1
|
Phengpol N, Thongnak L, Lungkaphin A. The programming of kidney injury in offspring affected by maternal overweight and obesity: role of lipid accumulation, inflammation, oxidative stress, and fibrosis in the kidneys of offspring. J Physiol Biochem 2023; 79:1-17. [PMID: 36264422 DOI: 10.1007/s13105-022-00927-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
Maternal overweight and obesity are considered important factors affecting fetal development with many potential consequences for offspring after delivery, including the increased risk of obesity and diabetes mellitus. Maternal obesity promotes adiposity in the offspring by increasing fat deposition and expansion in the body of the offspring. The expansion of adipose tissue changes adipokine levels, including a decrease in adiponectin and an increase in leptin. In addition to changes in adipokine levels, there are also increases in pro-inflammatory cytokines, pro-fibrotic cytokines, and reactive oxygen species, leading to oxidative stress in the offspring. These contribute to the promotion of insulin resistance in offspring, which is associated with kidney injury. Interestingly, maternal obesity can also promote renal lipid accumulation, which could activate inflammatory processes and promote renal oxidative stress and renal fibrosis. These alterations in the kidneys of the offspring imply that a mother being overweight/obese can program the development of kidney disease in offspring. This review will discuss the effects of a mother being overweight or obese on their offspring and the consequences with regard to the kidneys of their offspring. With a focus on the molecular mechanisms, including renal inflammation, renal oxidative stress, renal fibrosis, and renal lipid metabolism in offspring born to overweight and obese mothers, the causative mechanisms and perspective of these conditions will be included.
Collapse
Affiliation(s)
- Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand. .,Functional Foods for Health and Disease, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Maternal High-Fat Diet and Offspring Hypertension. Int J Mol Sci 2022; 23:ijms23158179. [PMID: 35897755 PMCID: PMC9332200 DOI: 10.3390/ijms23158179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
The incidence of hypertension has increased to epidemic levels in the past decades. Increasing evidence reveals that maternal dietary habits play a crucial role in the development of hypertension in adult offspring. In humans, increased fat consumption has been considered responsible for obesity and associated diseases. Maternal diets rich in saturated fats have been widely employed in animal models to study various adverse offspring outcomes. In this review, we discussed current evidence linking maternal high-fat diet to offspring hypertension. We also provided an in-depth overview of the potential mechanisms underlying hypertension of developmental origins that are programmed by maternal high-fat intake from animal studies. Furthermore, this review also presented an overview of how reprogramming interventions can prevent maternal high-fat-diet-induced hypertension in adult offspring. Overall, recent advances in understanding mechanisms behind programming and reprogramming of maternal high-fat diet on hypertension of developmental origins might provide the answers to curtail this epidemic. Still, more research is needed to translate research findings into practice.
Collapse
|
3
|
Tain YL, Hsu CN. Hypertension of Developmental Origins: Consideration of Gut Microbiome in Animal Models. Biomedicines 2022; 10:biomedicines10040875. [PMID: 35453625 PMCID: PMC9030804 DOI: 10.3390/biomedicines10040875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Hypertension is the leading cause of global disease burden. Hypertension can arise from early life. Animal models are valuable for giving cogent evidence of a causal relationship between various environmental insults in early life and the hypertension of developmental origins in later life. These insults consist of maternal malnutrition, maternal medical conditions, medication use, and exposure to environmental chemicals/toxins. There is a burgeoning body of evidence on maternal insults can shift gut microbiota, resulting in adverse offspring outcomes later in life. Emerging evidence suggests that gut microbiota dysbiosis is involved in hypertension of developmental origins, while gut microbiota-targeted therapy, if applied early, is able to help prevent hypertension in later life. This review discusses the innovative use of animal models in addressing the mechanisms behind hypertension of developmental origins. We will also highlight the application of animal models to elucidate how the gut microbiota connects with other core mechanisms, and the potential of gut microbiota-targeted therapy as a novel preventive strategy to prevent hypertension of developmental origins. These animal models have certainly enhanced our understanding of hypertension of developmental origins, closing the knowledge gap between animal models and future clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-975-368-975; Fax: +886-7733-8009
| |
Collapse
|
4
|
