levels improved in both treatment groups by week 104 with cipa + mig treatment. Three patients discontinued the OLE due to infusion-associated reactions. No new safety signals were identified. Cipa + mig treatment up to 104 weeks was associated with overall maintained improvements (6MWD, biomarkers) or stabilization (FVC) from baseline with continued durability, and was well tolerated, supporting long-term benefits for patients with LOPD.Trial registration number: NCT04138277; trial start date: December 18, 2019.
Collapse
Affiliation(s)
- Benedikt Schoser
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany.
| | | | - Drago Bratkovic
- PARC Research Clinic, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University International Centre for Life, Newcastle Upon Tyne, UK
| | - Pascal Laforêt
- Neurology Department, Nord/Est/Île-de-France Neuromuscular Reference Center, FHU PHENIX, Raymond-Poincaré Hospital, AP-HP, Garches, France
| | | | - Antonio Toscano
- ERN-NMD Center for Neuromuscular Disorders of Messina, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, CA, USA
| |
Collapse
|
16
|
Thewissen RMJ, Post MA, Maas DM, Veizaj R, Wagenaar I, Alsady M, Kools J, Bouman K, Zweers H, Meregalli PG, van der Kooi AJ, van Doorn PA, Groothuis JT, Lefeber DJ, Voermans NC. Oral ribose supplementation in dystroglycanopathy: A single case study. JIMD Rep 2024; 65:171-181. [PMID: 38736632 PMCID: PMC11078721 DOI: 10.1002/jmd2.12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 05/14/2024] Open
Abstract
Three forms of muscular dystrophy-dystroglycanopathies are linked to the ribitol pathway. These include mutations in the isoprenoid synthase domain-containing protein (ISPD), fukutin-related protein (FKRP), and fukutin (FKTN) genes. The aforementioned enzymes are required for generation of the ribitol phosphate linkage in the O-glycan of alpha-dystroglycan. Mild cases of dystroglycanopathy present with slowly progressive muscle weakness, while in severe cases the eyes and brain are also involved. Previous research showed that ribose increased the intracellular concentrations of cytidine diphosphate-ribitol (CDP-ribitol) and had a therapeutic effect. Here, we report the safety and effects of oral ribose supplementation during 6 months in a patient with limb girdle muscular dystrophy type 2I (LGMD2I) due to a homozygous FKRP mutation. Ribose was well tolerated in doses of 9 g or 18 g/day. Supplementation with 18 g of ribose resulted in a decrease of creatine kinase levels of 70%. Moreover, metabolomics showed a significant increase in CDP-ribitol levels with 18 g of ribose supplementation (p < 0.001). Although objective improvement in clinical and patient-reported outcome measures was not observed, the patient reported subjective improvement of muscle strength, fatigue, and pain. This case study indicates that ribose supplementation in patients with dystroglycanopathy is safe and highlights the importance for future studies regarding its potential effects.
Collapse
Affiliation(s)
- R. M. J. Thewissen
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - M. A. Post
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - D. M. Maas
- Department of RehabilitationDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - R. Veizaj
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - I. Wagenaar
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - M. Alsady
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - J. Kools
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - K. Bouman
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
- Department of Pediatric NeurologyDonders Institute for Brain, Cognition and Behavior, Amalia Children's Hospital, Radboud University Medical CenterNijmegenThe Netherlands
| | - H. Zweers
- Department of GastroenterologyRadboud University Medical CenterNijmegenThe Netherlands
| | - P. G. Meregalli
- Department of CardiologyAmsterdam UMCAmsterdamThe Netherlands
| | | | | | - J. T. Groothuis
- Department of RehabilitationDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - D. J. Lefeber
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - N. C. Voermans
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
17
|
Sládečková B, Botek M, Krejčí J, Valenta M, McKune A, Neuls F, Klimešová I. Hydrogen-rich water supplementation promotes muscle recovery after two strenuous training sessions performed on the same day in elite fin swimmers: randomized, double-blind, placebo-controlled, crossover trial. Front Physiol 2024; 15:1321160. [PMID: 38681143 PMCID: PMC11046232 DOI: 10.3389/fphys.2024.1321160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose: Molecular hydrogen has been shown to possess antioxidant, anti-inflammatory, ergogenic, and recovery-enhancing effects. This study aimed to assess the effect of molecular hydrogen administration on muscle performance, damage, and perception of soreness up to 24 h of recovery after two strenuous training sessions performed on the same day in elite fin swimmers. Methods: Eight females (mean ± SD; age 21.5 ± 5.0 years, maximal oxygen consumption 45.0 ± 2.5 mL.kg-1.min-1) and four males (age 18.9 ± 1.3 years, maximal oxygen consumption 52.2 ± 1.7 mL.kg-1.min-1) performed 12 × 50 m sprints in the morning session and a 400 m competitive performance in the afternoon session. Participants consumed hydrogen-rich water (HRW) or placebo 3 days before the sessions (1,260 mL/day) and 2,520 mL on the experimental day. Muscle performance (countermovement jump), muscle damage (creatine kinase), and muscle soreness (100 mm visual analogue scale) were measured during the experimental day and at 12 and 24 h after the afternoon session. Results: HRW compared to placebo reduced blood activity of creatine kinase (156 ± 63 vs. 190 ± 64 U.L-1, p = 0.043), muscle soreness perception (34 ± 12 vs. 42 ± 12 mm, p = 0.045), and improved countermovement jump height (30.7 ± 5.5 cm vs. 29.8 ± 5.8 cm, p = 0.014) at 12 h after the afternoon session. Conclusion: Four days of HRW supplementation is a promising hydration strategy for promoting muscle recovery after two strenuous training sessions performed on the same day in elite fin swimmers. Clinical Trial Registration: clinicaltrials.gov, identifier NCT05799911.
Collapse
Affiliation(s)
- Barbora Sládečková
- Department of Social Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
| | - Michal Botek
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
| | - Jakub Krejčí
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
| | - Michal Valenta
- Department of Sport, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
| | - Andrew McKune
- Faculty of Health, UC-Research Institute for Sport and Exercise, University of Canberra, Canberra, NSW, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Filip Neuls
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
| | - Iva Klimešová
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
18
|
Byrne BJ, Schoser B, Kishnani PS, Bratkovic D, Clemens PR, Goker-Alpan O, Ming X, Roberts M, Vorgerd M, Sivakumar K, van der Ploeg AT, Goldman M, Wright J, Holdbrook F, Jain V, Benjamin ER, Johnson F, Das SS, Wasfi Y, Mozaffar T. Long-term safety and efficacy of cipaglucosidase alfa plus miglustat in individuals living with Pompe disease: an open-label phase I/II study (ATB200-02). J Neurol 2024; 271:1787-1801. [PMID: 38057636 PMCID: PMC10973052 DOI: 10.1007/s00415-023-12096-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Cipaglucosidase alfa plus miglustat (cipa + mig) is a novel, two-component therapy for Pompe disease. We report data from the Phase I/II ATB200-02 study for up to 48 months of treatment. Four adult cohorts, including one non-ambulatory ERT-experienced (n = 6) and three ambulatory cohorts, (two enzyme replacement therapy [ERT]-experienced cohorts [2-6 years (n = 11) and ≥ 7 years (n = 6)]), one ERT-naïve cohort (n = 6), received 20 mg/kg intravenous-infused cipa plus 260 mg oral mig biweekly. Change from baseline (CFBL) for multiple efficacy endpoints at 12, 24, 36, and 48 months, pharmacodynamics, pharmacokinetics, safety, and immunogenicity data were assessed. Six-minute walking distance (% predicted) improved at 12, 24, 36, and 48 months: pooled ambulatory ERT-experienced cohorts, mean(± standard deviation [SD]) CFBL: 6.1(± 7.84), n = 16; 5.4(± 10.56), n = 13; 3.4(± 14.66), n = 12; 5.9(± 17.36), n = 9, respectively; ERT-naïve cohort: 10.7(± 3.93), n = 6; 11.0(± 5.06), n = 6; 9.0(± 7.98), n = 5; 11.7(± 7.69), n = 4, respectively. Percent predicted forced vital capacity was generally stable in ERT-experienced cohorts, mean(± SD) CFBL - 1.2(± 5.95), n = 16; 1.0(± 7.96), n = 13; - 0.3(± 6.68), n = 10; 1.0(± 6.42), n = 6, respectively, and improved in the ERT-naïve cohort: 3.2(± 8.42), n = 6; 4.7(± 5.09), n = 6; 6.2(± 3.35), n = 5; 8.3(± 4.50), n = 4, respectively. Over 48 months, CK and Hex4 biomarkers improved in ambulatory cohorts. Overall, cipa + mig was well tolerated with a safety profile like alglucosidase alfa. ATB200-02 results show the potential benefits of cipa + mig as a long-term treatment option for Pompe disease. Trial registration number: NCT02675465 January 26, 2016.
