1
|
Lian T, Guan R, Zhou BR, Bai Y. Structural mechanism of synergistic targeting of the CX3CR1 nucleosome by PU.1 and C/EBPα. Nat Struct Mol Biol 2024; 31:633-643. [PMID: 38267599 DOI: 10.1038/s41594-023-01189-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/23/2023] [Indexed: 01/26/2024]
Abstract
Pioneer transcription factors are vital for cell fate changes. PU.1 and C/EBPα work together to regulate hematopoietic stem cell differentiation. However, how they recognize in vivo nucleosomal DNA targets remains elusive. Here we report the structures of the nucleosome containing the mouse genomic CX3CR1 enhancer DNA and its complexes with PU.1 alone and with both PU.1 and the C/EBPα DNA binding domain. Our structures reveal that PU.1 binds the DNA motif at the exit linker, shifting 17 bp of DNA into the core region through interactions with H2A, unwrapping ~20 bp of nucleosomal DNA. C/EBPα binding, aided by PU.1's repositioning, unwraps ~25 bp of entry DNA. The PU.1 Q218H mutation, linked to acute myeloid leukemia, disrupts PU.1-H2A interactions. PU.1 and C/EBPα jointly displace linker histone H1 and open the H1-condensed nucleosome array. Our study unveils how two pioneer factors can work cooperatively to open closed chromatin by altering DNA positioning in the nucleosome.
Collapse
Affiliation(s)
- Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Lian T, Guan R, Zhou BR, Bai Y. Structural mechanism of synergistic targeting of the CX3CR1 nucleosome by PU.1 and C/EBPα. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554718. [PMID: 37790476 PMCID: PMC10542146 DOI: 10.1101/2023.08.25.554718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Pioneer transcription factors are vital for cell fate changes. PU.1 and C/EBPα work together to regulate hematopoietic stem cell differentiation. However, how they recognize in vivo nucleosomal DNA targets remain elusive. Here we report the structures of the nucleosome containing the mouse genomic CX3CR1 enhancer DNA and its complexes with PU.1 alone and with both PU.1 and the C/EBPα DNA binding domain. Our structures reveal that PU.1 binds the DNA motif at the exit linker, shifting 17 bp of DNA into the core region through interactions with H2A, unwrapping ~20 bp of nucleosomal DNA. C/EBPα binding, aided by PU.1's repositioning, unwraps ~25 bp entry DNA. The PU.1 Q218H mutation, linked to acute myeloid leukemia, disrupts PU.1-H2A interactions. PU.1 and C/EBPα jointly displace linker histone H1 and open the H1-condensed nucleosome array. Our study unveils how two pioneer factors can work cooperatively to open closed chromatin by altering DNA positioning in the nucleosome.
Collapse
Affiliation(s)
- Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- These authors equally contributed to this work
| | - Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- These authors equally contributed to this work
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Kulle A, Thanabalasuriar A, Cohen TS, Szydlowska M. Resident macrophages of the lung and liver: The guardians of our tissues. Front Immunol 2022; 13:1029085. [PMID: 36532044 PMCID: PMC9750759 DOI: 10.3389/fimmu.2022.1029085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
Resident macrophages play a unique role in the maintenance of tissue function. As phagocytes, they are an essential first line defenders against pathogens and much of the initial characterization of these cells was focused on their interaction with viral and bacterial pathogens. However, these cells are increasingly recognized as contributing to more than just host defense. Through cytokine production, receptor engagement and gap junction communication resident macrophages tune tissue inflammatory tone, influence adaptive immune cell phenotype and regulate tissue structure and function. This review highlights resident macrophages in the liver and lung as they hold unique roles in the maintenance of the interface between the circulatory system and the external environment. As such, we detail the developmental origin of these cells, their contribution to host defense and the array of tools these cells use to regulate tissue homeostasis.
Collapse
Affiliation(s)
- Amelia Kulle
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Taylor S. Cohen
- Late Stage Development, Vaccines and Immune Therapies (V&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Marta Szydlowska
- Bacteriology and Vaccine Discovery, Research and Early Development, Vaccines and Immune Therapies (V&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
4
|
Yang J, Liu C, Guan J, Wang Y, Su J, Wang Y, Liu S. SPI1 mediates transcriptional activation of TPX2 and RNF2 to regulate the radiosensitivity of lung squamous cell carcinoma. Arch Biochem Biophys 2022; 730:109425. [PMID: 36198346 DOI: 10.1016/j.abb.2022.109425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
Abstract
Radiotherapy acts by damaging DNA and hindering cancer cell proliferation. H2AX is phosphorylated to produce γH2AX that accumulates in a response to DNA double-strand breaks. Non-coding RNA can influence DNA damage response and enhance DNA repair, which show potential for cancer treatment. The study aimed to observe the influence of SPI1 on the radiosensitivity of lung squamous cell carcinoma (LUSC) and to investigate the mechanisms. SPI1, TPX2, and RNF2 were overexpressed in LUSC tissues and radioresistant cells comspared with adjacent tissues and parental cells, respectively. The binding between SPI1 and TPX2 or RNF2 promoter was investigated using ChIP-qPCR and dual-luciferase assays. SPI1 bound to TPX2 and RNF2 promoters and activated their transcription. SPI1 downregulation increased the radiosensitivity of LUSC cells, which was comprised by TPX2 or RNF2 overexpression. Meanwhile, SPI1 downregulation elevated the protein expression of γH2AX at the late stage of DNA damage response and suppressed DNA damage repair in LUSC cells, which were compromised by TPX2 or RNF2. These results indicate that SPI1 silencing potentiates radiosensitivity in LUSC cells by downregulating the transcription of TPX2 and RNF2, which provides a potential target for the radiotherapy in LUSC.