Reverte V, Rodriguez F, Oltra L, Moreno JM, Llinas MT, Shea CM, Schwartzkopf CD, Buys ES, Masferrer JL, Salazar FJ. SGLT2 inhibition potentiates the cardiovascular, renal and metabolic effects of sGC stimulation in hypertensive rats with prolonged exposure to high fat diet. Am J Physiol Heart Circ Physiol 2022; 322:H523-H536. [PMID: 35119333 PMCID: PMC8917931 DOI: 10.1152/ajpheart.00386.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolonged high-fat diet (HFD) accelerates the cardiovascular, renal, and metabolic dysfunction in hypertensive rats with altered renal development (ARDev). Soluble guanylate cyclase (sGC) stimulation or sodium-glucose cotransporter 2 (SGLT2) inhibition may improve cardiovascular, renal, and metabolic function in settings of hypertension and obesity. This study examined whether 6 wk treatment with an SGLT2 inhibitor (empagliflozin, 7 mg/kg/day) enhances the cardiovascular, renal, and metabolic effects of a sGC stimulator (praliciguat, 10 mg/kg/day) in hypertensive rats with ARDev and prolonged exposure to HFD. Arterial pressure (AP), renal vascular resistance (RVR), fat abdominal volume (FAV), insulin resistance, leptin and triglycerides levels, and intrarenal infiltration of inflammatory cells were higher, but cardiac output and creatinine clearance were lower in hypertensive rats (n = 15) than in normotensive rats (n = 7). Praliciguat administration (n = 10) to hypertensive rats reduced (P < 0.05) AP, FAV, plasma concentrations of leptin and triglycerides, and increased (P < 0.05) cardiac output and creatinine clearance. Empagliflozin administration (n = 8) only increased (P < 0.05) glucosuria and creatinine clearance and decreased (P < 0.05) plasma leptin and triglycerides concentrations in hypertensive rats. Simultaneous administration of praliciguat and empagliflozin (n = 10) accelerated the decrease in AP, improved glucose tolerance, reduced (P < 0.05) incremental body weight gain, and decreased (P < 0.05) insulin resistance index, RVR, and the infiltration of T-CD3 lymphocytes in renal cortex and renal medulla. In summary, the combined administration of praliciguat and empagliflozin leads to a greater improvement of the cardiovascular, renal, and metabolic dysfunction secondary to prolonged exposure to HFD in hypertensive rats with ARDev than the treatment with either praliciguat or empagliflozin alone. NEW & NOTEWORTHY This is the first study, to our knowledge, showing that SGLT2 inhibition potentiates the beneficial cardiovascular, renal, and metabolic effects elicited by sGC stimulation in hypertensive rats with prolonged high-fat diet. The effects of the simultaneous administration of praliciguat and empagliflozin are greater than those elicited by either one alone. The effects of the simultaneous treatment may be related to a greater reduction in the inflammatory status.
Collapse
Affiliation(s)
- Virginia Reverte
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| | - Francisca Rodriguez
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| | - Lidia Oltra
- Biomedical Research Institute, Murcia, Spain
| | - Juan M Moreno
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| | - Maria T Llinas
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| | - Courtney M Shea
- Cyclerion Therapeutics, Cambridge, Massachusetts, United States
| | | | - Emmanuel S Buys
- Cyclerion Therapeutics, Cambridge, Massachusetts, United States
| | | | - F Javier Salazar
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| |
Collapse
|
5
|
Hsu CN, Tain YL. The First Thousand Days: Kidney Health and Beyond. Healthcare (Basel) 2021; 9:1332. [PMID: 34683012 PMCID: PMC8544398 DOI: 10.3390/healthcare9101332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
The global burden of chronic kidney disease (CKD) is rising. A superior strategy to advance global kidney health is required to prevent and treat CKD early. Kidney development can be impacted during the first 1000 days of life by numerous factors, including malnutrition, maternal illness, exposure to chemicals, substance abuse, medication use, infection, and exogenous stress. In the current review, we summarize environmental risk factors reported thus far in clinical and experimental studies relating to the programming of kidney disease, and systematize the knowledge on common mechanisms underlying renal programming. The aim of this review is to discuss the primary and secondary prevention actions for enhancing kidney health from pregnancy to age 2. The final task is to address the potential interventions to target renal programming through updating animal studies. Together, we can enhance the future of global kidney health in the first 1000 days of life.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
6
|
Animal Models for DOHaD Research: Focus on Hypertension of Developmental Origins. Biomedicines 2021; 9:biomedicines9060623. [PMID: 34072634 PMCID: PMC8227380 DOI: 10.3390/biomedicines9060623] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that fetal programming through environmental exposure during a critical window of early life leads to long-term detrimental outcomes, by so-called developmental origins of health and disease (DOHaD). Hypertension can originate in early life. Animal models are essential for providing convincing evidence of a causal relationship between diverse early-life insults and the developmental programming of hypertension in later life. These insults include nutritional imbalances, maternal illnesses, exposure to environmental chemicals, and medication use. In addition to reviewing the various insults that contribute to hypertension of developmental origins, this review focuses on the benefits of animal models in addressing the underlying mechanisms by which early-life interventions can reprogram disease processes and prevent the development of hypertension. Our understanding of hypertension of developmental origins has been enhanced by each of these animal models, narrowing the knowledge gap between animal models and future clinical translation.