Collapse
Affiliation(s)
| | - Benedikt Schoser
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Drago Bratkovic
- PARC Research Clinic, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Paula R Clemens
- Department of Neurology, University of Pittsburgh School of Medicine and VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, USA
| | - Xue Ming
- Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
- Guam Regional Medical City, Dededo, Guam
| | | | - Matthias Vorgerd
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | | | | | | | | | | | - Vipul Jain
- Amicus Therapeutics, Inc., Princeton, NJ, USA
| | | | | | | | | | | |
Collapse
|
19
|
Bischof K, Stafilidis S, Bundschuh L, Oesser S, Baca A, König D. Reduction in systemic muscle stress markers after exercise-induced muscle damage following concurrent training and supplementation with specific collagen peptides - a randomized controlled trial. Front Nutr 2024; 11:1384112. [PMID: 38590831 PMCID: PMC10999617 DOI: 10.3389/fnut.2024.1384112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Collagen peptide supplementation in conjunction with exercise has been shown to improve structural and functional adaptations of both muscles and the extracellular matrix. This study aimed to explore whether specific collagen peptide (SCP) supplementation combined with a concurrent training intervention can improve muscular stress after exercise-induced muscle damage, verified by reliable blood markers. Methods 55 sedentary to moderately active males participating in a concurrent training (CT) intervention (3x/week) for 12 weeks were administered either 15 g of SCP or placebo (PLA) daily. Before (T1) and after the intervention (T2), 150 muscle-damaging drop jumps were performed. Blood samples were collected to measure creatine kinase (CK), lactate dehydrogenase (LDH), myoglobin (MYO) and high-sensitivity C-reactive protein (hsCRP) before, after, and at 2 h, 24 h and 48 h post exercise. Results A combination of concurrent training and SCP administration showed statistically significant interaction effects, implying a lower increase in the area under the curve (AUC) of MYO (p = 0.004, ηp2 = 0.184), CK (p = 0.01, ηp2 = 0.145) and LDH (p = 0.016, ηp2 = 0.133) in the SCP group. On closer examination, the absolute mean differences (ΔAUCs) showed statistical significance in MYO (p = 0.017, d = 0.771), CK (p = 0.039, d = 0.633) and LDH (p = 0.016, d = 0.764) by SCP supplementation. Conclusion In conclusion, 12 weeks of 15 g SCP supplementation combined with CT intervention reduced acute markers of exercise-induced muscle damage and improved post-exercise regenerative capacity, as evidenced by the altered post-exercise time course. The current findings indicate that SCP supplementation had a positive effect on the early phase of muscular recovery by either improving the structural integrity of the muscle and extracellular matrix during the training period or by accelerating membrane and cytoskeletal protein repair. Clinical trial registration https://www.clinicaltrials.gov/study/NCT05220371?cond=NCT05220371&rank=1, NCT05220371.
Collapse
Affiliation(s)
- Kevin Bischof
- Centre for Sports Science and University Sports, Department of Sports Science, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Savvas Stafilidis
- Centre for Sports Science and University Sports, Department for Biomechanics, Kinesiology and Computer Science in Sport, University of Vienna, Vienna, Austria
| | - Larissa Bundschuh
- Centre for Sports Science and University Sports, Department of Sports Science, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
| | | | - Arnold Baca
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
- Centre for Sports Science and University Sports, Department for Biomechanics, Kinesiology and Computer Science in Sport, University of Vienna, Vienna, Austria
| | - Daniel König
- Centre for Sports Science and University Sports, Department of Sports Science, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
- Faculty of Life Sciences, Department for Nutrition, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Liu Z, Liu Y, Xing T, Li J, Zhang L, Zhao L, Jiang Y, Gao F. Chronic heat stress inhibits glycogen synthesis through gga-miR-212-5p/GYS1 axis in the breast muscle of broilers. Poult Sci 2024; 103:103455. [PMID: 38295503 PMCID: PMC10846392 DOI: 10.1016/j.psj.2024.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/24/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024] Open
Abstract
Studies have demonstrated that chronic heat stress can accelerate glycolysis, decrease glycogen content in muscle, and affect muscle quality. However, the consequences of chronic heat stress on glycogen synthesis, miRNA expression in pectoralis major (PM) muscle, and its regulatory functions remain unknown. In this study, high-throughput sequencing and cell experiments were used to explore the effects of chronic heat stress on miRNA expression profiles and the regulatory mechanisms of miRNAs in glycogen synthesis under chronic heat stress. In total, 144 cocks were allocated into 3 groups: the normal control (NC) group, the heat stress (HS) group, and the pair-fed (PF) group. In total, 30 differently expressed (DE) miRNAs were screened after excluding the effect of feed intake, which were mainly related to metabolism, signal transduction, cell growth and death. Furthermore, the gga-miR-212-5p/GYS1 axis was predicted to participate in glycogen synthesis through the miRNA-mRNA analysis, and a dual-luciferase reporter test assay confirmed the target relationship. Mechanistically, chronic heat stress up-regulated gga-miR-212-5p, which could inhibit the expression of GYS1 in the PM muscle. Knocking down gga-miR-212-5p alleviates the reduction of glycogen content caused by chronic heat stress; overexpression of gga-miR-212-5p can reduce glycogen content. This study provided another important mechanism for the decreased glycogen contents within the PM muscle of broilers under heat stress, which might contribute to impaired meat quality.
Collapse
Affiliation(s)
- Zhen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, People's Republic of China
| | - Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jiaolong Li
- Institute of Agro-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
21
|
Ricco C, Eldaboush A, Liu ML, Werth VP. Extracellular Vesicles in the Pathogenesis, Clinical Characterization, and Management of Dermatomyositis: A Narrative Review. Int J Mol Sci 2024; 25:1967. [PMID: 38396646 PMCID: PMC10889219 DOI: 10.3390/ijms25041967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayer particles secreted from cells that primarily assist in cell-to-cell communication through the content of their cargo, such as proteins and RNA. EVs have been implicated in the pathogenesis of various autoimmune diseases, including dermatomyositis (DM), an inflammatory autoimmune disease characterized by distinct cutaneous manifestations, myopathy, and lung disease. We sought to review the role of EVs in DM and understand how they contribute to the pathogenesis and clinical characterization of the disease. We summarized the research progress on EVs in dermatomyositis based on recent publications. EV cargoes, such as double-stranded DNA, microRNA, and proteins, contribute to DM pathogenesis and mediate the proinflammatory response and cytokine release through signaling pathways such as the stimulator of interferon genes (STING) pathway. These nucleic acids and proteins have been proposed as disease-specific, stable biomarkers to monitor disease activity and responses to therapy. They also correlate with clinical parameters, inflammatory markers, and disease severity scores. Furthermore, some markers show an association with morbidities of DM, such as muscle weakness and interstitial lung disease. The continued study of EVs will help us to further elucidate our understanding of dermatomyositis.
Collapse
Affiliation(s)
- Cristina Ricco
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahmed Eldaboush
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ming-Lin Liu
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria P. Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; (C.R.); (A.E.); (M.-L.L.)
- Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Rodden J, Ortega DG, Costa PB. Sitting Less, Recovering Faster: Investigating the Relationship between Daily Sitting Time and Muscle Recovery following Intense Exercise: A Pilot Study. J Funct Morphol Kinesiol 2024; 9:24. [PMID: 38390924 PMCID: PMC10885058 DOI: 10.3390/jfmk9010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
(1) There is growing concern surrounding the adverse effects of prolonged sitting on health, yet its impact on post-exercise recovery remains relatively unexplored. This study aimed to better understand the potential influence of habitual prolonged sitting on recovery time and the unfavorable impact prolonged sitting may have on time to recovery, as assessed by muscle damage and inflammatory markers and an isokinetic dynamometer. (2) Nine college-age men (mean age ± SD = 22.1 ± 3.1 years, body mass = 80.9 ± 15.7 kg, height = 171 ± 9.0 cm, Body Mass Index (BMI) = 27.6 ± 4.9 kg·m2) participated in an exhaustive exercise protocol. Creatine Kinase (CK), Myoglobin (Mb), C-Reactive Protein (CRP), White Blood Cell Count (WBC), Peak Torque (PT), and muscle soreness were measured at baseline and 0, 24, 48, and 72 h post-exercise. Dietary and exercise logs were maintained during the 5-day testing procedure. (3) No significant differences were observed in muscle damage markers (CK [p = 0.068] and Mb [p = 0.128]), inflammatory markers (CRP [p = 0.814] and WBC [p = 0.140]), or PT [p = 0.255]) at any time point. However, a significant positive correlation was found between daily sitting time and the percent increase in CK concentration from 0 h to 72 h (r = 0.738, p = 0.023). Strong correlations were also noted between prolonged sitting and percent change in Mb concentration at 48 h (r = 0.71, p = 0.033) and 72 h (r = 0.889, p = 0.001). There was a significant two-way interaction for time × velocity (p = 0.043) for PT with a simple main effect for time at 60°·s-1 (p = 0.038). No significant associations were detected between daily carbohydrate or protein intake and recovery markers (p > 0.05). (4) The findings suggest minimizing daily sitting time may expedite and potentially aid muscle recovery after an intense exercise bout, although further research is warranted to validate these findings.
Collapse
Affiliation(s)
- Jaime Rodden
- Exercise Physiology Laboratory, Department of Kinesiology, California State University, Fullerton, CA 92831, USA
| | - Dolores G Ortega
- Exercise Physiology Laboratory, Department of Kinesiology, California State University, Fullerton, CA 92831, USA
| | - Pablo B Costa
- Exercise Physiology Laboratory, Department of Kinesiology, California State University, Fullerton, CA 92831, USA
| |
Collapse
|
23
|
Zhan H, Pal DS, Borleis J, Janetopoulos C, Huang CH, Devreotes PN. Self-organizing glycolytic waves fuel cell migration and cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577603. [PMID: 38328193 PMCID: PMC10849635 DOI: 10.1101/2024.01.28.577603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Glycolysis has traditionally been thought to take place in the cytosol but we observed the enrichment of glycolytic enzymes in propagating waves of the cell cortex in human epithelial cells. These waves reflect excitable Ras/PI3K signal transduction and F-actin/actomyosin networks that drive cellular protrusions, suggesting that localized glycolysis at the cortex provides ATP for cell morphological events such as migration, phagocytosis, and cytokinesis. Perturbations that altered cortical waves caused corresponding changes in enzyme localization and ATP production whereas synthetic recruitment of glycolytic enzymes to the cell cortex enhanced cell spreading and motility. Interestingly, the cortical waves and ATP levels were positively correlated with the metastatic potential of cancer cells. The coordinated signal transduction, cytoskeletal, and glycolytic waves in cancer cells may explain their increased motility and their greater reliance on glycolysis, often referred to as the Warburg effect.
