1
|
Wang F, Wang Y, Shen X, Zhao R, Li Z, Wu J, Shen H, Yao X. Research Progress on Methods for the Deacidification of Small Berry Juice: An Overview. Molecules 2024; 29:4779. [PMID: 39407707 PMCID: PMC11478338 DOI: 10.3390/molecules29194779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
As some of the richest sources of natural antioxidants, small berry fruits have attractive colors and special tastes, with recognized benefits for human health. However, sour tastes in small berry juices result in a poor flavor and low acceptance among consumers, greatly limiting their marketability. Among the most commonly used deacidification methods, chemical deacidification methods can neutralize fruit juice via the addition of a deacidification agent, while physical deacidification methods include freezing deacidification, ion-exchange resin deacidification, electrodialysis deacidification, and chitosan deacidification. All of these methods can markedly improve the pH of fruit juice, but they introduce new substances into the juice that may have an influence on its color, taste, and stability. Biological deacidification can effectively remove malic acid from fruit juice, reducing the content from 15 g/L to 3 g/L; additionally, it maintains the taste and stability of the juice. Therefore, it is widely applied for fruit juice deacidification. On this basis, some compound deacidification technologies have also emerged, but they also present problems such as high costs and complicated working procedures. This review of deacidification methods for small berry juice provides a foundation for the industrial development of such juices.
Collapse
Affiliation(s)
- Fei Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Yao Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinting Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Rui Zhao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Zhebin Li
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Jiawu Wu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Huifang Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinmiao Yao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| |
Collapse
|
2
|
Negreanu-Pirjol BS, Oprea OC, Negreanu-Pirjol T, Roncea FN, Prelipcean AM, Craciunescu O, Iosageanu A, Artem V, Ranca A, Motelica L, Lepadatu AC, Cosma M, Popoviciu DR. Health Benefits of Antioxidant Bioactive Compounds in the Fruits and Leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants (Basel) 2023; 12:antiox12040951. [PMID: 37107325 PMCID: PMC10136089 DOI: 10.3390/antiox12040951] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Lonicera caerulaea L. and Aronia melanocarpa (Michx.) Elliot fruits are frequently used for their health benefits as they are rich in bioactive compounds. They are recognized as a source of natural and valuable phytonutrients, which makes them a superfood. L. caerulea presents antioxidant activity three to five times higher than other berries which are more commonly consumed, such as blackberries or strawberries. In addition, their ascorbic acid level is the highest among fruits. The species A. melanocarpa is considered one of the richest known sources of antioxidants, surpassing currants, cranberries, blueberries, elderberries, and gooseberries, and contains one of the highest amounts of sorbitol. The non-edible leaves of genus Aronia became more extensively analyzed as a byproduct or waste material due to their high polyphenol, flavonoid, and phenolic acid content, along with a small amount of anthocyanins, which are used as ingredients in nutraceuticals, herbal teas, bio-cosmetics, cosmeceuticals, food and by the pharmaceutical industry. These plants are a rich source of vitamins, tocopherols, folic acid, and carotenoids. However, they remain outside of mainstream fruit consumption, being well known only to a small audience. This review aims to shed light on L. caerulaea and A. melanocarpa and their bioactive compounds as healthy superfoods with antioxidant, anti-inflammatory, antitumor, antimicrobial, and anti-diabetic effects, and hepato-, cardio-, and neuro-protective potential. In this view, we hope to promote their cultivation and processing, increase their commercial availability, and also highlight the ability of these species to be used as potential nutraceutical sources, helpful for human health.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu no. 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Florentina Nicoleta Roncea
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ana-Maria Prelipcean
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Andreea Iosageanu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Victoria Artem