Collapse
|
7
|
Moreno JM, Martinez CM, de Jodar C, Reverte V, Bernabé A, Salazar FJ, Llinás MT. Gender differences in the renal changes induced by a prolonged high-fat diet in rats with altered renal development. J Physiol Biochem 2021; 77:431-441. [PMID: 33851366 DOI: 10.1007/s13105-021-00815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms involved in renal dysfunction induced by high-fat diet (HFD) in subjects with altered renal development (ARDev) are understudied. The objective of this study is to examine whether there are sex-dependent differences in the mechanisms involved in the hypertension and deterioration of renal function in SD rats with prolonged HFD and ARDev. The role of angiotensin II (Ang II) in the arterial pressure (AP) increments, the renal hemodynamic sensitivity to Ang II, glomerular damage and changes in fat abdominal volume, plasma adipokine levels, renal NADPHp67phox expression, and renal infiltration of immune cells were examined. Hypertension and deterioration of renal function were enhanced (P < 0.05) in both sexes of rats with HFD and ARDev. The decrease (P < 0.05) of AP elicited by candesartan in hypertensive rats was similar to that induced by the simultaneous administration of candesartan and apocynin. The greater (P < 0.05) renal vasoconstriction induced by Ang II in both sexes of rats with HFD and ARDev was accompanied by an enhanced (P < 0.05) infiltration of CD-3 cells and macrophages in the renal cortex and renal medulla. The increments (P < 0.05) in the renal expression of NADPHp67phox and glomeruloesclerosis were greater (P < 0.05) in males than in females with HFD and ARDev. Our results suggest that the hypertension and deterioration of renal function induced by HFD in rats with ARDev are Ang II-dependent and mediated by increments in oxidative stress and immune system activation. Sex-dependent increments in oxidative stress and glomerular damage may contribute to the deterioration of renal function in these rats.
Collapse
Affiliation(s)
- Juan M Moreno
- Department of Physiology, School of Medicine, University of Murcia, 30100, Murcia, Spain.,Biomedical Research Institute in Murcia, Murcia, Spain
| | | | - Carlos de Jodar
- Department of Pathology, School of Veterinary, University of Murcia, Murcia, Spain
| | - Virginia Reverte
- Department of Physiology, School of Medicine, University of Murcia, 30100, Murcia, Spain.,Biomedical Research Institute in Murcia, Murcia, Spain
| | - Antonio Bernabé
- Department of Pathology, School of Veterinary, University of Murcia, Murcia, Spain
| | - F Javier Salazar
- Department of Physiology, School of Medicine, University of Murcia, 30100, Murcia, Spain. .,Biomedical Research Institute in Murcia, Murcia, Spain.
| | - María T Llinás
- Department of Physiology, School of Medicine, University of Murcia, 30100, Murcia, Spain.,Biomedical Research Institute in Murcia, Murcia, Spain
| |
Collapse
|
8
|
Hsu CN, Tain YL. Targeting the Renin-Angiotensin-Aldosterone System to Prevent Hypertension and Kidney Disease of Developmental Origins. Int J Mol Sci 2021; 22:ijms22052298. [PMID: 33669059 PMCID: PMC7956566 DOI: 10.3390/ijms22052298] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) is implicated in hypertension and kidney disease. The developing kidney can be programmed by various early-life insults by so-called renal programming, resulting in hypertension and kidney disease in adulthood. This theory is known as developmental origins of health and disease (DOHaD). Conversely, early RAAS-based interventions could reverse program processes to prevent a disease from occurring by so-called reprogramming. In the current review, we mainly summarize (1) the current knowledge on the RAAS implicated in renal programming; (2) current evidence supporting the connections between the aberrant RAAS and other mechanisms behind renal programming, such as oxidative stress, nitric oxide deficiency, epigenetic regulation, and gut microbiota dysbiosis; and (3) an overview of how RAAS-based reprogramming interventions may prevent hypertension and kidney disease of developmental origins. To accelerate the transition of RAAS-based interventions for prevention of hypertension and kidney disease, an extended comprehension of the RAAS implicated in renal programming is needed, as well as a greater focus on further clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-975-056-995; Fax: +886-7733-8009
| |
Collapse
|
9
|
Huang PP, Shu DH, Su Z, Luo SN, Xu FF, Lin F. Association between lifestyle, gender and risk for developing end-stage renal failure in IgA nephropathy: a case-control study within 10 years. Ren Fail 2020; 41:914-920. [PMID: 31580172 PMCID: PMC6781456 DOI: 10.1080/0886022x.2019.1635029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: To investigate the potential association between lifestyles, including cigarette smoking, alcohol consumption, and physical exercise at the time of biopsy and the risk for developing end-stage renal failure (ESRF) among IgA nephropathy (IgAN) patients within 10 years. Methods: A case–control study was carried out. Seventy-seven ESRF patients with the primary cause of IgAN were enrolled as cases. Seventy-seven IgAN patients who had not progressed to ESRF after being diagnosed for over 10 years served as controls. Smoking, alcohol consumption and physical exercise related data and baseline clinical features were collected from their medical records and confirmed by phone calls. Results: The case group had higher proportions of males, smokers, drinkers, and physical inactivity individuals than the controls had. Alcohol drinking history (/1 year, OR 1.32, p < .05) is independently associated with an increased risk of ESRF, while physical exercise habits (OR 0.06, p < .05) associated with a decreased risk of ESRF in multivariate logistic analysis. Male gender, lower eGFR, and higher urinary protein at the time of biopsy were also independent risk factors. Moreover, male-non-exercise population seems to be more likely to progress to ESRF than others (male-exercise, female-exercise, and female-none-exercise populations). Conclusion: Physical exercise should be encouraged in IgAN patients, especially in males, for a better renal outcome. Alcohol cessation might have a renal survival benefit in IgAN patients.