Collapse
Affiliation(s)
- Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Chris Janetopoulos
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- Total Experience Learning, Albright College, Reading, PA 19612
| | - Chuan-Hsiang Huang
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- NDepartment of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- Lead Contact
| |
Collapse
|
24
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
25
|
Cosio PL, Moreno-Simonet L, Porcelli A, Lloret M, Padulles X, Padulles JM, Farran-Codina A, Cadefau JA. Assessment of inter-individual variability in hamstring muscle recovery after a sport-specific sprint training in women and men. Front Physiol 2024; 14:1331878. [PMID: 38264326 PMCID: PMC10803508 DOI: 10.3389/fphys.2023.1331878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Hamstring muscles are most affected by multiple sprint-based sports as a result of muscle strain during sprinting, leading to reduced performance and increased risk of injury. Therefore, the purpose of the study was to assess inter-individual variability in hamstrings recovery after a sport-specific repeated-sprint training (RST), through sprint-specific markers of muscle recovery and associated muscle damage biomarkers in women and men. Methods: Healthy females (n = 14) and males (n = 15) underwent 10 repeated 40-m sprints with a 3-min rest pause between each repetition. Force-generating capacity (FGC) by the 90° hip :20° knee test and range of motion Jurdan test, together with serum biomarkers [sarcomeric mitochondrial creatine kinase (sMtCK), oxidative stress, irisin] were tested at baseline and 24-, 48- and 72-h post-exercise through a repeated measures design. Participants were classified according to FGC loss into high responders (HR) and low responders (LR). Results: 21 individuals (10 females, 11 males) were classified as HR (FGC loss >20% and recovery >48 h), while 8 individuals (4 females, 4 males) were classified as LR. HR individuals showed unrecovered maximal voluntary isometric contraction (MVIC) torque until 72 h post-training (p = 0.003, np 2 = 0.170), whereas only HR males showed decreased range of motion (p = 0.026, np 2 = 0.116). HR individuals also showed increased sMtCK (p = 0.016, np 2 = 0.128), oxidative stress (p = 0.038, np 2 = 0.106) and irisin (p = 0.019, np 2 = 0.123). Conclusion: There is inter-individual variability in the muscular response to a sport-specific RST, identifiable by MVIC torque assessment. The findings support that the 90° hip :20° knee test is a powerful indirect test to screen hamstrings recovery in both women and men, in a cost-effective way. However, the Jurdan test might not be able to monitor hamstrings recovery in sportswomen after RST. Decreases in muscle capacity are linked to damage to muscle sarcolemma and mitochondria until 72 h post-exercise. Overall, 72 h will not be adequate time to restore hamstrings structure and function after a sport-specific RST in both female and male responders.
Collapse
Affiliation(s)
- Pedro L. Cosio
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Lia Moreno-Simonet
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Aniello Porcelli
- Department of Nutrition, Food Science and Gastronomy, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mario Lloret
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Xavier Padulles
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Josep M. Padulles
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Andreu Farran-Codina
- Department of Nutrition, Food Science and Gastronomy, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Joan A. Cadefau
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
26
|
Zhang L. Protective Effect of Tertiary Butylhydroquinone against Obesity-induced Skeletal Muscle Pathology in Post-weaning High Fat Diet Fed Rats. Curr Pharm Biotechnol 2024; 25:1276-1287. [PMID: 37565558 DOI: 10.2174/1389201024666230810094809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Obesity deleteriously affects skeletal muscle functionality starting from infancy to adulthood, leading to dysfunctional skeletal muscle. OBJECTIVES This study, therefore, evaluated the protective action of tert-butylhydroquinone (tBHQ) against obesity-induced skeletal muscle pathology in high-fat diet (HFD) fed rats. METHODS Twenty post-weaning male albino rats were randomized into four groups of five rats each as: Group 1 (control), Group 2 (HFD), Group 3 (orlistat) and Group 4 (tBHQ). Group one received rat pellets for 12 weeks, while groups 2 to 4 received HFD for 12 weeks. At the end of week 8, obesity was confirmed with Lee Obesity Index and body mass index values of ≥ 303 and ≥ 0.68 gcm2, respectively. Group 3 was given oral administration of orlistat (10 mg/kg, once daily), while group 4 was given oral administration of tBHQ (25 mg/kg, once daily). Administration of orlistat and tBHQ commenced from week 9 to the end of the experiment. RESULTS Chronic exposure of post-weaning rats to HFD led to their development of the metabolic syndrome phenotypes in adulthood, characterized by obesity, hyperglycemia, dyslipidaemia, hyperinsulinaemia, insulin resistance as well as induction of oxidative stress and alteration of skeletal muscle markers, which were mitigated following supplementation with orlistat and tBHQ. CONCLUSION The study showed the anti-obesity potentials of tBHQ and its protective action against HFD obesity-induced skeletal muscular pathology.
Collapse
Affiliation(s)
- Le Zhang
- Department of Pediatrics, Hanzhong Central Hospital, Hanzhong, 723000, China
| |
Collapse
|
27
|
Wang Y, Sun Y, Yang C, Han B, Wang S. Sodium salicylate ameliorates exercise-induced muscle damage in mice by inhibiting NF-kB signaling. J Orthop Surg Res 2023; 18:967. [PMID: 38098039 PMCID: PMC10722820 DOI: 10.1186/s13018-023-04433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Eccentric muscle contraction can cause muscle damage, which reduces the efficiency of exercise. Previous evidence suggested that Sodium salicylate (SS) could improve the repair of aged muscle. This study intends to investigate whether SS can impact skeletal muscle damage caused by eccentric exercise. METHODS Eccentric treadmill exercise was performed to induce muscle damage in mice. Plasma levels of muscle damage markers were estimated. RT-qPCR was employed for detecting mRNA levels of proinflammatory mediators in murine gastrocnemius muscle. Immunofluorescence staining of laminin/DAPI was utilized for quantifying centrally nucleated myofibers in the gastrocnemius muscle. Western blotting was implemented to examine protein levels of mitsugumin 53 (MG53), matrix metalloproteinase (MMP)-2/9, and NF-κB signaling-related markers. RESULTS SS administration reduced muscle damage marker production in the plasma and decreased the levels of proinflammatory mediators, MG53 and MMP-2/9 in mice after exercise. SS alleviated the severity of muscle damage in the gastrocnemius of mice after eccentric exercise. SS blocked NF-κB signaling pathway in the gastrocnemius muscle. CONCLUSION SS administration ameliorates skeletal muscle damage caused by eccentric exercise in the mouse model.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China.
| | - Yuning Sun
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China
| | - Chunhui Yang
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China
| | - Bing Han
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China
| | - Sining Wang
- Department of General, Huanggu District People's Government Office, Shenyang City, 110032, China
| |
Collapse
|
28
|
Liu Y, Liu Z, Xing T, Li J, Zhang L, Zhao L, Gao F. Effect of chronic heat stress on the carbonylation of glycolytic enzymes in breast muscle and its correlation with the growth performance of broilers. Poult Sci 2023; 102:103103. [PMID: 37837679 PMCID: PMC10589882 DOI: 10.1016/j.psj.2023.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 10/16/2023] Open
Abstract
Chronic heat stress has detrimental effects on the growth performance of broilers, and the potential mechanism is under exploration. In this study, the protein carbonyl modification was introduced to glycolytic enzymes to evaluate its relationship with the growth performance of heat-stressed (HS) broilers. A total of 144 male 28-day-old broilers were assigned to 3 treatments: the normal control group (NC, raised at 22°C with free access to feed and water), the HS group (raised at 32°C with free access to feed and water), and the pair-fed group (PF, raised at 22°C with an amount of feed equal to that consumed by the HS group on a previous day). Results showed that heat stress decreased the average daily growth, increased the feed-to-gain ratio (F/G), decreased breast muscle rate, and increased abdominal fat rate compared with the NC and PF groups (P < 0.05). Higher cloacal temperature and serum creatine kinase activity were found in the HS group than those of the NC and PF groups (P < 0.05). Heat stress increased the contents of carbonyl, advanced glycation end-products, malonaldehyde, and the activities of catalase, glutathione peroxidase, and total antioxidant capacity compared with the NC and PF groups (P < 0.05). Heat stress increased the contents of glucose and lactate, declined the glycogen content, and lowered the relative protein expressions of pyruvate kinase muscle type, lactate dehydrogenase A type (LDHA), and citrate synthase compared to those of the NC group (P < 0.05). In contrast to the NC and PF groups, heat stress intensified the carbonylation levels of phosphoglucomutase 1, triosephosphate isomerase 1, β-enolase, and LDHA, which were positively correlated with the F/G (P < 0.05). These findings demonstrate that heat stress depresses growth performance on account of oxidative stress and glycolysis disorders. It further increases the carbonylation of glycolytic enzymes, which potentially correlates with the F/G by disturbing the mode of energy supply of broilers.