Collapse
Affiliation(s)
- Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Changjiang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Jinlei Guan
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Yuan Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Jingwei Su
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Yuxiang Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Sui Liu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China.
| |
Collapse
|
5
|
Curtiss BM, VanCampen J, Macaraeg J, Kong GL, Taherinasab A, Tsuchiya M, Yashar WM, Tsang YH, Horton W, Coleman DJ, Estabrook J, Lusardi TA, Mills GB, Druker BJ, Maxson JE, Braun TP. PU.1 and MYC transcriptional network defines synergistic drug responses to KIT and LSD1 inhibition in acute myeloid leukemia. Leukemia 2022; 36:1781-1793. [PMID: 35590033 PMCID: PMC9256806 DOI: 10.1038/s41375-022-01594-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/03/2023]
Abstract
Responses to kinase-inhibitor therapy in AML are frequently short-lived due to the rapid development of resistance, limiting the clinical efficacy. Combination therapy may improve initial therapeutic responses by targeting pathways used by leukemia cells to escape monotherapy. Here we report that combined inhibition of KIT and lysine-specific demethylase 1 (LSD1) produces synergistic cell death in KIT-mutant AML cell lines and primary patient samples. This drug combination evicts both MYC and PU.1 from chromatin driving cell cycle exit. Using a live cell biosensor for AKT activity, we identify early adaptive changes in kinase signaling following KIT inhibition that are reversed with the addition of LSD1 inhibitor via modulation of the GSK3a/b axis. Multi-omic analyses, including scRNA-seq, ATAC-seq and CUT&Tag, confirm these mechanisms in primary KIT-mutant AML. Collectively, this work provides rational for a clinical trial to assess the efficacy of KIT and LSD1 inhibition in patients with KIT-mutant AML.
Collapse
Affiliation(s)
- Brittany M Curtiss
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jake VanCampen
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jommel Macaraeg
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Garth L Kong
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Akram Taherinasab
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Mitsuhiro Tsuchiya
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - William M Yashar
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Yiu H Tsang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wesley Horton
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Daniel J Coleman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Joseph Estabrook
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Theresa A Lusardi
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Julia E Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Theodore P Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA.
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Bašová P, Paszeková H, Minařík L, Dluhošová M, Burda P, Stopka T. Combined Approach to Leukemic Differentiation Using Transcription Factor PU.1-Enhancing Agents. Int J Mol Sci 2022; 23:ijms23126729. [PMID: 35743167 PMCID: PMC9224232 DOI: 10.3390/ijms23126729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
The transcription factor PU.1 (Purine-rich DNA binding, SPI1) is a key regulator of hematopoiesis, whose level is influenced by transcription through its enhancers and its post-transcriptional degradation via microRNA-155 (miR-155). The degree of transcriptional regulation of the PU.1 gene is influenced by repression via DNA methylation, as well as other epigenetic factors, such as those related to progenitor maturation status, which is modulated by the transcription factor Myeloblastosis oncogene (MYB). In this work, we show that combinatorial treatment of acute myeloid leukemia (AML) cells with DNA methylation inhibitors (5-Azacytidine), MYB inhibitors (Celastrol), and anti-miR-155 (AM155) ideally leads to overproduction of PU.1. We also show that PU.1 reactivation can be compensated by miR-155 and that only a combined approach leads to sustained PU.1 derepression, even at the protein level. The triple effect on increasing PU.1 levels in myeloblasts stimulates the myeloid transcriptional program while inhibiting cell survival and proliferation, leading to partial leukemic differentiation.
Collapse
|
7
|
Zhang S, Zhao S, Qi Y, Li B, Wang H, Pan Z, Xue H, Jin C, Qiu W, Chen Z, Guo Q, Fan Y, Xu J, Gao Z, Wang S, Guo X, Deng L, Ni S, Xue F, Wang J, Zhao R, Li G. SPI1-induced downregulation of FTO promotes GBM progression by regulating pri-miR-10a processing in an m6A-dependent manner. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:699-717. [PMID: 35317283 PMCID: PMC8905236 DOI: 10.1016/j.omtn.2021.12.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
As one of the most common post-transcriptional modifications of mRNAs and noncoding RNAs, N6-methyladenosine (m6A) modification regulates almost every aspect of RNA metabolism. Evidence indicates that dysregulation of m6A modification and associated proteins contributes to glioblastoma (GBM) progression. However, the function of fat mass and obesity-associated protein (FTO), an m6A demethylase, has not been systematically and comprehensively explored in GBM. Here, we found that decreased FTO expression in clinical specimens correlated with higher glioma grades and poorer clinical outcomes. Functionally, FTO inhibited growth and invasion in GBM cells in vitro and in vivo. Mechanistically, FTO regulated the m6A modification of primary microRNA-10a (pri-miR-10a), which could be recognized by reader HNRNPA2B1, recruiting the microRNA microprocessor complex protein DGCR8 and mediating pri-miR-10a processing. Furthermore, the transcriptional activity of FTO was inhibited by the transcription factor SPI1, which could be specifically disrupted by the SPI1 inhibitor DB2313. Treatment with this inhibitor restored endogenous FTO expression and decreased GBM tumor burden, suggesting that FTO may serve as a novel prognostic indicator and therapeutic molecular target of GBM.