Collapse
Affiliation(s)
- Pei Pei Huang
- Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Dan Hua Shu
- Department of Obstetrics, the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zhen Su
- Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Sheng Nan Luo
- Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Fei Fei Xu
- Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Fan Lin
- Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
10
|
Regulation of Nitric Oxide Production in the Developmental Programming of Hypertension and Kidney Disease. Int J Mol Sci 2019; 20:ijms20030681. [PMID: 30764498 PMCID: PMC6386843 DOI: 10.3390/ijms20030681] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Development of the kidney can be altered in response to adverse environments leading to renal programming and increased vulnerability to the development of hypertension and kidney disease in adulthood. By contrast, reprogramming is a strategy shifting therapeutic intervention from adulthood to early life to reverse the programming processes. Nitric oxide (NO) is a key mediator of renal physiology and blood pressure regulation. NO deficiency is a common mechanism underlying renal programming, while early-life NO-targeting interventions may serve as reprogramming strategies to prevent the development of hypertension and kidney disease. This review will first summarize the regulation of NO in the kidney. We also address human and animal data supporting the link between NO system and developmental programming of hypertension and kidney disease. This will be followed by the links between NO deficiency and the common mechanisms of renal programming, including the oxidative stress, renin–angiotensin system, nutrient-sensing signals, and sex differences. Recent data from animal studies have suggested that interventions targeting the NO pathway could be reprogramming strategies to prevent the development of hypertension and kidney disease. Further clinical studies are required to bridge the gap between animal models and clinical trials in order to develop ideal NO-targeting reprogramming strategies and to be able to have a lifelong impact, with profound savings in the global burden of hypertension and kidney disease.
Collapse
|
11
|
Hsu CN, Tain YL. The Double-Edged Sword Effects of Maternal Nutrition in the Developmental Programming of Hypertension. Nutrients 2018; 10:nu10121917. [PMID: 30518129 PMCID: PMC6316180 DOI: 10.3390/nu10121917] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
Hypertension is a growing global epidemic. Developmental programming resulting in hypertension can begin in early life. Maternal nutrition status has important implications as a double-edged sword in the developmental programming of hypertension. Imbalanced maternal nutrition causes offspring's hypertension, while specific nutritional interventions during pregnancy and lactation may serve as reprogramming strategies to reverse programming processes and prevent the development of hypertension. In this review, we first summarize the human and animal data supporting the link between maternal nutrition and developmental programming of hypertension. This review also presents common mechanisms underlying nutritional programming-induced hypertension. This will be followed by studies documenting nutritional interventions as reprogramming strategies to protect against hypertension from developmental origins. The identification of ideal nutritional interventions for the prevention of hypertension development that begins early in life will have a lifelong impact, with profound savings in the global burden of hypertension.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
12
|
Mordaunt CE, Shibata NM, Kieffer DA, Członkowska A, Litwin T, Weiss KH, Gotthardt DN, Olson K, Wei D, Cooper S, Wan YJY, Ali MR, LaSalle JM, Medici V. Epigenetic changes of the thioredoxin system in the tx-j mouse model and in patients with Wilson disease. Hum Mol Genet 2018; 27:3854-3869. [PMID: 30010856 PMCID: PMC6216211 DOI: 10.1093/hmg/ddy262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/02/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Wilson disease (WD) is caused by mutations in the copper transporter ATP7B, leading to copper accumulation in the liver and brain. Excess copper inhibits S-adenosyl-L-homocysteine hydrolase, leading to variable WD phenotypes from widespread alterations in DNA methylation and gene expression. Previously, we demonstrated that maternal choline supplementation in the Jackson toxic milk (tx-j) mouse model of WD corrected higher thioredoxin 1 (TNX1) transcript levels in fetal liver. Here, we investigated the effect of maternal choline supplementation on genome-wide DNA methylation patterns in tx-j fetal liver by whole-genome bisulfite sequencing (WGBS). Tx-j Atp7b genotype-dependent differences in DNA methylation were corrected by choline for genes including, but not exclusive to, oxidative stress pathways. To examine phenotypic effects of postnatal choline supplementation, tx-j mice were randomized to one of six treatment groups: with or without maternal and/or continued choline supplementation, and with or without copper chelation with penicillamine (PCA) treatment. Hepatic transcript levels of TXN1 and peroxiredoxin 1 (Prdx1) were significantly higher in mice receiving maternal and continued choline with or without PCA treatment compared to untreated mice. A WGBS comparison of human WD liver and tx-j mouse liver demonstrated a significant overlap of differentially methylated genes associated with ATP7B deficiency. Further, eight genes in the thioredoxin (TXN) pathway were differentially methylated in human WD liver samples. In summary, Atp7b deficiency and choline supplementation have a genome-wide impact, including on TXN system-related genes, in tx-j mice. These findings could explain the variability of WD phenotype and suggest new complementary treatment options for WD.