Collapse
Affiliation(s)
- Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Cebrián-Ponce Á, Marini E, Stagi S, Castizo-Olier J, Carrasco-Marginet M, Garnacho-Castaño MV, Noriega Z, Espasa-Labrador J, Irurtia A. Body fluids and muscle changes in trail runners of various distances. PeerJ 2023; 11:e16563. [PMID: 38054016 PMCID: PMC10695110 DOI: 10.7717/peerj.16563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
Background This study aims to investigate body fluids and muscle changes evoked by different trail races using anthropometric, bioelectrical, and creatine kinase (CK) measurements. Methods A total of 92 subjects (55 men, 37 women) participating in three different races of 14, 35, and 52 km were evaluated before (PRE) and after (POST) the races. Classic bioelectrical impedance vector analysis was applied at the whole-body level (WB-BIVA). Additionally, muscle-localized bioelectrical assessments (ML-BIVA) were performed in a subgroup of 11 men (in the quadriceps, hamstrings, and calves). PRE-POST differences and correlations between bioelectrical values and CK, running time and race distance were tested. Results Changes in whole-body vectors and phase angles disclosed an inclination towards dehydration among men in the 14, 35, and 52 km groups (p < 0.001), as well as among women in the 35 and 52 km groups (p < 0.001). PRE Z/H was negatively correlated with running time in the 35 km men group and 14 km women group (r = -0.377, p = 0.048; r = -0.751, p = 0.001; respectively). POST Z/H was negatively correlated with running time in the 14 km women group (r = -0.593, p = 0.02). CK was positively correlated with distance in men and women (p < 0.001) and negatively correlated with reactance and vector length in the 14 km men group (p < 0.05). ML-BIVA echoed the same tendency as the WB-BIVA in the 35 and 52 km runners, with the most notable changes occurring in the calves (p < 0.001). Conclusions WB-BIVA and CK measurements underscored a conspicuous trend towards post-race dehydration and muscle damage, displaying a weak association with performance. Notably, ML-BIVA detected substantial alterations primarily in the calves. The study underscores the utility of BIVA as a technique to assess athlete's body composition changes.
Collapse
Affiliation(s)
- Álex Cebrián-Ponce
- INEFC-Barcelona Sports Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC). University of Barcelona (UB), Barcelona, Spain
| | - Elisabetta Marini
- Department of Life and Environmental Sciences. Neuroscience and Anthropology Section, University of Cagliari, Cagliari, Italy
| | - Silvia Stagi
- Department of Life and Environmental Sciences. Neuroscience and Anthropology Section, University of Cagliari, Cagliari, Italy
| | - Jorge Castizo-Olier
- INEFC-Barcelona Sports Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC). University of Barcelona (UB), Barcelona, Spain
- DAFNiS Research Group (Pain, Physical Activity, Nutrition and Health), Campus Docent Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Marta Carrasco-Marginet
- INEFC-Barcelona Sports Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC). University of Barcelona (UB), Barcelona, Spain
| | - Manuel Vicente Garnacho-Castaño
- DAFNiS Research Group (Pain, Physical Activity, Nutrition and Health), Campus Docent Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Faculty of Health Sciences, Valencian International University (VIU), Valencia, Spain
| | - Zeasseska Noriega
- INEFC-Barcelona Sports Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC). University of Barcelona (UB), Barcelona, Spain
| | - Javier Espasa-Labrador
- INEFC-Barcelona Sports Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC). University of Barcelona (UB), Barcelona, Spain
| | - Alfredo Irurtia
- INEFC-Barcelona Sports Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC). University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
30
|
Ma M, Cao Z, Yang M, Kong X, Chai W. The invasiveness of robot-assisted total hip replacement is similar to that of conventional surgery. J Robot Surg 2023; 17:2987-2993. [PMID: 37891384 DOI: 10.1007/s11701-023-01740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Robot-assisted total hip arthroplasty (R-THA) is increasingly being performed throughout the world. The invasiveness of this operation is unknown. We retrospectively reviewed the cohort of consecutive osteonecrosis of the femoral head (ONFH) patients who received primary R-THA or manual THA (M-THA) from January 2020 to January 2022 in our institution. One experienced surgeon performed all procedures. We calculated the propensity score to match similar patients in different groups by multivariate logistic regression analysis for each patient. We included confounders consisting of age, sex, body mass index (BMI), and operation time. Preoperative serum markers and Harris hip scores (HHS), postoperative serum markers at first day and third day, complications rate, postoperative HHS and Forgotten Joint Score (FJS) at 6 months after surgery of different cohorts were compared. We analyzed 218 ONFH patients treated with THA (98 R-THA patients, and 120 M-THA patients). After propensity score matching, we generated cohorts of 95 patients in R-THA and M-THA groups. We found no significant difference in preoperative serum markers and HHS. In the R-THA cohort, the PLT count was significantly lower on the postoperative day 1 (192.36 ± 41.72 × 109/L Vs 210.47 ± 72.85 × 109/L, p < 0.05). The Hb level was significantly lower on the postoperative third day in the R-THA cohort (98.52 ± 12.99 g/L Vs 104.74 ± 13.15 g/L, p < 0.05). There was no significant difference in the other serum markers between the cohorts on postoperative day 1 and 3 (p > 0.05). The FJS was significantly higher in the R-THA than M-THA group (p = 0.01). There was no significant difference in the postoperative HHS or complication rate between the groups (p > 0.05). The R-THA is not associated with a serious invasiveness compared to M-THA. Patients who underwent R-THA had a better early function compared to those who underwent M-THA.
Collapse
Affiliation(s)
- Mingyang Ma
- Chinese PLA Medical School, Beijing, China
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, Beijing, China
| | - Zheng Cao
- Chinese PLA Medical School, Beijing, China
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Minzhi Yang
- Chinese PLA Medical School, Beijing, China
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, Beijing, China
| | - Xiangpeng Kong
- Chinese PLA Medical School, Beijing, China.
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, Beijing, China.
| | - Wei Chai
- Chinese PLA Medical School, Beijing, China.
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, Beijing, China.
| |
Collapse
|
31
|
Saita Y, Hattori K, Hokari A, Ohyama T, Inoue J, Nishimura T, Nemoto S, Aoyagi S. Plasma myoglobin indicates muscle damage associated with acceleration/deceleration during football. J Sports Med Phys Fitness 2023; 63:1337-1342. [PMID: 37712927 DOI: 10.23736/s0022-4707.23.15203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
BACKGROUND Monitoring muscle damage in athletes assists not only coaches to adjust the training workload but also medical staff to prevent injury. Measuring blood myoglobin concentration can help evaluate muscle damage. The novel portable device utilized in this study allows for easy on-site measurement of myoglobin, providing real-time data on the player's muscle damage. This study investigated the relationship between external load (global positioning system parameters) and internal loads (myoglobin concentration and creatine kinase activity) in 15 male professional football players before and after a match. METHODS Whole blood samples from participants' fingertips were collected before the match (baseline) and at 2, 16, and 40 h after the match. Myoglobin concentrations were measured using the IA-100 compact immunoassay system. Creatine kinase concentrations were measured in a clinical laboratory, and match loads were monitored using a global positioning system device. RESULTS The mean myoglobin concentration was significantly higher at 2 h than at the other time points (P<0.05), and decreased to baseline levels within 16 h post-match. The mean creatine kinase concentration increased after the match but did not reach a significant level. Muscle damage monitored by myoglobin after football match-play was strongly associated with acceleration/deceleration metrics rather than the sprint/high-speed running distance. CONCLUSIONS Our findings indicate that myoglobin is a more sensitive marker of muscle damage than creatine kinase after football match-play. Monitoring myoglobin in athletes can aid in determining their recovery status from the previous training load and help practitioners manage the training load.
Collapse
Affiliation(s)
- Yoshitomo Saita
- Department of Medical, IWAKI Sports Club, Fukushima, Japan -
- Department of Sports and Regenerative Medicine, Juntendo University, Tokyo, Japan -
| | - Kazuhiko Hattori
- Department of Sports and Regenerative Medicine, Juntendo University, Tokyo, Japan
| | - Atsushi Hokari
- Department of Sports and Regenerative Medicine, Juntendo University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Oikonomidis IL, Milne E. Clinical enzymology of the dog and cat. Aust Vet J 2023; 101:465-478. [PMID: 37767749 DOI: 10.1111/avj.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/15/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Clinical enzymology studies the enzyme activity in serum or other body fluids for the diagnosis, prognosis or monitoring of a variety of diseases. Clinical enzymology has greatly benefited from advances in technology and is now an integral part of laboratory analysis. However, to maximise the clinical benefits of serum enzyme measurement, clinicians and clinical pathologists must have a good understanding of the pathophysiology behind serum enzyme alterations. They must also be aware of the preanalytical and analytical factors that can affect the accuracy of serum enzyme activity measurement. This review article first covers the basic concepts of clinical enzymology and the general mechanisms related to serum enzyme alterations. Then, the review discusses the potential effects of various preanalytical and analytical factors on enzyme activity measurement. Lastly, it explores the pathophysiology and clinical use of various serum enzymes in canine and feline medicine. The present review article aims to be a comprehensive one-stop source for clinical pathologists and small animal practitioners.