Collapse
Affiliation(s)
- Shouji Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Huizhi Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Chuandi Jin
- Institute for Medical Dataology of Shandong University, Jinan, People’s Republic of China
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Zihang Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Qindong Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Jianye Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
| | - Fuzhong Xue
- Institute for Medical Dataology of Shandong University, Jinan, People’s Republic of China
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
- Corresponding author: Rongrong Zhao, Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, China
- Corresponding author: Gang Li, Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
8
|
Yau E, Chen Y, Song C, Webb J, Carillo M, Kawasawa YI, Tang Z, Takahashi Y, Umstead TM, Dovat S, Chroneos ZC. Genomic and epigenomic adaptation in SP-R210 (Myo18A) isoform-deficient macrophages. Immunobiology 2021; 226:152150. [PMID: 34735924 DOI: 10.1016/j.imbio.2021.152150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
Macrophages play an important role in maintaining tissue homeostasis, from regulating the inflammatory response to pathogens to resolving inflammation and aiding tissue repair. The surfactant protein A (SP-A) receptor SP-R210 (MYO18A) has been shown to affect basal and inflammatory macrophage states. Specifically, disruption of the longer splice isoform SP-R210L/MYO18Aα renders macrophages hyper-inflammatory, although the mechanism by which this occurs is not well understood. We asked whether disruption of the L isoform led to the hyper-inflammatory state via alteration of global genomic responses. RNA sequencing analysis of L isoform-deficient macrophages (SP-R210L(DN)) revealed basal and influenza-induced upregulation of genes associated with inflammatory pathways, such as TLR, RIG-I, NOD, and cytoplasmic DNA signaling, whereas knockout of both SP-R210 isoforms (L and S) only resulted in increased RIG-I and NOD signaling. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis showed increased genome-wide deposition of the pioneer transcription factor PU.1 in SP-R210L(DN) cells, with increased representation around genes relevant to inflammatory pathways. Additional ChIP-seq analysis of histone H3 methylation marks showed decreases in both repressive H3K9me3 and H3K27me3 marks with a commensurate increase in transcriptionally active (H3K4me3) histone marks in the L isoform deficient macrophages. Influenza A virus (IAV) infection, known to stimulate a wide array of anti-viral responses, caused a differential redistribution of PU.1 binding between proximal promoter and distal sites and decoupling from Toll-like receptor regulated gene promoters in SP-R210L(DN) cells. These finding suggest that the inflammatory differences seen in SP-R210L-deficient macrophages are a result of transcriptional differences that are mediated by epigenetic changes brought about by differential expression of the SP-R210 isoforms. This provides an avenue to explore how the signaling pathways downstream of the receptor and the ligands can modulate the macrophage inflammatory response.
Collapse
Affiliation(s)
- Eric Yau
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA.
| | - Yan Chen
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA; Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunhua Song
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, PA, USA; Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, USA
| | - Jason Webb
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA
| | - Marykate Carillo
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, PA, USA
| | - Zhenyuan Tang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yoshinori Takahashi
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Todd M Umstead
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA
| | - Sinisa Dovat
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zissis C Chroneos
- Department of Pediatrics and Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, PA, USA.
| |
Collapse
|
9
|
Mysore V, Cullere X, Mears J, Rosetti F, Okubo K, Liew PX, Zhang F, Madera-Salcedo I, Rosenbauer F, Stone RM, Aster JC, von Andrian UH, Lichtman AH, Raychaudhuri S, Mayadas TN. FcγR engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity. Nat Commun 2021; 12:4791. [PMID: 34373452 PMCID: PMC8352912 DOI: 10.1038/s41467-021-24591-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Classical dendritic cells (cDC) are professional antigen-presenting cells (APC) that regulate immunity and tolerance. Neutrophil-derived cells with properties of DCs (nAPC) are observed in human diseases and after culture of neutrophils with cytokines. Here we show that FcγR-mediated endocytosis of antibody-antigen complexes or an anti-FcγRIIIB-antigen conjugate converts neutrophils into nAPCs that, in contrast to those generated with cytokines alone, activate T cells to levels observed with cDCs and elicit CD8+ T cell-dependent anti-tumor immunity in mice. Single cell transcript analyses and validation studies implicate the transcription factor PU.1 in neutrophil to nAPC conversion. In humans, blood nAPC frequency in lupus patients correlates with disease. Moreover, anti-FcγRIIIB-antigen conjugate treatment induces nAPCs that can activate autologous T cells when using neutrophils from individuals with myeloid neoplasms that harbor neoantigens or those vaccinated against bacterial toxins. Thus, anti-FcγRIIIB-antigen conjugate-induced conversion of neutrophils to immunogenic nAPCs may represent a possible immunotherapy for cancer and infectious diseases.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xavier Cullere
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Mears
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Florencia Rosetti
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Koshu Okubo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pei X Liew
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Iris Madera-Salcedo
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Muenster, Muenster, Germany
| | - Richard M Stone
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Hu J, Zhang JJ, Li L, Wang SL, Yang HT, Fan XW, Zhang LM, Hu GL, Fu HX, Song WF, Yan LJ, Liu JJ, Wu JT, Kong B. PU.1 inhibition attenuates atrial fibrosis and atrial fibrillation vulnerability induced by angiotensin-II by reducing TGF-β1/Smads pathway activation. J Cell Mol Med 2021; 25:6746-6759. [PMID: 34132026 PMCID: PMC8278085 DOI: 10.1111/jcmm.16678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrosis serves a critical role in driving atrial remodelling‐mediated atrial fibrillation (AF). Abnormal levels of the transcription factor PU.1, a key regulator of fibrosis, are associated with cardiac injury and dysfunction following acute viral myocarditis. However, the role of PU.1 in atrial fibrosis and vulnerability to AF remain unclear. Here, an in vivo atrial fibrosis model was developed by the continuous infusion of C57 mice with subcutaneous Ang‐II, while the in vitro model comprised atrial fibroblasts that were isolated and cultured. The expression of PU.1 was significantly up‐regulated in the Ang‐II‐induced group compared with the sham/control group in vivo and in vitro. Moreover, protein expression along the TGF‐β1/Smads pathway and the proliferation and differentiation of atrial fibroblasts induced by Ang‐II were significantly higher in the Ang‐II‐induced group than in the sham/control group. These effects were attenuated by exposure to DB1976, a PU.1 inhibitor, both in vivo and in vitro. Importantly, in vitro treatment with small interfering RNA against Smad3 (key protein of TGF‐β1/Smads signalling pathway) diminished these Ang‐II‐mediated effects, and the si‐Smad3‐mediated effects were, in turn, antagonized by the addition of a PU.1‐overexpression adenoviral vector. Finally, PU.1 inhibition reduced the atrial fibrosis induced by Ang‐II and attenuated vulnerability to AF, at least in part through the TGF‐β1/Smads pathway. Overall, the study implicates PU.1 as a potential therapeutic target to inhibit Ang‐II‐induced atrial fibrosis and vulnerability to AF.