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Aurora Ranca
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Ludmila Motelica
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
| | - Anca-Cristina Lepadatu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| | - Madalina Cosma
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| |
Collapse
|
3
|
Cheng Z, Bao Y, Li Z, Wang J, Wang M, Wang S, Wang Y, Wang Y, Li B. Lonicera caerulea ( Haskap berries): a review of development traceability, functional value, product development status, future opportunities, and challenges. Crit Rev Food Sci Nutr 2022; 63:8992-9016. [PMID: 35435788 DOI: 10.1080/10408398.2022.2061910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lonicera caerulea is a honeysuckle plant with a long development history. It is defined as a "homology of medicine and food" fruit because it is rich in bioactive substances. By-products (such as pomace, leaves, stems, and flowers), which also have beneficial values, will be produced during processing. Nevertheless, the reuse of derivatives and the further development of new products of Lonicera caerulea are still a challenge. Firstly, this paper traced the development history of Lonicera caerulea and summarized its primary nutrients and bioactive substances, subsequently discussed the research progress and underlying molecular mechanisms of its functional properties, and introduced the application and potential of Lonicera caerulea in the fields of food, health products, cosmetics, medicine, and materials. Finally, this paper put forward the future research direction to promote the development of the Lonicera caerulea industry. To sum up, Lonicera caerulea, as a potential raw material, can be used to produce more functional products. Besides, more in-depth clinical trials are needed to clarify the specific molecular mechanism of the practical components of Lonicera caerulea and improve the rate of development and utilization.HighlightsThe original species of Lonicera caerulea subgroup had appeared on the earth as early as the end of the third century.Lonicera caerulea has been introduced into North America since the 18th century, but the introduction process has not ended until now.Lonicera caerulea widely exists in Eurasia and North America and it has excellent cold tolerance, early maturity and ornamental.The fruits, stems, leaves and flowers of Lonicera caerulea all have bioactive value, but the specific molecular mechanism and utilization need to be improved.Lonicera caerulea has been widely used in food, medicine, health products, cosmetics and materials, but there are still great challenges.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Jiaxin Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Mingshuang Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Sihang Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Yuanyuan Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Phenolic Compounds, Vitamins C and E and Antioxidant Activity of Edible Honeysuckle Berries ( Lonicera caerulea L. var. kamtschatica Pojark) in Relation to Their Origin. Antioxidants (Basel) 2022; 11:antiox11020433. [PMID: 35204315 PMCID: PMC8869307 DOI: 10.3390/antiox11020433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Honeysuckles are frost tolerant plants providing early-ripening fruits with health-promoting properties which have been used in traditional medicine in China. This study evaluates the impact of the climatic conditions of two areas on the chemical composition and antioxidant activity (AOA; by DPPH-2,2-diphenyl-1-picrylhydrazyl and photochemiluminescence assays) of eight cultivars of honeysuckle berries (Lonicera caerulea L. var. kamtschatica Pojark) of various ripening times. Expectedly, chemical composition and AOA values varied depending on the cultivars, locality and selected methods. Berries from Lednice (the area with more sunshine) showed higher average contents of total monomeric anthocyanins (TMAC; pH differential absorbance method), vitamins C and E and total phenolics (high-performance liquid chromatography). In contrast, berries from Žabčice (the area with more rain) performed higher average contents of total phenolics and flavonoids (UV/VIS spectroscopic analyses). Interestingly, fundamental amounts of chlorogenic acid were determined irrespective of the locality. Regarding TMAC and vitamin C content, early ripening Amphora from both areas has been assessed as the best cultivar; concerning the content of phenolic compounds, Fialka from both areas and Amphora from Lednice is considered as the most valuable. The obtained results may facilitate the selection of the most valuable cultivars for both producers and consumers.