Collapse
Affiliation(s)
- I L Oikonomidis
- Easter Bush Pathology, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - E Milne
- Easter Bush Pathology, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
33
|
Mexis D, Nomikos T, Mitsopoulos N, Kostopoulos N. Effect of a 6-Week Preseason Training Protocol on Physiological and Muscle Damage Markers in High-Level Female and Male Basketball Players. Sports (Basel) 2023; 11:229. [PMID: 37999446 PMCID: PMC10674927 DOI: 10.3390/sports11110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This study aimed to investigate the effects of a 6-week preseason functional and plyometric fitness training protocol, on physiological and biochemical markers of performance and exercise-induced muscle damage, and to compare the response of these markers between high-level female and male basketball players. The sample of the study consisted of 19 professional athletes (10 male; 9 female) competing in two different teams. The examined markers were body mass, BMI, fat percentage, speed, acceleration, explosiveness, vertical jumping ability, creatine kinase (CK) and lactate dehydrogenase (LDH). The preseason training period improved speed, acceleration, explosiveness and vertical jumping ability (~1-8%) and led to significant fat percentage reductions in both groups equivalently. CK and LDH increased similarly in both groups, and the percentage increases were higher for CK compared to LDH. Further investigation and a larger sample size are required in order to determine an approach that is more capable of maximizing performance without causing any possible injuries that may be related to muscle damage.
Collapse
Affiliation(s)
- Dimitrios Mexis
- School of Physical Education and Sport Science, Department of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (D.M.); (N.M.)
| | - Tzortzis Nomikos
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, 17676 Athens, Greece;
| | - Nikolaos Mitsopoulos
- School of Physical Education and Sport Science, Department of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (D.M.); (N.M.)
| | - Nikolaos Kostopoulos
- School of Physical Education and Sport Science, Department of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (D.M.); (N.M.)
| |
Collapse
|
34
|
Dorand VAM, Soares NL, da Silva Andrade ADA, Ribeiro MD, de Almeida Filho EJB, Neto MM, Batista KS, de Oliveira GC, Alves AF, de Paiva Sousa MC, Silva AS, Aquino JDS. Intermittent fasting associated with aerobic exercise improves oxidative parameters and causes muscle damage without compromising the performance of Wistar rats. Nutrition 2023; 115:112159. [PMID: 37549455 DOI: 10.1016/j.nut.2023.112159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVES The aim of this study was to` investigate the effects of intermittent fasting (IF) and the possible association with aerobic exercise on performance, oxidative, biochemical, and somatic parameters of Wistar rats. METHODS Forty rats were randomized into the following groups: sedentary (SC) and trained (TC) controls, sedentary intermittent fasting (SIF), and trained intermittent fasting (TIF). The rats were subjected to IF for 15 h every day and aerobic exercise lasting 30 min, five times a week, at a speed of 15 m/min for 4 wk. Performance tests were performed at the beginning and end of the protocol. Glucose and insulin tolerance, somatic parameters, lipidogram, leptin, insulin, malondialdehyde, antioxidant capacity, C-reactive protein, alpha acid glycoprotein, creatine kinase, lactate dehydrogenase, and muscle histology were analyzed. RESULTS The trained groups had similar performance and significantly improved performance at the end of the experiment. TIF showed lower body weight (-16 g), lean mass (22.49%), homeostatic model assessment for insulin resistance (29%), and lactate dehydrogenase (48%), and higher malondialdehyde (53%) and antioxidant capacity (75%) than the TC group. The SIF and TIF groups showed a fiber area reduction and positivity marking for tumor necrosis factor-α in the muscles. CONCLUSION Although IF associated with aerobic exercise improved antioxidant capacity caused damage to muscle fibers and lean mass loss, it did not change the performance of the rats.
Collapse
Affiliation(s)
- Victor Augusto Mathias Dorand
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa-PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Naís Lira Soares
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa-PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | | | - Mateus Duarte Ribeiro
- Laboratory of Applied Studies in Physical Training to Performance and Health - LETFADS, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil; Associate Graduate Program in Physical Education - UPE/UFPB, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| | - Eder Jackson Bezerra de Almeida Filho
- Laboratory of Applied Studies in Physical Training to Performance and Health - LETFADS, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| | - Manoel Miranda Neto
- Laboratory of Applied Studies in Physical Training to Performance and Health - LETFADS, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| | - Kamila Sabino Batista
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa-PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | | | - Adriano Francisco Alves
- Laboratory of General pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Maria Carolina de Paiva Sousa
- Laboratory of General pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Alexandre Sergio Silva
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Laboratory of Applied Studies in Physical Training to Performance and Health - LETFADS, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil; Associate Graduate Program in Physical Education - UPE/UFPB, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| | - Jailane de Souza Aquino
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, UFPB, João Pessoa-PB, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Department of Nutrition at the Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
35
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
36
|
Haller N, Reichel T, Zimmer P, Behringer M, Wahl P, Stöggl T, Krüger K, Simon P. Blood-Based Biomarkers for Managing Workload in Athletes: Perspectives for Research on Emerging Biomarkers. Sports Med 2023; 53:2039-2053. [PMID: 37341908 PMCID: PMC10587296 DOI: 10.1007/s40279-023-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
At present, various blood-based biomarkers have found their applications in the field of sports medicine. This current opinion addresses biomarkers that warrant consideration in future research for monitoring the athlete training load. In this regard, we identified a variety of emerging load-sensitive biomarkers, e.g., cytokines (such as IL-6), chaperones (such as heat shock proteins) or enzymes (such as myeloperoxidase) that could improve future athlete load monitoring as they have shown meaningful increases in acute and chronic exercise settings. In some cases, they have even been linked to training status or performance characteristics. However, many of these markers have not been extensively studied and the cost and effort of measuring these parameters are still high, making them inconvenient for practitioners so far. We therefore outline strategies to improve knowledge of acute and chronic biomarker responses, including ideas for standardized study settings. In addition, we emphasize the need for methodological advances such as the development of minimally invasive point-of-care devices as well as statistical aspects related to the evaluation of these monitoring tools to make biomarkers suitable for regular load monitoring.
Collapse
Affiliation(s)
- Nils Haller
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Thomas Reichel
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Gießen, Giessen, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Michael Behringer
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Wahl
- Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Thomas Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
- Red Bull Athlete Performance Center, Salzburg, Austria
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Gießen, Giessen, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany.
| |
Collapse
|
37
|
Jordakieva G, Hasenoehrl T, Steiner M, Jensen-Jarolim E, Crevenna R. Occupational physical activity: the good, the bad, and the proinflammatory. Front Med (Lausanne) 2023; 10:1253951. [PMID: 37869170 PMCID: PMC10587420 DOI: 10.3389/fmed.2023.1253951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Background Physical activity (PA) is beneficial for preventing several conditions associated with underlying chronic inflammation, e. g., cardiovascular disease (CVD) and cancer. While an active lifestyle appears to have anti-inflammatory effects, high levels of occupational PA (OPA) were associated with inflammation and elevated mortality risks. We aimed to summarize the current knowledge (1) on the association between inflammation and OPA and (2) its implications for health and mortality. Methods and results This mini-review summarized relevant literature published before January 2023 using established scientific databases and sources. For the primary outcome, observational studies (S) reporting immunological effects (O) in subjects (P), with high (I) vs. low OPA (C), were included. For secondary outcomes, i.e., morbidity and mortality associated with inflammatory processes, (systematic) reviews were included. While "active" occupations and "moderate" OPA appear to have beneficial effects, low (particularly sedentary) and "high-intensity" OPA (particularly including heavy lifting tasks) were associated with inflammation and (CVD and cancer-related) mortality; higher leisure-time PA has been almost consistently associated with lower proinflammatory markers and all-cause mortality risks. Workplace interventions appear to counter some of the observed health effects of unfavorable work strain. Conclusion The few studies addressing OPA "intensity" and inflammatory markers are largely heterogeneous regarding OPA classification and confounder control. Sedentary and "heavy" OPA appear to promote proinflammatory effects. In addition to targeted management of work-related physical strain and hazardous environmental co-factors, occupational health providers should focus on employer-initiated exercise interventions and the promotion of leisure-time PA.
Collapse
Affiliation(s)
- Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation, and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Timothy Hasenoehrl
- Department of Physical Medicine, Rehabilitation, and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Margarete Steiner
- Department of Physical Medicine, Rehabilitation, and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- The Interuniversity Messerli Research Institute, Medical University of Vienna, Vienna, Austria
| | - Richard Crevenna
- Department of Physical Medicine, Rehabilitation, and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Ton C, Salehi S, Abasi S, Aggas JR, Liu R, Brandacher G, Guiseppi-Elie A, Grayson WL. Methods of ex vivo analysis of tissue status in vascularized composite allografts. J Transl Med 2023; 21:609. [PMID: 37684651 PMCID: PMC10492401 DOI: 10.1186/s12967-023-04379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 09/10/2023] Open
Abstract
Vascularized composite allotransplantation can improve quality of life and restore functionality. However, the complex tissue composition of vascularized composite allografts (VCAs) presents unique clinical challenges that increase the likelihood of transplant rejection. Under prolonged static cold storage, highly damage-susceptible tissues such as muscle and nerve undergo irreversible degradation that may render allografts non-functional. Skin-containing VCA elicits an immunogenic response that increases the risk of recipient allograft rejection. The development of quantitative metrics to evaluate VCAs prior to and following transplantation are key to mitigating allograft rejection. Correspondingly, a broad range of bioanalytical methods have emerged to assess the progression of VCA rejection and characterize transplantation outcomes. To consolidate the current range of relevant technologies and expand on potential for development, methods to evaluate ex vivo VCA status are herein reviewed and comparatively assessed. The use of implantable physiological status monitoring biochips, non-invasive bioimpedance monitoring to assess edema, and deep learning algorithms to fuse disparate inputs to stratify VCAs are identified.
Collapse
Affiliation(s)
- Carolyn Ton
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Salehi
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Abasi
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Media and Metabolism, Wildtype, Inc., 2325 3rd St., San Francisco, CA, 94107, USA
| | - John R Aggas
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Test Development, Roche Diagnostics, 9115 Hague Road, Indianapolis, IN, 46256, USA
| | - Renee Liu
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Reconstructive Transplantation Program, Center for Advanced Physiologic Modeling (CAPM), Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| | - Anthony Guiseppi-Elie
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, USA.