Collapse
Affiliation(s)
- Juan Hu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, China
| | - Li Li
- Department of Cardiology, Qitai Farm Hospital, Xinjiang, China
| | - Shan-Ling Wang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Tao Yang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-Wei Fan
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei-Ming Zhang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang-Ling Hu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Xia Fu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei-Feng Song
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Jie Yan
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Jing Liu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin-Tao Wu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, China
| |
Collapse
|
11
|
Meng D, Wu L, Li Z, Ma X, Zhao S, Zhao D, Qin G. LncRNA TUG1 ameliorates diabetic nephropathy via inhibition of PU.1/RTN1 signaling pathway. J Leukoc Biol 2021; 111:553-562. [PMID: 34062006 DOI: 10.1002/jlb.6a1020-699rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal failure. The study aimed to investigate whether long noncoding RNA taurine-upregulated gene 1 (TUG1) can ameliorate the endoplasmic reticulum stress (ERS) and apoptosis of renal tubular epithelial cells in DN, and the underlying mechanism. The DN mouse model was established by streptozocin injection, and the human renal tubular epithelial cell line HK-2 was treated with high glucose (HG) to mimic DN in vitro. The molecular mechanism was explored through dual-luciferase activity assay, RNA pull-down assay, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (CHIP) assay. The expression of TUG1 was significantly decreased in the renal tubules of DN model mice. Overexpression of TUG1 reduced the levels of ERS markers and apoptosis markers by inhibiting reticulon-1 (RTN1) expression in HG-induced HK-2 cells. Furthermore, TUG1 down-regulated RTN1 expression by inhibiting the binding of transcription factor PU.1 to the RTN1 promoter, thereby reducing the levels of ERS markers and apoptosis markers. Meanwhile, TUG1-overexpression adenovirus plasmids injection significantly alleviated tubular lesions, and reduced RTN1 expression, ERS markers and apoptosis markers, whereas these results were reversed by injection of PU.1-overexpression adenovirus plasmids. TUG1 restrains the ERS and apoptosis of renal tubular epithelial cells and ameliorates DN through inhibition of transcription factor PU.1.
Collapse
Affiliation(s)
- Dongdong Meng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Wu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhifu Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Ma
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuiying Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Galatà G, García-Montero AC, Kristensen T, Dawoud AAZ, Muñoz-González JI, Meggendorfer M, Guglielmelli P, Hoade Y, Alvarez-Twose I, Gieger C, Strauch K, Ferrucci L, Tanaka T, Bandinelli S, Schnurr TM, Haferlach T, Broesby-Olsen S, Vestergaard H, Møller MB, Bindslev-Jensen C, Vannucchi AM, Orfao A, Radia D, Reiter A, Chase AJ, Cross NCP, Tapper WJ. Genome-wide association study identifies novel susceptibility loci for KIT D816V positive mastocytosis. Am J Hum Genet 2021; 108:284-294. [PMID: 33421400 DOI: 10.1016/j.ajhg.2020.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Mastocytosis is a rare myeloid neoplasm characterized by uncontrolled expansion of mast cells, driven in >80% of affected individuals by acquisition of the KIT D816V mutation. To explore the hypothesis that inherited variation predisposes to mastocytosis, we performed a two-stage genome-wide association study, analyzing 1,035 individuals with KIT D816V positive disease and 17,960 healthy control individuals from five European populations. After quality control, we tested 592,007 SNPs at stage 1 and 75 SNPs at stage 2 for association by using logistic regression and performed a fixed effects meta-analysis to combine evidence across the two stages. From the meta-analysis, we identified three intergenic SNPs associated with mastocytosis that achieved genome-wide significance without heterogeneity between cohorts: rs4616402 (pmeta = 1.37 × 10-15, OR = 1.52), rs4662380 (pmeta = 2.11 × 10-12, OR = 1.46), and rs13077541 (pmeta = 2.10 × 10-9, OR = 1.33). Expression quantitative trait analyses demonstrated that rs4616402 is associated with the expression of CEBPA (peQTL = 2.3 × 10-14), a gene encoding a transcription factor known to play a critical role in myelopoiesis. The role of the other two SNPs is less clear: rs4662380 is associated with expression of the long non-coding RNA gene TEX41 (peQTL = 2.55 × 10-11), whereas rs13077541 is associated with the expression of TBL1XR1, which encodes transducin (β)-like 1 X-linked receptor 1 (peQTL = 5.70 × 10-8). In individuals with available data and non-advanced disease, rs4616402 was associated with age at presentation (p = 0.009; beta = 4.41; n = 422). Additional focused analysis identified suggestive associations between mastocytosis and genetic variation at TERT, TPSAB1/TPSB2, and IL13. These findings demonstrate that multiple germline variants predispose to KIT D816V positive mastocytosis and provide novel avenues for functional investigation.