Collapse
Affiliation(s)
- Charles E Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, California, USA
| | - Noreene M Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis, California, USA
| | - Dorothy A Kieffer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis, California, USA
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Karl Heinz Weiss
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel N Gotthardt
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Kristin Olson
- Department of Pathology, University of California, Davis, California, USA
| | - Dongguang Wei
- Department of Pathology, University of California, Davis, California, USA
| | - Stewart Cooper
- California Pacific Medical Center, San Francisco, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology, University of California, Davis, California, USA
| | - Mohamed R Ali
- Department of Surgery, University of California, Davis, California, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, California, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis, California, USA
| |
Collapse
|
13
|
Lu X, Xu X, Lin Y, Zhang Y, Huo X. Phthalate exposure as a risk factor for hypertension. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20550-20561. [PMID: 29862479 DOI: 10.1007/s11356-018-2367-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/22/2018] [Indexed: 02/05/2023]
Abstract
Phthalates are ubiquitous in environment. Hypertension is a major risk factor for cardiovascular diseases. Phthalate exposure is associated with hypertension in multiple studies. This review aims to summarize the scientific literature on associations between phthalate exposure and hypertension and discuss the mechanisms in the relationship. We identified and reviewed original articles published to March 2018, using PubMed and Web of Science to search the terms "phthalate(s)," "phthalic acid," "blood pressure," "high blood pressure," "hypertension," "prehypertension," and "cardiovascular disease." Findings were summarized based on the relevance to the themes, including presentation of main phthalates and their major metabolites as well as associations of phthalate exposure with blood pressure in epidemiological and experimental studies. We identified ten population-based investigations and five toxicological experiments. Epidemiological data underscored a possible correlation between phthalate exposure and hypertension in adults, whereas individual study in children stands on the opposite. Experimental studies mainly targeted the increasing effect of phthalates on blood pressure. This review suggested some underlying mechanisms of phthalate-associated hypertension. Considering the current evidence, phthalate might be risk factors of hypertension. However, the effect of phthalate exposure in early life on blood pressure in later life or adulthood is still unclear. Well-designed longitudinal and molecular mechanism studies are indispensable.
Collapse
Affiliation(s)
- Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yucong Lin
- Tabor Academy, Marion, MA, USA
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China.
| |
Collapse
|
14
|
Geraci S, Chacon-Caldera J, Cullen-McEwen L, Schad LR, Sticht C, Puelles VG, Bertram JF, Gretz N. Combining new tools to assess renal function and morphology: a holistic approach to study the effects of aging and a congenital nephron deficit. Am J Physiol Renal Physiol 2017; 313:F576-F584. [PMID: 28490528 DOI: 10.1152/ajprenal.00329.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 04/28/2017] [Accepted: 05/09/2017] [Indexed: 01/17/2023] Open
Abstract
Recently, new methods for assessing renal function in conscious mice (transcutaneous assessment) and for counting and sizing all glomeruli in whole kidneys (MRI) have been described. In the present study, these methods were used to assess renal structure and function in aging mice, and in mice born with a congenital low-nephron endowment. Age-related nephron loss was analyzed in adult C57BL/6 mice (10-50 wk of age), and congenital nephron deficit was assessed in glial cell line-derived neurotrophic factor heterozygous (GDNF HET)-null mutant mice. Renal function was measured through the transcutaneous quantitation of fluorescein isothiocyanate-sinistrin half-life (t1/2) in conscious mice. MRI was used to image, count, and size cationic-ferritin labeled glomeruli in whole kidneys ex vivo. Design-based stereology was used to validate the MRI measurements of glomerular number and mean volume. In adult C57BL/6 mice, older age was associated with fewer and larger glomeruli, and a rightward shift in the glomerular size distribution. These changes coincided with a decrease in renal function. GNDF HET mice had a congenital nephron deficit that was associated with glomerular hypertrophy and exacerbated by aging. These findings suggest that glomerular hypertrophy and hyperfiltration are compensatory processes that can occur in conjunction with both age-related nephron loss and congenital nephron deficiency. The combination of measurement of renal function in conscious animals and quantitation of glomerular number, volume, and volume distribution provides a powerful new tool for investigating aspects of renal aging and functional changes.