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, USA.
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
39
|
De Berardinis L, Senarighi M, Farinelli L, Qordja F, Gallo A, Spezia M, Gigante AP. In primary total hip arthroplasty, the direct anterior approach leads to higher levels of creatine kinase and lower levels of C-reactive protein compared to the posterolateral approach: a propensity score matching analysis of short-term follow-up data. J Orthop Surg Res 2023; 18:594. [PMID: 37568175 PMCID: PMC10416395 DOI: 10.1186/s13018-023-04084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND This retrospective study compares the invasiveness of the direct anterior approach (DAA) and the posterolateral approach (PLA) in total hip arthroplasty (THA) by assessing three widely used inflammation-related serum markers in the first ten post-operative days. METHODS The database of our institution was mined for primary THAs conducted by the DAA or the PLA from February 2020 to June 2022. Demographics and creatine kinase (CK), C-reactive protein (CRP), and white blood cells were compared. Propensity Score Matching (PSM) analysis (1:1 ratio) was conducted based on multiple variables. RESULTS PSM analysis yielded 44 pairs of DAA and PLA patients. CK was significantly higher (p < 0.001) in the DAA than in the PLA group on postoperative day (POD) 2, 5 and 10. The POD2, POD5 and POD10 CK/preoperative CK ratio was 12.9, 5.0 and 0.8 in DAA and 8.8, 3.3 and 0.6 in PLA (p = 0.017, p = 0.012 and p = 0.025, respectively). The POD2, POD5 and POD10 CRP/preoperative CRP ratio was 95.1, 65.6 and 22.8 in PLA and 34.7, 23.3 and 8.9 in DAA (p < 0.001, p = 0.002 and p < 0.001, respectively). CONCLUSION PSM analysis of early postoperative CK and CRP values demonstrated that the DAA should be considered as a less stressful approach, not as a muscle-sparing or a minimally invasive THA approach.
Collapse
Affiliation(s)
- Luca De Berardinis
- Clinical Orthopedics, Department of Clinical and Molecular Science, School of Medicine, Università Politecnica delle Marche, Via Tronto, 10/a, 60126, Ancona, AN, Italy.
| | - Marco Senarighi
- Clinical Orthopedics, Department of Clinical and Molecular Science, School of Medicine, Università Politecnica delle Marche, Via Tronto, 10/a, 60126, Ancona, AN, Italy
| | - Luca Farinelli
- Clinical Orthopedics, Department of Clinical and Molecular Science, School of Medicine, Università Politecnica delle Marche, Via Tronto, 10/a, 60126, Ancona, AN, Italy
| | - Fjorela Qordja
- Clinical Orthopedics, Department of Clinical and Molecular Science, School of Medicine, Università Politecnica delle Marche, Via Tronto, 10/a, 60126, Ancona, AN, Italy
| | - Alberto Gallo
- Orthopedic Unit, Habilita Casa di Cura I Cedri, Via Don Guanella, 1, 28073, Fara Novarese, NO, Italy
| | - Marco Spezia
- Orthopedic Unit, Habilita Casa di Cura I Cedri, Via Don Guanella, 1, 28073, Fara Novarese, NO, Italy
| | - Antonio Pompilio Gigante
- Clinical Orthopedics, Department of Clinical and Molecular Science, School of Medicine, Università Politecnica delle Marche, Via Tronto, 10/a, 60126, Ancona, AN, Italy
| |
Collapse
|
40
|
Ge H, Wang Z, Yang Z, Shi J, Lu J, Wang Y, Li Z, Du G, Shen Z, Zhan H. Exploring the optimal impact force for chronic skeletal muscle injury induced by drop-mass technique in rats. Front Physiol 2023; 14:1241187. [PMID: 37621764 PMCID: PMC10444991 DOI: 10.3389/fphys.2023.1241187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction: Skeletal muscle injuries are widespread in sports, traffic accidents and natural disasters and some of them with poor prognoses can lead to chronic skeletal muscle damage in the clinic. We induced a chronic skeletal muscle injury by controlling time and contusion force using an acute blunt trauma model that will help us better comprehend the pathological features of chronic skeletal muscle injury. Methods: Several levels of injury were induced by repeatedly striking in 5, 10, and 15 times the gastrocnemius muscle from the same height with 200 g weights. After injury, the markers of muscle injury were assessed at 2 and 4 weeks by serum elisa. Electron microscopy, histologic and immunohistochemical staining, and mRNA analysis were used to evaluate the ultrastructure, inflammation, extracellular matrix decomposition, and anabolism of injured muscle in 2 and 4 weeks. Results: All three different kinetic energies can result in skeletal muscle injuries. However, the injured skeletal muscles of rats in each group could not recover within 2 weeks. After 4 weeks, tissue self-repair and reconstruction caused the damage induced by 5 J kinetic energy to almost return to normal. In contrast, damage induced by 10 J kinetic energy displayed slight improvement compared to that at 2 weeks. Despite this, collagen fibers on the surface of the tissue were disorganized, directionally ambiguous, and intertwined with each other. Myofilaments within the tissue were also arranged disorderly, with blurry and broken Z-lines. Damage caused by 15 J kinetic energy was the most severe and displayed no improvements at 4 weeks compared to 2 weeks. At 4 weeks, IL-1β, IL-6, Collagen I, and Collagen III, MMP2 expressions in the 10 J group were lower than those at 2 weeks, showing a tendency towards injury stabilization. Conclusion: After 4 weeks of remodeling and repair, the acute skeletal muscle injury model induced by 10 J kinetic energy can stabilize pathological manifestations, inflammatory expression, and extracellular matrix synthesis and catabolism, making it an appropriate model for studying chronic skeletal muscle injuries caused by acute injury.
Collapse
Affiliation(s)
- Haiya Ge
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhengming Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zongrui Yang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jinyu Shi
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jiehang Lu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhengyan Li
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Guoqing Du
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhibi Shen
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Zhan
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
41
|
Motuziuk O, Nozdrenko D, Prylutska S, Vareniuk I, Bogutska K, Braniuk S, Korotkyi O, Prylutskyy Y, Ritter U, Piosik J. The effect of C 60 fullerene on the mechanokinetics of muscle gastrocnemius contraction in chronically alcoholized rats. Heliyon 2023; 9:e18745. [PMID: 37554800 PMCID: PMC10404780 DOI: 10.1016/j.heliyon.2023.e18745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
The C60 fullerene effect (oral administration at a dose of 1 mg kg-1) on the selected biomechanical parameters of muscle gastrocnemius contraction, biochemical indicators of blood and muscle tissue as well as histological changes in rat muscle tissue after chronic alcoholization for 3, 6 and 9 months was studied in detail. Water-soluble C60 fullerenes were shown to reduce the pathological processes development in the muscle apparatus by an average of (35-40)%. In particular, they reduced the time occurrence of fatigue processes in muscle during the long-term development of alcoholic myopathy and inhibited oxidative processes in muscle, thereby preventing its degradation. These findings open up the possibility of using C60 fullerenes as potent antioxidants for the correction of the pathological conditions of the muscle system arising from alcohol intoxication.
Collapse
Affiliation(s)
- Olexandr Motuziuk
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, 43025, Ukraine
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Dmytro Nozdrenko
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Svitlana Prylutska
- Department of Physiology, Plant Biochemistry and Bioenergetics, Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Science of Ukraine, Kyiv, 03041, Ukraine
| | - Igor Vareniuk
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Kateryna Bogutska
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Serhii Braniuk
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, 43025, Ukraine
| | - Olexandr Korotkyi
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Yuriy Prylutskyy
- Department of Biophysics and Medical Informatics, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Ilmenau, 98693, Germany
| | - Jacek Piosik
- Intercollegiate Faculty of Biotechnology, University of Gdansk, 80-307, Gdańsk, Poland
| |
Collapse
|
42
|
López-Martínez MJ, Ornelas MAS, Amarie RE, Manzanilla EG, Martínez-Subiela S, Tecles F, Tvarijonaviciute A, Escribano D, González-Bulnes A, Cerón JJ, López-Arjona M, Muñoz-Prieto A. Changes in salivary biomarkers of stress, inflammation, redox status, and muscle damage due to Streptococcus suis infection in pigs. BMC Vet Res 2023; 19:100. [PMID: 37525237 PMCID: PMC10388462 DOI: 10.1186/s12917-023-03650-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Streptococcus suis (S. suis) is a Gram-positive bacteria that infects pigs causing meningitis, arthritis, pneumonia, or endocarditis. This increases the mortality in pig farms deriving in severe economic losses. The use of saliva as a diagnostic fluid has various advantages compared to blood, especially in pigs. In this study, it was hypothesized that saliva could reflect changes in different biomarkers related to stress, inflammation, redox status, and muscle damage in pigs with S. suis infection and that changes in these biomarkers could be related to the severity of the disease. RESULTS A total of 56 growing pigs from a farm were selected as infected pigs (n = 28) and healthy pigs (n = 28). Results showed increases in biomarkers related to stress (alpha-amylase and oxytocin), inflammation (haptoglobin, inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4), total protein, S100A8-A9 and S100A12), redox status (advanced oxidation protein producs (AOPP)) and muscle damage (creatine kinase (CK), CK-MB, troponin I, lactate, aspartate aminotransferase, and lactate dehydrogenase). An increase in adenosine deaminase (ADA), procalcitonin, and aldolase in infected animals were also observed, as previously described. The grade of severity of the disease indicated a significant positive correlation with total protein concentrations, aspartate aminotransferase, aldolase, and AOPP. CONCLUSIONS This report revealed that S. suis infection caused variations in analytes related to stress, inflammation, redox status, and muscle damage in the saliva of pigs and these can be considered potential biomarkers for this disease.