Collapse
Affiliation(s)
- Gabriella Galatà
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrés C García-Montero
- Institute of Biomedical Research of Salamanca, Salamanca 37007, Spain; Servicio de Citometría, Departamento de Medicina, CIBERONC, and Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Thomas Kristensen
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; Mastocytosis Centre Odense University Hospital, 5000 Odense, Denmark
| | - Ahmed A Z Dawoud
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Javier I Muñoz-González
- Institute of Biomedical Research of Salamanca, Salamanca 37007, Spain; Servicio de Citometría, Departamento de Medicina, CIBERONC, and Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | | | - Paola Guglielmelli
- Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università Degli Studi di Firenze, 50134 Firenze, Italy
| | - Yvette Hoade
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Ivan Alvarez-Twose
- Instituto de Mastocitosis de Castilla La Mancha, Hospital Virgen del Valle, 45071 Toledo, Spain
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; German Centre for Cardiovascular Research Partner Site Munich Heart Alliance, 80802 Munich, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Germany Research Center for Environmental Health, 85764 Neuherberg, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, 80539 Munich, Germany; Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Luigi Ferrucci
- Longitudinal study section, Translation Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Toshiko Tanaka
- Longitudinal study section, Translation Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Theresia M Schnurr
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Sigurd Broesby-Olsen
- Mastocytosis Centre Odense University Hospital, 5000 Odense, Denmark; Department of Dermatology and Allergy Centre, Odense University Hospital, 5000 Odense, Denmark; Odense Research Center for Anaphylaxis, Odense University Hospital, 5000 Odense, Denmark
| | - Hanne Vestergaard
- Mastocytosis Centre Odense University Hospital, 5000 Odense, Denmark; Department of Hematology, Odense University Hospital, 5000 Odense, Denmark
| | - Michael Boe Møller
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; Mastocytosis Centre Odense University Hospital, 5000 Odense, Denmark
| | - Carsten Bindslev-Jensen
- Mastocytosis Centre Odense University Hospital, 5000 Odense, Denmark; Department of Dermatology and Allergy Centre, Odense University Hospital, 5000 Odense, Denmark; Odense Research Center for Anaphylaxis, Odense University Hospital, 5000 Odense, Denmark
| | - Alessandro M Vannucchi
- Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università Degli Studi di Firenze, 50134 Firenze, Italy
| | - Alberto Orfao
- Institute of Biomedical Research of Salamanca, Salamanca 37007, Spain; Servicio de Citometría, Departamento de Medicina, CIBERONC, and Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Deepti Radia
- Department of Clinical Haematology, Guy's and St Thomas' NHS Hospitals, London SE1 9RT, UK
| | - Andreas Reiter
- University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Andrew J Chase
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK; Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK
| | - Nicholas C P Cross
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK; Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK.
| | - William J Tapper
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
13
|
Zhang P, Zhang M. Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clin Epigenetics 2020; 12:169. [PMID: 33160401 PMCID: PMC7648940 DOI: 10.1186/s13148-020-00962-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of clinically aggressive diseases associated with poor prognosis. Except for ALK + anaplastic large-cell lymphoma (ALCL), most peripheral T-cell lymphomas are highly malignant and have an aggressive disease course and poor clinical outcomes, with a poor remission rate and frequent relapse after first-line treatment. Aberrant epigenetic alterations play an important role in the pathogenesis and development of specific types of peripheral T-cell lymphoma, including the regulation of the expression of genes and signal transduction. The most common epigenetic alterations are DNA methylation and histone modification. Histone modification alters the level of gene expression by regulating the acetylation status of lysine residues on the promoter surrounding histones, often leading to the silencing of tumour suppressor genes or the overexpression of proto-oncogenes in lymphoma. DNA methylation refers to CpG islands, generally leading to tumour suppressor gene transcriptional silencing. Genetic studies have also shown that some recurrent mutations in genes involved in the epigenetic machinery, including TET2, IDH2-R172, DNMT3A, RHOA, CD28, IDH2, TET2, MLL2, KMT2A, KDM6A, CREBBP, and EP300, have been observed in cases of PTCL. The aberrant expression of miRNAs has also gradually become a diagnostic biomarker. These provide a reasonable molecular mechanism for epigenetic modifying drugs in the treatment of PTCL. As epigenetic drugs implicated in lymphoma have been continually reported in recent years, many new ideas for the diagnosis, treatment, and prognosis of PTCL originate from epigenetics in recent years. Novel epigenetic-targeted drugs have shown good tolerance and therapeutic effects in the treatment of peripheral T-cell lymphoma as monotherapy or combination therapy. NCCN Clinical Practice Guidelines also recommended epigenetic drugs for PTCL subtypes as second-line therapy. Epigenetic mechanisms provide new directions and therapeutic strategies for the research and treatment of peripheral T-cell lymphoma. Therefore, this paper mainly reviews the epigenetic changes in the pathogenesis of peripheral T-cell lymphoma and the advancement of epigenetic-targeted drugs in the treatment of peripheral T-cell lymphoma (PTCL).