Collapse
Affiliation(s)
- Stefania Geraci
- Medical Research Centre, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jorge Chacon-Caldera
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; and
| | - Luise Cullen-McEwen
- Cardiovascular Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; and
| | - Carsten Sticht
- Medical Research Centre, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Victor G Puelles
- Cardiovascular Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - John F Bertram
- Cardiovascular Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Norbert Gretz
- Medical Research Centre, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany;
| |
Collapse
|
15
|
High Fat Diets Sex-Specifically Affect the Renal Transcriptome and Program Obesity, Kidney Injury, and Hypertension in the Offspring. Nutrients 2017; 9:nu9040357. [PMID: 28368364 PMCID: PMC5409696 DOI: 10.3390/nu9040357] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/12/2017] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
Obesity and related disorders have increased concurrently with an increased consumption of saturated fatty acids. We examined whether post-weaning high fat (HF) diet would exacerbate offspring vulnerability to maternal HF-induced programmed hypertension and kidney disease sex-specifically, with a focus on the kidney. Next, we aimed to elucidate the gene–diet interactions that contribute to maternal HF-induced renal programming using the next generation RNA sequencing (NGS) technology. Female Sprague-Dawley rats received either a normal diet (ND) or HF diet (D12331, Research Diets) for five weeks before the delivery. The offspring of both sexes were put on either the ND or HF diet from weaning to six months of age, resulting in four groups of each sex (maternal diet/post-weaning diet; n = 5–7/group): ND/ND, ND/HF, HF/ND, and HF/HF. Post-weaning HF diet increased bodyweights of both ND/HF and HF/HF animals from three to six months only in males. Post-weaning HF diet increased systolic blood pressure in male and female offspring, irrespective of whether they were exposed to maternal HF or not. Male HF/HF offspring showed greater degrees of glomerular and tubular injury compared to the ND/ND group. Our NGS data showed that maternal HF diet significantly altered renal transcriptome with female offspring being more HF-sensitive. HF diet induced hypertension and renal injury are associated with oxidative stress, activation of renin-angiotensin system, and dysregulated sodium transporters and circadian clock. Post-weaning HF diet sex-specifically exacerbates the development of obesity, kidney injury, but not hypertension programmed by maternal HF intake. Better understanding of the sex-dependent mechanisms that underlie HF-induced renal programming will help develop a novel personalized dietary intervention to prevent obesity and related disorders.
Collapse
|
16
|
Tain YL, Hsu CN. Developmental Origins of Chronic Kidney Disease: Should We Focus on Early Life? Int J Mol Sci 2017; 18:ijms18020381. [PMID: 28208659 PMCID: PMC5343916 DOI: 10.3390/ijms18020381] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) is becoming a global burden, despite recent advances in management. CKD can begin in early life by so-called "developmental programming" or "developmental origins of health and disease" (DOHaD). Early-life insults cause structural and functional changes in the developing kidney, which is called renal programming. Epidemiological and experimental evidence supports the proposition that early-life adverse events lead to renal programming and make subjects vulnerable to developing CKD and its comorbidities in later life. In addition to low nephron endowment, several mechanisms have been proposed for renal programming. The DOHaD concept opens a new window to offset the programming process in early life to prevent the development of adult kidney disease, namely reprogramming. Here, we review the key themes on the developmental origins of CKD. We have particularly focused on the following areas: evidence from human studies support fetal programming of kidney disease; insight from animal models of renal programming; hypothetical mechanisms of renal programming; alterations of renal transcriptome in response to early-life insults; and the application of reprogramming interventions to prevent the programming of kidney disease.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
17
|
Nixon PA, Washburn LK, O’Shea TM, Shaltout HA, Russell GB, Snively BM, Rose JC. Antenatal steroid exposure and heart rate variability in adolescents born with very low birth weight. Pediatr Res 2017; 81:57-62. [PMID: 27632775 PMCID: PMC5235986 DOI: 10.1038/pr.2016.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/26/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Reduced heart rate variability (HRV) suggests autonomic imbalance in the control of heart rate and is associated with unfavorable cardiometabolic outcomes. We examined whether antenatal corticosteroid (ANCS) exposure had long-term programming effects on HRV in adolescents born with very low birth weight (VLBW). METHODS Follow-up study of a cohort of VLBW 14-y olds born between 1992 and 1996 with 50% exposed to ANCS. HRV in both the time and frequency domains using Nevrokard Software was determined from a 5-min electrocardiogram tracing. RESULTS HRV data from 89 (35 male, 53 non-black) exposed (ANCS+) and 77 (28 male, 29 non-black) unexposed (ANCS-) adolescents were analyzed. HRV did not differ between ANCS+ and ANCS- black participants. However, in non-black participants, a significant interaction between ANCS and sex was observed, with ANCS- females having significantly greater HRV than ANCS+ females and males, and ANCS- males for both time and frequency domain variables. CONCLUSION Among non-black adolescents born with VLBW, ANCS exposure is associated with reduced HRV with apparent sex-specificity. Reduced HRV has been associated with development of adverse cardiometabolic outcomes, thus supporting the need to monitor these outcomes in VLBW adolescents as they mature.