Collapse
|
5
|
Xue B, Wang Y, Tian J, Zhang W, Zang Z, Cui H, Zhang Y, Jiang Q, Li B, Hai Liu R. Effects of chitooligosaccharide-functionalized graphene oxide on stability, simulated digestion, and antioxidant activity of blueberry anthocyanins. Food Chem 2021; 368:130684. [PMID: 34391099 DOI: 10.1016/j.foodchem.2021.130684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
In this study, we tested the in vitro efficacy of a graphene oxide-chitooligosaccharide (GO-COS) complex developed to protect blueberry anthocyanins (An) from degradation by various physicochemical factors and the digestive process. We prepared a GO-COS complex to adsorb An and protect them from the destructive effects of their ambient environment. The complex protected the An under various temperature, pH, light, oxidant, and reductant conditions. We evaluated An content and composition in a simulated digestive system using the pH differential method and the high performance liquid chromatography-mass spectrometry (HPLC-MS). The GO-COS carrier stabilized An in the intestine and protected their peroxyl radical-scavenging capacity. Additionally, we observed a dose-response relationship between An content and cellular antioxidant activity, and simultaneous improvement of An bioavailability when the An were encapsulated in the complex. The complex inhibited HepG2 cell proliferation at the tested dose range. This study provides valuable information for stability of An-rich products.
Collapse
Affiliation(s)
- Bo Xue
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Weijia Zhang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhihuan Zang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Huijun Cui
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ye Zhang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Rui Hai Liu
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Department of Food Science, Cornell University, Ithaca, NY 14850-7201, United States.
| |
Collapse
|
6
|
Kong Y, Yan T, Tong Y, Deng H, Tan C, Wan M, Wang M, Meng X, Wang Y. Gut Microbiota Modulation by Polyphenols from Aronia melanocarpa of LPS-Induced Liver Diseases in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3312-3325. [PMID: 33688735 DOI: 10.1021/acs.jafc.0c06815] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aronia melanocarpa polyphenols (AMPs) can alleviate the degree of liver diseases in rats. However, the mechanism by which this is achieved through gut microbiota modulation remains unclear. Here, a rich-polyphenol extract of A. melanocarpa (AMPs) was used to treat lipopolysaccharide (LPS)-induced liver diseases in rats. To gain insights into the anti-LPS-induced liver disease, liver function index, expression of apoptosis proteins, inflammatory factors, and activation of inflammatory signaling pathways were determined with western blot analysis, immunohistochemistry, and 16S rRNA sequencing or quantitative real-time polymerase chain reaction (qRT-PCR). After AMPs treatment, the gut microbiota composition was modulated, promoting the intestinal barrier function by increasing the expression of intestinal epithelial cell tight junction proteins to reduce the LPS content in serum. The expression levels of inflammatory factors interleukin 6 (IL-6), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and related mRNAs were reduced. These results showed that AMPs, as a bioactive substance, could enhance the intestinal barrier function and modulate the gut microbiota of LPS-induced liver diseases.
Collapse
Affiliation(s)
- Yanwen Kong
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Tingcai Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuqi Tong
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Haotian Deng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chang Tan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Meizhi Wan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingyue Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
7
|
Sharma A, Lee HJ. Lonicera caerulea: An updated account of its phytoconstituents and health-promoting activities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Characterization and inhibitory activities on α-amylase and α-glucosidase of the polysaccharide from blue honeysuckle berries. Int J Biol Macromol 2020; 163:414-422. [DOI: 10.1016/j.ijbiomac.2020.06.267] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 01/06/2023]
|
9
|
Phytochemical Characterization of Blue Honeysuckle in Relation to the Genotypic Diversity of Lonicera sp. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phytochemical characteristic analysis of a group of 30 haskap berry genotypes was carried out bearing in mind the concern for the consumption of food with high nutraceutical value that helps maintain good health. Phytochemical fruit composition and antioxidant activity were assessed by the Folin–Ciocalteau, spectrophotometric, DPPH (1,1-diphenyl-2-picrylhydrazyl) as well as ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method. Evaluation of antioxidant activity was referred to as the Trolox equivalent. The observed differences in the content of phenolics, flavonoids, vitamin C and antioxidant activity allowed us to select genotypes which, due to the high level of the analyzed compounds, are particularly recommended in everyone’s diet. In addition, the analysis of the prospects of increasing the analyzed phytochemical properties, estimated by parameters such as heritability and genetic progress, indicates the effectiveness of breeding in relation to each of the analyzed traits. The results of the presented research can be used in the implementation of future breeding programs for this valuable species.
Collapse
|