Collapse
Affiliation(s)
- Ping Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China. .,Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.
| |
Collapse
|
14
|
Lackey DE, Reis FCG, Isaac R, Zapata RC, El Ouarrat D, Lee YS, Bandyopadhyay G, Ofrecio JM, Oh DY, Osborn O. Adipocyte PU.1 knockout promotes insulin sensitivity in HFD-fed obese mice. Sci Rep 2019; 9:14779. [PMID: 31611602 PMCID: PMC6791934 DOI: 10.1038/s41598-019-51196-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022] Open
Abstract
Insulin resistance is a key feature of obesity and type 2 diabetes. PU.1 is a master transcription factor predominantly expressed in macrophages but after HFD feeding PU.1 expression is also significantly increased in adipocytes. We generated adipocyte specific PU.1 knockout mice using adiponectin cre to investigate the role of PU.1 in adipocyte biology, insulin and glucose homeostasis. In HFD-fed obese mice systemic glucose tolerance and insulin sensitivity were improved in PU.1 AKO mice and clamp studies indicated improvements in both adipose and liver insulin sensitivity. At the level of adipose tissue, macrophage infiltration and inflammation was decreased and glucose uptake was increased in PU.1 AKO mice compared with controls. While PU.1 deletion in adipocytes did not affect the gene expression of PPARg itself, we observed increased expression of PPARg target genes in eWAT from HFD fed PU.1 AKO mice compared with controls. Furthermore, we observed decreased phosphorylation at serine 273 in PU.1 AKO mice compared with fl/fl controls, indicating that PPARg is more active when PU.1 expression is reduced in adipocytes. Therefore, in obesity the increased expression of PU.1 in adipocytes modifies the adipocyte PPARg cistrome resulting in impaired glucose tolerance and insulin sensitivity.
Collapse
Affiliation(s)
- Denise E Lackey
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Felipe C G Reis
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Roi Isaac
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Rizaldy C Zapata
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dalila El Ouarrat
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yun Sok Lee
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Gautam Bandyopadhyay
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jachelle M Ofrecio
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Da Young Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, USA
| | - Olivia Osborn
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Ha SD, Cho W, DeKoter RP, Kim SO. The transcription factor PU.1 mediates enhancer-promoter looping that is required for IL-1β eRNA and mRNA transcription in mouse melanoma and macrophage cell lines. J Biol Chem 2019; 294:17487-17500. [PMID: 31586032 DOI: 10.1074/jbc.ra119.010149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
The DNA-binding protein PU.1 is a myeloid lineage-determining and pioneering transcription factor due to its ability to bind "closed" genomic sites and maintain "open" chromatin state for myeloid lineage-specific genes. The precise mechanism of PU.1 in cell type-specific programming is yet to be elucidated. The melanoma cell line B16BL6, although it is nonmyeloid lineage, expressed Toll-like receptors and activated the transcription factor NF-κB upon stimulation by the bacterial cell wall component lipopolysaccharide. However, it did not produce cytokines, such as IL-1β mRNA. Ectopic PU.1 expression induced remodeling of a novel distal enhancer (located ∼10 kbp upstream of the IL-1β transcription start site), marked by nucleosome depletion, enhancer-promoter looping, and histone H3 lysine 27 acetylation (H3K27ac). PU.1 induced enhancer-promoter looping and H3K27ac through two distinct PU.1 regions. These PU.1-dependent events were independently required for subsequent signal-dependent and co-dependent events: NF-κB recruitment and further H3K27ac, both of which were required for enhancer RNA (eRNA) transcription. In murine macrophage RAW264.7 cells, these PU.1-dependent events were constitutively established and readily expressed eRNA and subsequently IL-1β mRNA by lipopolysaccharide stimulation. In summary, this study showed a sequence of epigenetic events in programming IL-1β transcription by the distal enhancer priming and eRNA production mediated by PU.1 and the signal-dependent transcription factor NF-κB.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Woohyun Cho
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Rodney P DeKoter
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Sung Ouk Kim
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| |
Collapse
|
16
|
Ng M, Heckl D, Klusmann JH. The Regulatory Roles of Long Noncoding RNAs in Acute Myeloid Leukemia. Front Oncol 2019; 9:570. [PMID: 31338324 PMCID: PMC6629768 DOI: 10.3389/fonc.2019.00570] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/12/2019] [Indexed: 01/23/2023] Open
Abstract
In this post-genomic era, long noncoding RNAs (lncRNAs) are rapidly gaining recognition for their crucial roles across diverse biological processes and contexts. The human blood system is no exception, where dozens of lncRNAs have been established as regulators of normal and/or malignant hematopoiesis, and where ongoing works continue to uncover novel lncRNA functions. Our review focuses on lncRNAs that are involved in the pathogenesis of acute myeloid leukemia (AML) and the mechanisms through which they control gene expression in this disease context. We also comment on genome-wide sequencing or profiling studies that have implicated large sets of lncRNAs in AML pathophysiology.