Collapse
Affiliation(s)
- Patricia A. Nixon
- Department of Health and Exercise Science, Wake Forest University, Winston Salem, NC, USA,Department of Pediatrics, Wake Forest University School of Medicine, Winston Salem, NC, USA,Corresponding Author: Patricia A. Nixon, PhD, Dept. of Health & Exercise Science, PO Box 7868, Wake Forest University, Winston-Salem, NC 27109-7868, , Phone: 336-758-4642, FAX: 336-758-4680
| | - Lisa K. Washburn
- Department of Pediatrics, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Hossam A. Shaltout
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Gregory B. Russell
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Beverly M. Snively
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - James C. Rose
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
18
|
Maric-Bilkan C, Arnold AP, Taylor DA, Dwinell M, Howlett SE, Wenger N, Reckelhoff JF, Sandberg K, Churchill G, Levin E, Lundberg MS. Report of the National Heart, Lung, and Blood Institute Working Group on Sex Differences Research in Cardiovascular Disease: Scientific Questions and Challenges. Hypertension 2016; 67:802-7. [PMID: 26975706 DOI: 10.1161/hypertensionaha.115.06967] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christine Maric-Bilkan
- From the Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.M.-B., M.S.L.); Department of Integrative Biology and Physiology, University of California at Los Angeles (A.P.A.); Department of Regenerative Medicine, Texas Heart Institute, Houston (D.A.T.); Department of Physiology, Medical College of Wisconsin, Milwaukee (M.D.); Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (S.E.H.); Cardiovascular Physiology, University of Manchester, Manchester, United Kingdom (S.E.H.); Department of Medicine, Emory University School of Medicine, Atlanta, GA (N.W.); Department of Physiology, University of Mississippi Medical Center, Jackson (J.F.R.); Department of Medicine, Georgetown University Medical Center, Washington, DC (K.S.); The Jackson Laboratory, Bar Harbor, ME (G.C.); and Department of Endocrinology, Diabetes, and Metabolism, University of California, Irvine (E.L.).
| | - Arthur P Arnold
- From the Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.M.-B., M.S.L.); Department of Integrative Biology and Physiology, University of California at Los Angeles (A.P.A.); Department of Regenerative Medicine, Texas Heart Institute, Houston (D.A.T.); Department of Physiology, Medical College of Wisconsin, Milwaukee (M.D.); Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (S.E.H.); Cardiovascular Physiology, University of Manchester, Manchester, United Kingdom (S.E.H.); Department of Medicine, Emory University School of Medicine, Atlanta, GA (N.W.); Department of Physiology, University of Mississippi Medical Center, Jackson (J.F.R.); Department of Medicine, Georgetown University Medical Center, Washington, DC (K.S.); The Jackson Laboratory, Bar Harbor, ME (G.C.); and Department of Endocrinology, Diabetes, and Metabolism, University of California, Irvine (E.L.)
| | - Doris A Taylor
- From the Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.M.-B., M.S.L.); Department of Integrative Biology and Physiology, University of California at Los Angeles (A.P.A.); Department of Regenerative Medicine, Texas Heart Institute, Houston (D.A.T.); Department of Physiology, Medical College of Wisconsin, Milwaukee (M.D.); Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (S.E.H.); Cardiovascular Physiology, University of Manchester, Manchester, United Kingdom (S.E.H.); Department of Medicine, Emory University School of Medicine, Atlanta, GA (N.W.); Department of Physiology, University of Mississippi Medical Center, Jackson (J.F.R.); Department of Medicine, Georgetown University Medical Center, Washington, DC (K.S.); The Jackson Laboratory, Bar Harbor, ME (G.C.); and Department of Endocrinology, Diabetes, and Metabolism, University of California, Irvine (E.L.)
| | - Melinda Dwinell
- From the Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.M.-B., M.S.L.); Department of Integrative Biology and Physiology, University of California at Los Angeles (A.P.A.); Department of Regenerative Medicine, Texas Heart Institute, Houston (D.A.T.); Department of Physiology, Medical College of Wisconsin, Milwaukee (M.D.); Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (S.E.H.); Cardiovascular Physiology, University of Manchester, Manchester, United Kingdom (S.E.H.); Department of Medicine, Emory University School of Medicine, Atlanta, GA (N.W.); Department of Physiology, University of Mississippi Medical Center, Jackson (J.F.R.); Department of Medicine, Georgetown University Medical Center, Washington, DC (K.S.); The Jackson Laboratory, Bar Harbor, ME (G.C.); and Department of Endocrinology, Diabetes, and Metabolism, University of California, Irvine (E.L.)
| | - Susan E Howlett
- From the Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.M.-B., M.S.L.); Department of Integrative Biology and Physiology, University of California at Los Angeles (A.P.A.); Department of Regenerative Medicine, Texas Heart Institute, Houston (D.A.T.); Department of Physiology, Medical College of Wisconsin, Milwaukee (M.D.); Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (S.E.H.); Cardiovascular Physiology, University of Manchester, Manchester, United Kingdom (S.E.H.); Department of Medicine, Emory University School of Medicine, Atlanta, GA (N.W.); Department of Physiology, University of Mississippi Medical Center, Jackson (J.F.R.); Department of Medicine, Georgetown University Medical Center, Washington, DC (K.S.); The Jackson Laboratory, Bar Harbor, ME (G.C.); and Department of Endocrinology, Diabetes, and Metabolism, University of California, Irvine (E.L.)