Collapse
Affiliation(s)
- María José López-Martínez
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain
| | - Mario Andre S Ornelas
- Pig Development Department, The Irish Food and Agriculture Authority, Teagasc, Moorepark, Fermoy, Co Cork, P61 C996, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Roxana Elena Amarie
- Department of Agriculture, Food, and Environment, University of Pisa, Pisa, Italy
| | - Edgar Garcia Manzanilla
- Pig Development Department, The Irish Food and Agriculture Authority, Teagasc, Moorepark, Fermoy, Co Cork, P61 C996, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, Valencia, 46115, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain
| | - Marina López-Arjona
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain.
| |
Collapse
|
43
|
Zamoshchina TA, Gostyukhina AA, Zykova MV, Logvinova LA, Prokopova AV, Zaitsev KV, Svetlik MV, Belousov MV, Dygai AM. Comparative Analysis of Stress-Protective Activity and Prevention of Fatigue during Physical Load of Standardized Humic Acids from Peat and Officinal Preparations of Succinic Acid in Experiment. Bull Exp Biol Med 2023:10.1007/s10517-023-05836-9. [PMID: 37464194 DOI: 10.1007/s10517-023-05836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 07/20/2023]
Abstract
The effect of humic acids and substances with similar action - derivatives of succinic acid (ethylmethylhydroxypyridine succinate) and combined agent consisting of succinic acid, nicotinamide, riboflavin, and riboxin on the performance and stress resistance of experimental rats was studied. Performance was assessed in the test of exhaustive forced swimming with a load, stress resistance was evaluated by the serum level of corticosterone and open field behavior, and the state of anaerobic metabolism was estimated by the serum level of lactate after swimming test. Humic acids from peat showed anti-stress activity comparable to that of the officinal preparation and preventive effect on fatigue during physical exercise. They can be recommended as a component for the development of drugs that increase human performance and stress resistance.
Collapse
Affiliation(s)
- T A Zamoshchina
- Federal Research Clinical Center of Medical Rehabilitation and Balneology, Federal Medical-Biological Agency, Moscow, Russia
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - A A Gostyukhina
- Federal Research Clinical Center of Medical Rehabilitation and Balneology, Federal Medical-Biological Agency, Moscow, Russia.
- National Research Tomsk State University, Tomsk, Russia.
| | - M V Zykova
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - L A Logvinova
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - A V Prokopova
- Federal Research Clinical Center of Medical Rehabilitation and Balneology, Federal Medical-Biological Agency, Moscow, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - K V Zaitsev
- Federal Research Clinical Center of Medical Rehabilitation and Balneology, Federal Medical-Biological Agency, Moscow, Russia
| | - M V Svetlik
- Federal Research Clinical Center of Medical Rehabilitation and Balneology, Federal Medical-Biological Agency, Moscow, Russia
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - M V Belousov
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - A M Dygai
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
44
|
Haller N, Behringer M, Reichel T, Wahl P, Simon P, Krüger K, Zimmer P, Stöggl T. Blood-Based Biomarkers for Managing Workload in Athletes: Considerations and Recommendations for Evidence-Based Use of Established Biomarkers. Sports Med 2023; 53:1315-1333. [PMID: 37204619 PMCID: PMC10197055 DOI: 10.1007/s40279-023-01836-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 05/20/2023]
Abstract
Blood-based biomarkers can provide an objective individualized measure of training load, recovery, and health status in order to reduce injury risk and maximize performance. Despite enormous potentials, especially owing to currently evolving technology, such as point-of-care testing, and advantages, in terms of objectivity and non-interference with the training process, there are several pitfalls in the use and interpretation of biomarkers. Confounding variables such as preanalytical conditions, inter-individual differences, or an individual chronic workload can lead to variance in resting levels. In addition, statistical considerations such as the detection of meaningful minimal changes are often neglected. The lack of generally applicable and individual reference levels further complicates the interpretation of level changes and thus load management via biomarkers. Here, the potentials and pitfalls of blood-based biomarkers are described, followed by an overview of established biomarkers currently used to support workload management. Creatine kinase is discussed in terms of its evidence for workload management to illustrate the limited applicability of established markers for workload management to date. We conclude with recommendations for best practices in the use and interpretation of biomarkers in a sport-specific context.
Collapse
Affiliation(s)
- Nils Haller
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany
- Department of Sport and Exercise Science, University of Salzburg, Schlossallee 49, Salzburg, 5400 Hallein-Rif, Austria
| | - Michael Behringer
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Thomas Reichel
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Gießen, Gießen, Germany
| | - Patrick Wahl
- Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Gießen, Gießen, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Thomas Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Schlossallee 49, Salzburg, 5400 Hallein-Rif, Austria.
- Red Bull Athlete Performance Center, Salzburg, Austria.
| |
Collapse
|
45
|
Ramos-Silva LF, Costa JC, Borges PH, Moura FA, Deminice R, de Oliveira DCX, Osiecki R, Vaz Ronque ER. Relationship Between Body Size and Skeletal Age with Muscle Damage in Young Soccer Players. Int J Sports Med 2023; 44:664-672. [PMID: 36863405 DOI: 10.1055/a-2046-2747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
This study verified the relationship between body size and skeletal age (SA) with the behavior of blood markers of muscle damage and delayed onset muscle soreness (DOMS) after a soccer match in the U-13 and U-15 categories. The sample consisted of 28 soccer players in the U-13 and 16 in the U-15 categories. Creatine kinase (CK), lactate dehydrogenase (LDH), and DOMS were evaluated up to 72 h after the match. Muscle damage was elevated at 0 h in U-13, and from 0 h to 24 h in U-15. DOMS increased from 0 h to 72 h in U-13 and from 0 h to 48 h in U-15. Significant associations of SA and fat-free mass (FFM) with muscle damage markers and DOMS were observed only in U-13, specifically at time 0 h, when SA explained 56% of CK and 48% of DOMS and FFM explained 48% of DOMS. We concluded that in the U-13 category, higher SA is significantly associated with muscle damage markers, and increase in FFM is associated with muscle damage markers and DOMS. Furthermore, U-13 players need 24 h to recover pre-match muscle damage markers and more than 72 h to recover DOMS. In contrast, the U-15 category needs 48 h to recover muscle damage markers and 72 h to recover DOMS.
Collapse
Affiliation(s)
- Luiz Fernando Ramos-Silva
- Laboratory of Physcial Activity and Health, Department of Physical Education, State University of Londrina Centre of Physical Education and Sport, Londrina, Brazil
| | - Julio Cesar Costa
- Laboratory of Physcial Activity and Health, Department of Physical Education, State University of Londrina Centre of Physical Education and Sport, Londrina, Brazil
| | - Paulo Henrique Borges
- Centre of Sports, Department of Physical Education, Federal University of Santa Catarina, Florianopolis, Brazil
- Laboratory of Physcial Activity and Health, Department of Physical Education, State University of Londrina Centre of Physical Education and Sport, Londrina, Brazil
| | - Felipe A Moura
- Laboratory of Applied Biomechanics, State University of Londrina Centre of Physical Education and Sport, Londrina, Brazil
| | - Rafael Deminice
- Department of Physical Education, State University of Londrina Centre of Physical Education and Sport, Londrina, Brazil
| | | | - Raul Osiecki
- Department of Physical Education, Federal University of Parana, Curitiba, Brazil
| | - Enio Ricardo Vaz Ronque
- Laboratory of Physcial Activity and Health, Department of Physical Education, State University of Londrina Centre of Physical Education and Sport, Londrina, Brazil
| |
Collapse
|
46
|
Johansson C, Hunt H, Signorelli M, Edfors F, Hober A, Svensson AS, Tegel H, Forstström B, Aartsma-Rus A, Niks E, Spitali P, Uhlén M, Szigyarto CAK. Orthogonal proteomics methods warrant the development of Duchenne muscular dystrophy biomarkers. Clin Proteomics 2023; 20:23. [PMID: 37308827 DOI: 10.1186/s12014-023-09412-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Molecular components in blood, such as proteins, are used as biomarkers to detect or predict disease states, guide clinical interventions and aid in the development of therapies. While multiplexing proteomics methods promote discovery of such biomarkers, their translation to clinical use is difficult due to the lack of substantial evidence regarding their reliability as quantifiable indicators of disease state or outcome. To overcome this challenge, a novel orthogonal strategy was developed and used to assess the reliability of biomarkers and analytically corroborate already identified serum biomarkers for Duchenne muscular dystrophy (DMD). DMD is a monogenic incurable disease characterized by progressive muscle damage that currently lacks reliable and specific disease monitoring tools. METHODS Two technological platforms are used to detect and quantify the biomarkers in 72 longitudinally collected serum samples from DMD patients at 3 to 5 timepoints. Quantification of the biomarkers is achieved by detection of the same biomarker fragment either through interaction with validated antibodies in immuno-assays or through quantification of peptides by Parallel Reaction Monitoring Mass Spectrometry assay (PRM-MS). RESULTS Five, out of ten biomarkers previously identified by affinity-based proteomics methods, were confirmed to be associated with DMD using the mass spectrometry-based method. Two biomarkers, carbonic anhydrase III and lactate dehydrogenase B, were quantified with two independent methods, sandwich immunoassays and PRM-MS, with Pearson correlations of 0.92 and 0.946 respectively. The median concentrations of CA3 and LDHB in DMD patients was elevated in comparison to those in healthy individuals by 35- and 3-fold, respectively. Levels of CA3 vary between 10.26 and 0.36 ng/ml in DMD patients whereas those of LDHB vary between 15.1 and 0.8 ng/ml. CONCLUSIONS These results demonstrate that orthogonal assays can be used to assess the analytical reliability of biomarker quantification assays, providing a means to facilitate the translation of biomarkers to clinical practice. This strategy also warrants the development of the most relevant biomarkers, markers that can be reliably quantified with different proteomics methods.