Collapse
Affiliation(s)
- Michelle Ng
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
17
|
Brown G, Ceredig R. Modeling the Hematopoietic Landscape. Front Cell Dev Biol 2019; 7:104. [PMID: 31275935 PMCID: PMC6591273 DOI: 10.3389/fcell.2019.00104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
Some time ago, we proposed a continuum-like view of the lineages open to hematopoietic stem cells (HSCs); each HSC self-renews or chooses from the spectrum of all end-cell options and can then "merely" differentiate. Having selected a cell lineage, an individual HSC may still "step sideways" to an alternative, albeit closely related, fate: HSC and their progeny therefore remain versatile. The hematopoietic cytokines erythropoietin, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, granulocyte/macrophage colony-stimulating factor and ligand for the fms-like tyrosine kinase 3 instruct cell lineage. Sub-populations of HSCs express each of the cytokine receptors that are positively auto-regulated upon cytokine binding. Many years ago, Waddington proposed that the epigenetic landscape played an important role in cell lineage choice. This landscape is dynamic and unstable especially regarding DNA methylation patterns across genomic DNA. This may underlie the receptor diversity of HSC and their decision-making.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences - Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
18
|
Singh S, Yang Y, Póczos B, Ma J. Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. QUANTITATIVE BIOLOGY 2019; 7:122-137. [PMID: 34113473 DOI: 10.1007/s40484-019-0154-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background In the human genome, distal enhancers are involved in regulating target genes through proximal promoters by forming enhancer-promoter interactions. Although recently developed high-throughput experimental approaches have allowed us to recognize potential enhancer-promoter interactions genome-wide, it is still largely unclear to what extent the sequence-level information encoded in our genome help guide such interactions. Methods Here we report a new computational method (named "SPEID") using deep learning models to predict enhancer-promoter interactions based on sequence-based features only, when the locations of putative enhancers and promoters in a particular cell type are given. Results Our results across six different cell types demonstrate that SPEID is effective in predicting enhancer-promoter interactions as compared to state-of-the-art methods that only use information from a single cell type. As a proof-of-principle, we also applied SPEID to identify somatic non-coding mutations in melanoma samples that may have reduced enhancer-promoter interactions in tumor genomes. Conclusions This work demonstrates that deep learning models can help reveal that sequence-based features alone are sufficient to reliably predict enhancer-promoter interactions genome-wide.
Collapse
Affiliation(s)
- Shashank Singh
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yang Yang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Barnabás Póczos
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Dahl R. Old dog PU.1 reveals new tricks. Nat Immunol 2019; 20:520-522. [PMID: 30962594 DOI: 10.1038/s41590-019-0380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard Dahl
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, USA.
| |
Collapse
|
20
|
Fischer J, Walter C, Tönges A, Aleth H, Jordão MJC, Leddin M, Gröning V, Erdmann T, Lenz G, Roth J, Vogl T, Prinz M, Dugas M, Jacobsen ID, Rosenbauer F. Safeguard function of PU.1 shapes the inflammatory epigenome of neutrophils. Nat Immunol 2019; 20:546-558. [DOI: 10.1038/s41590-019-0343-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/08/2019] [Indexed: 12/16/2022]
|
21
|
Rothenberg EV, Hosokawa H, Ungerbäck J. Mechanisms of Action of Hematopoietic Transcription Factor PU.1 in Initiation of T-Cell Development. Front Immunol 2019; 10:228. [PMID: 30842770 PMCID: PMC6391351 DOI: 10.3389/fimmu.2019.00228] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
PU.1 is an ETS-family transcription factor that plays a broad range of roles in hematopoiesis. A direct regulator of myeloid, dendritic-cell, and B cell functional programs, and a well-known antagonist of terminal erythroid cell differentiation, it is also expressed in the earliest stages of T-cell development of each cohort of intrathymic pro-T cells. Its expression in this context appears to give T-cell precursors initial, transient access to myeloid and dendritic cell developmental competence and therefore to represent a source of antagonism or delay of T-cell lineage commitment. However, it has remained uncertain until recently why T-cell development is also intensely dependent upon PU.1. Here, we review recent work that sheds light on the molecular biology of PU.1 action across the genome in pro-T cells and identifies the genes that depend on PU.1 for their correct regulation. This work indicates modes of chromatin engagement, pioneering, and cofactor recruitment (“coregulator theft”) by PU.1 as well as gene network interactions that not only affect specific target genes but also have system-wide regulatory consequences, amplifying the impact of PU.1 beyond its own direct binding targets. The genes directly regulated by PU.1 also suggest a far-reaching transformation of cell biology and signaling potential between the early stages of T-cell development when PU.1 is expressed and when it is silenced. These cell-biological functions can be important to distinguish fetal from adult T-cell development and have the potential to illuminate aspects of thymic function that have so far remained the most mysterious.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jonas Ungerbäck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
22
|
Gao D, Pinello N, Nguyen TV, Thoeng A, Nagarajah R, Holst J, Rasko JEJ, Wong JJL. DNA methylation/hydroxymethylation regulate gene expression and alternative splicing during terminal granulopoiesis. Epigenomics 2019; 11:95-109. [DOI: 10.2217/epi-2018-0050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: To determine whether epigenetic modifications of DNA regulate gene expression and alternative splicing during terminal granulopoiesis. Materials & methods: Using whole genome bisulfite sequencing, reduced representation hydroxymethylation profiling and mRNA sequencing, we compare changes in DNA methylation, DNA hydroxymethylation, gene expression and alternative splicing in mouse promyelocytes and granulocytes. Results & conclusion: We show reduced DNA methylation at the promoters and enhancers of key granulopoiesis genes, indicating a regulatory role in the activation of lineage-specific genes during differentiation. Notably, increased DNA hydroxymethylation in exons is associated with preferential inclusion of specific exons in granulocytes. Overall, DNA methylation and hydroxymethylation changes at particular genomic loci may play specific roles in gene regulation or alternative splicing during terminal granulopoiesis. Data deposition: Whole genome bisulfite sequencing of mouse promyelocytes and granulocytes: Gene Expression Omnibus (GSE85517); mRNA sequencing of mouse promyelocytes and granulocytes: Gene Expression Omnibus (GSE48307); reduced representation 5-hydroxymethylation profiling of mouse promyelocytes and granulocytes: Bioproject (PRJNA495696).