| | - Nanette Wenger
- From the Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.M.-B., M.S.L.); Department of Integrative Biology and Physiology, University of California at Los Angeles (A.P.A.); Department of Regenerative Medicine, Texas Heart Institute, Houston (D.A.T.); Department of Physiology, Medical College of Wisconsin, Milwaukee (M.D.); Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (S.E.H.); Cardiovascular Physiology, University of Manchester, Manchester, United Kingdom (S.E.H.); Department of Medicine, Emory University School of Medicine, Atlanta, GA (N.W.); Department of Physiology, University of Mississippi Medical Center, Jackson (J.F.R.); Department of Medicine, Georgetown University Medical Center, Washington, DC (K.S.); The Jackson Laboratory, Bar Harbor, ME (G.C.); and Department of Endocrinology, Diabetes, and Metabolism, University of California, Irvine (E.L.)
| | - Jane F Reckelhoff
- From the Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.M.-B., M.S.L.); Department of Integrative Biology and Physiology, University of California at Los Angeles (A.P.A.); Department of Regenerative Medicine, Texas Heart Institute, Houston (D.A.T.); Department of Physiology, Medical College of Wisconsin, Milwaukee (M.D.); Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (S.E.H.); Cardiovascular Physiology, University of Manchester, Manchester, United Kingdom (S.E.H.); Department of Medicine, Emory University School of Medicine, Atlanta, GA (N.W.); Department of Physiology, University of Mississippi Medical Center, Jackson (J.F.R.); Department of Medicine, Georgetown University Medical Center, Washington, DC (K.S.); The Jackson Laboratory, Bar Harbor, ME (G.C.); and Department of Endocrinology, Diabetes, and Metabolism, University of California, Irvine (E.L.)
| | - Kathryn Sandberg
- From the Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.M.-B., M.S.L.); Department of Integrative Biology and Physiology, University of California at Los Angeles (A.P.A.); Department of Regenerative Medicine, Texas Heart Institute, Houston (D.A.T.); Department of Physiology, Medical College of Wisconsin, Milwaukee (M.D.); Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (S.E.H.); Cardiovascular Physiology, University of Manchester, Manchester, United Kingdom (S.E.H.); Department of Medicine, Emory University School of Medicine, Atlanta, GA (N.W.); Department of Physiology, University of Mississippi Medical Center, Jackson (J.F.R.); Department of Medicine, Georgetown University Medical Center, Washington, DC (K.S.); The Jackson Laboratory, Bar Harbor, ME (G.C.); and Department of Endocrinology, Diabetes, and Metabolism, University of California, Irvine (E.L.)
| | - Gary Churchill
- From the Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.M.-B., M.S.L.); Department of Integrative Biology and Physiology, University of California at Los Angeles (A.P.A.); Department of Regenerative Medicine, Texas Heart Institute, Houston (D.A.T.); Department of Physiology, Medical College of Wisconsin, Milwaukee (M.D.); Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (S.E.H.); Cardiovascular Physiology, University of Manchester, Manchester, United Kingdom (S.E.H.); Department of Medicine, Emory University School of Medicine, Atlanta, GA (N.W.); Department of Physiology, University of Mississippi Medical Center, Jackson (J.F.R.); Department of Medicine, Georgetown University Medical Center, Washington, DC (K.S.); The Jackson Laboratory, Bar Harbor, ME (G.C.); and Department of Endocrinology, Diabetes, and Metabolism, University of California, Irvine (E.L.)
| | - Ellis Levin
- From the Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.M.-B., M.S.L.); Department of Integrative Biology and Physiology, University of California at Los Angeles (A.P.A.); Department of Regenerative Medicine, Texas Heart Institute, Houston (D.A.T.); Department of Physiology, Medical College of Wisconsin, Milwaukee (M.D.); Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (S.E.H.); Cardiovascular Physiology, University of Manchester, Manchester, United Kingdom (S.E.H.); Department of Medicine, Emory University School of Medicine, Atlanta, GA (N.W.); Department of Physiology, University of Mississippi Medical Center, Jackson (J.F.R.); Department of Medicine, Georgetown University Medical Center, Washington, DC (K.S.); The Jackson Laboratory, Bar Harbor, ME (G.C.); and Department of Endocrinology, Diabetes, and Metabolism, University of California, Irvine (E.L.)
| | - Martha S Lundberg
- From the Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.M.-B., M.S.L.); Department of Integrative Biology and Physiology, University of California at Los Angeles (A.P.A.); Department of Regenerative Medicine, Texas Heart Institute, Houston (D.A.T.); Department of Physiology, Medical College of Wisconsin, Milwaukee (M.D.); Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (S.E.H.); Cardiovascular Physiology, University of Manchester, Manchester, United Kingdom (S.E.H.); Department of Medicine, Emory University School of Medicine, Atlanta, GA (N.W.); Department of Physiology, University of Mississippi Medical Center, Jackson (J.F.R.); Department of Medicine, Georgetown University Medical Center, Washington, DC (K.S.); The Jackson Laboratory, Bar Harbor, ME (G.C.); and Department of Endocrinology, Diabetes, and Metabolism, University of California, Irvine (E.L.).
| |
Collapse
|