Collapse
Affiliation(s)
- Camilla Johansson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Helian Hunt
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Mirko Signorelli
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Fredrik Edfors
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Andreas Hober
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Anne-Sophie Svensson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hanna Tegel
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Björn Forstström
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Cristina Al-Khalili Szigyarto
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
47
|
Qaisar R, Karim A, Iqbal MS, Alkahtani SA, Ahmad F, Kamli H. ACE Inhibitors Improve Skeletal Muscle by Preserving Neuromuscular Junctions in Patients with Alzheimer's Disease. J Alzheimers Dis 2023:JAD230201. [PMID: 37334602 DOI: 10.3233/jad-230201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Hypertension and skeletal muscle decline are common findings in patients with Alzheimer's disease (AD). Angiotensin-converting enzyme (ACE) inhibitors preserve skeletal muscle and physical capacity; however, the driving mechanisms are poorly understood. OBJECTIVE We investigated the effects of ACE inhibitors on the neuromuscular junction (NMJ) with relevance to skeletal muscle and physical capacity in AD patients and age-matched controls. METHODS We evaluated controls (n = 59) and three groups of AD patients, including normotensive (n = 51) and patients with hypertension taking ACE inhibitors (n = 53) or other anti-hypertensive medications (n = 49) at baseline and one year later. We measure plasma c-terminal agrin fragment-22 (CAF22) as a marker of NMJ degradation, handgrip strength (HGS), and Short Physical Performance Battery (SPPB) as markers of physical capacity. RESULTS At baseline AD patients demonstrated lower HGS and SPPB scores and higher CAF22 levels than controls, irrespective of the hypertension status (all p < 0.05). The use of ACE inhibitors was associated with higher HGS and relative maintenance of SPPB scores, gait speed, and plasma CAF22 levels. Conversely, other anti-hypertensive medications were associated with an unaltered HGS, reduced SPPB scores and elevated plasma CAF22 levels (both p < 0.05). We also found dynamic associations of CAF22 with HGS, gait speed, and SPPB in AD patients taking ACE inhibitors (all p < 0.05). These changes were associated with reduced oxidative stress in AD patients taking ACE inhibitors (p < 0.05). CONCLUSION Altogether, ACE inhibitors are associated with higher HGS, preserved physical capacity, and the prevention of NMJ degradation in hypertensive AD patients.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - M Shahid Iqbal
- Department of Neurology and Stroke Medicine, Rehman Medical Institute, Peshawar, Pakistan
| | - Shaea A Alkahtani
- Exercise Physiology Department, College of Sport Sciences and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| | - Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
48
|
Choi Y, Ra SG, Nishijima T, Maeda S. Effect of curcumin supplementation on inflammatory status and muscle damage in competitive female soccer players: a placebo-controlled, singleblind, nonrandomized, crossover pilot study. Phys Act Nutr 2023; 27:34-38. [PMID: 37583070 PMCID: PMC10440175 DOI: 10.20463/pan.2023.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Curcumin, a major component of turmeric, has anti-inflammatory and antioxidative properties, which are associated with protective effects against muscle damage. This study examined the effects of dietary curcumin on inflammation and muscle damage in female competitive soccer players. METHODS A single-blinded, placebo-controlled, nonrandomized, crossover pilot study was conducted. Six competitive female soccer players (20.0 ± 2.0 yearsold) who participated in a 2-week preseason training program were assigned to two conditions: placebo and curcumin. The participants ingested a placebo or curcumin dosage (270 mg/day) during 2 weeks of preseason training, with 1 week of washout. Fasting blood samples were collected under resting conditions before (day 0) and after (day 15) the training period to examine changes in the concentration of interleukin 6 (IL-6), an inflammatory marker, and indices reflective of muscle damage. RESULTS Curcumin decreased the concentration of IL-6 released (mean decrease, -30.2 ± 28.1%), whereas no decrease was observed in the placebo condition (13.4 ± 17.4%). Changes in plasma IL-6 concentrations were significantly greater in the curcumin condition than in the placebo condition (p < 0.05). However, curcumin supplementation had no significant effects on muscle damage indices. CONCLUSION The present study shows that curcumin supplementation could attenuate inflammation, as indicated by IL-6 concentrations, in competitive female soccer players during the training period.
Collapse
Affiliation(s)
- Youngju Choi
- Institute of Specialized Teaching and Research, Inha University, Incheon, Republic of Korea
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Song-Gyu Ra
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Institute of Liberal Arts and Sciences, Tokushima University, Tokushima, Japan
| | - Takahiko Nishijima
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
49
|
Zhao Y, Sim YJ. Effects of muscle damage indicators and antioxidant capacity after interval training on the 800-m records of adolescent middle-distance runners. J Exerc Rehabil 2023; 19:181-186. [PMID: 37435592 PMCID: PMC10331139 DOI: 10.12965/jer.2346212.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/20/2023] [Indexed: 07/13/2023] Open
Abstract
To examine the effect of 10-week interval training (IT) at varying intensities on serum muscle damage indicators and antioxidant capacity and determine its effect on the 800-m records of adolescent middle-distance runners. Twenty male high-school middle-distance runners were randomized between the high-intensity IT (HIIT; n=10) and the medium-intensity IT (MIIT; n=10) groups. Three sessions/week for 10 weeks (total of 30 sessions) were performed; one session of IT was for 60 min. The high and medium exercise intensities were set at 90%-95% and 60%-70% heart rate reserve (HRR), respectively. Intensity at rest was 40% HRR for both groups. Weight training was performed at 60%-70% of one repetition maximum for two sessions/week. The changes in serum muscle damage indicators and antioxidant capacity in the two groups were measured, and their effects on the 800-m records were analyzed. The 10-week training reduced serum muscle damage indicators in middle-distance runners, but only the HIIT group displayed a decrease in creatine kinase. For the change in antioxidant capacity, the two groups demonstrated no significant change in malondialdehyde (MDA), whereas the HIIT group exhibited a significant increase in super-oxide dismutase (SOD). IT also reduced the 800-m records in middle-distance running, and the effect was stronger in the HIIT group. In conclusion, 10-week HIIT can have a positive effect on muscle damage indicators, showed a significant increase in SOD as a key indicator of anti-oxidant capacity, and improved the 800-m records in middle-distance runners.
Collapse
Affiliation(s)
- Yaowei Zhao
- School of Physical Education, Handan University, Handan,
China
| | - Young-Je Sim
- Department of Physical Education, Kunsan National University, Gunsan,
Korea
| |
Collapse
|
50
|
Moreno-Fernandez J, Puche-Juarez M, Toledano JM, Chirosa I, Chirosa LJ, Pulido-Moran M, Kajarabille N, Guisado IM, Guisado R, Diaz-Castro J, Ochoa JJ. Ubiquinol Short-Term Supplementation Prior to Strenuous Exercise Improves Physical Performance and Diminishes Muscle Damage. Antioxidants (Basel) 2023; 12:1193. [PMID: 37371923 DOI: 10.3390/antiox12061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The benefits of physical exercise on health are diminished when it is non-planned, strenuous, or vigorous, which causes an increase in oxygen consumption and production of free radicals, particularly serious at the muscular level. Ubiquinol could help achieve an antioxidant, anti-inflammatory, and ergogenic effect. The aim of this study is to evaluate whether a supplementation of ubiquinol during a short period could have a positive effect on muscle aggression, physical performance, and fatigue perception in non-elite athletes after high intensity circuit weight training. One hundred healthy and well-trained men, (firemen of the Fire Department of Granada) were enrolled in a placebo-controlled, double-blinded, and randomized study, and separated into two groups: the placebo group (PG, n = 50); and the ubiquinol group (UG, n = 50), supplemented with an oral dose. Before and after the intervention, data related to the number of repetitions, muscle strength, and perceived exertion, as well as blood samples were collected. An increase was observed in the UG regarding average load and repetitions, revealing an improvement in muscle performance. Ubiquinol supplementation also reduced muscle damage markers, showing a protective effect on muscle fibers. Therefore, this study provides evidence that ubiquinol supplementation improves muscle performance and prevents muscle damage after strenuous exercise in a population of well-trained individuals who are not elite athletes.
Collapse
Affiliation(s)
- Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| | - Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Juan M Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Ignacio Chirosa
- Department of Physical Education, University of Granada, 18071 Granada, Spain
| | - Luis J Chirosa
- Department of Physical Education, University of Granada, 18071 Granada, Spain
| | - Mario Pulido-Moran
- Pharmaceutical Laboratory Farmacia Perpetuo Socorro, 18001 Granada, Spain
| | - Naroa Kajarabille
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Lucio Lascaray Research Institute, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain
| | - Isabel M Guisado
- Group of Preventive Activities in the University Field of Health Sciences, Albacete Faculty of Nursing, University of Castilla-La Mancha (Universidad de Castilla-La Mancha/UCLM), 13001 Ciudad Real, Spain
| | - Rafael Guisado
- Faculty of Health Sciences, University of Granada, 18071 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| | - Julio J Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| |
Collapse
|