Collapse
Affiliation(s)
- Dadi Gao
- Gene & Stem Cell Therapy Program Centenary Institute, University of Sydney, Camperdown 2050, Australia
- Bioinformatics Laboratory Centenary Institute, University of Sydney, Camperdown 2050, Australia
- Sydney Medical School, University of Sydney, NSW 2006, Australia
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Natalia Pinello
- Gene & Stem Cell Therapy Program Centenary Institute, University of Sydney, Camperdown 2050, Australia
- Sydney Medical School, University of Sydney, NSW 2006, Australia
- Gene Regulation in Cancer Laboratory Centenary Institute, University of Sydney, Camperdown 2050, Australia
| | - Trung V Nguyen
- Gene & Stem Cell Therapy Program Centenary Institute, University of Sydney, Camperdown 2050, Australia
- Sydney Medical School, University of Sydney, NSW 2006, Australia
- Gene Regulation in Cancer Laboratory Centenary Institute, University of Sydney, Camperdown 2050, Australia
| | - Annora Thoeng
- Gene & Stem Cell Therapy Program Centenary Institute, University of Sydney, Camperdown 2050, Australia
- Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Rajini Nagarajah
- Gene & Stem Cell Therapy Program Centenary Institute, University of Sydney, Camperdown 2050, Australia
- Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Jeff Holst
- Sydney Medical School, University of Sydney, NSW 2006, Australia
- Origins of Cancer Program Centenary Institute, University of Sydney, Camperdown 2050, Australia
| | - John EJ Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, University of Sydney, Camperdown 2050, Australia
- Sydney Medical School, University of Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program Centenary Institute, University of Sydney, Camperdown 2050, Australia
- Sydney Medical School, University of Sydney, NSW 2006, Australia
- Gene Regulation in Cancer Laboratory Centenary Institute, University of Sydney, Camperdown 2050, Australia
| |
Collapse
|
23
|
Rubin AJ, Parker KR, Satpathy AT, Qi Y, Wu B, Ong AJ, Mumbach MR, Ji AL, Kim DS, Cho SW, Zarnegar BJ, Greenleaf WJ, Chang HY, Khavari PA. Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks. Cell 2018; 176:361-376.e17. [PMID: 30580963 DOI: 10.1016/j.cell.2018.11.022] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/12/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
Abstract
Here, we present Perturb-ATAC, a method that combines multiplexed CRISPR interference or knockout with genome-wide chromatin accessibility profiling in single cells based on the simultaneous detection of CRISPR guide RNAs and open chromatin sites by assay of transposase-accessible chromatin with sequencing (ATAC-seq). We applied Perturb-ATAC to transcription factors (TFs), chromatin-modifying factors, and noncoding RNAs (ncRNAs) in ∼4,300 single cells, encompassing more than 63 genotype-phenotype relationships. Perturb-ATAC in human B lymphocytes uncovered regulators of chromatin accessibility, TF occupancy, and nucleosome positioning and identified a hierarchy of TFs that govern B cell state, variation, and disease-associated cis-regulatory elements. Perturb-ATAC in primary human epidermal cells revealed three sequential modules of cis-elements that specify keratinocyte fate. Combinatorial deletion of all pairs of these TFs uncovered their epistatic relationships and highlighted genomic co-localization as a basis for synergistic interactions. Thus, Perturb-ATAC is a powerful strategy to dissect gene regulatory networks in development and disease.
Collapse
Affiliation(s)
- Adam J Rubin
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin R Parker
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yanyan Qi
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Beijing Wu
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alvin J Ong
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maxwell R Mumbach
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew L Ji
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel S Kim
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seung Woo Cho
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian J Zarnegar
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Howard Y Chang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304, USA.
| |
Collapse
|
24
|
T'Jonck W, Guilliams M, Bonnardel J. Niche signals and transcription factors involved in tissue-resident macrophage development. Cell Immunol 2018; 330:43-53. [PMID: 29463401 PMCID: PMC6108424 DOI: 10.1016/j.cellimm.2018.02.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 12/25/2022]
Abstract
Tissue-resident macrophages form an essential part of the first line of defense in all tissues of the body. Next to their immunological role, they play an important role in maintaining tissue homeostasis. Recently, it was shown that they are primarily of embryonic origin. During embryogenesis, precursors originating in the yolk sac and fetal liver colonize the embryonal tissues where they develop into mature tissue-resident macrophages. Their development is governed by two distinct sets of transcription factors. First, in the pre-macrophage stage, a core macrophage program is established by lineage-determining transcription factors. Under the influence of tissue-specific signals, this core program is refined by signal-dependent transcription factors. This nurturing by the niche allows the macrophages to perform tissue-specific functions. In the last 15 years, some of these niche signals and transcription factors have been identified. However, detailed insight in the exact mechanism of development is still lacking.
Collapse
Affiliation(s)
- Wouter T'Jonck
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052 Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium.
| | - Martin Guilliams
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052 Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Johnny Bonnardel
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052 Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium.
| |
Collapse
|
25
|
Shakerian L, Ghorbani S, Talebi F, Noorbakhsh F. MicroRNA-150 targets PU.1 and regulates macrophage differentiation and function in experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 323:167-174. [PMID: 30196828 DOI: 10.1016/j.jneuroim.2018.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
PU.1 is a transcription factor which is expressed in myeloid cells. Herein, we investigated the expression of PU.1 and its potentially targeting miRNAs in the central nervous system (CNS) of mice with experimental autoimmune encephalitis (EAE) and in cultured primary macrophages. PU.1 levels where highly induced in EAE spinal cords and in activated macrophages; this was associated with a significant reduction in miR-150-5p levels at chronic phase of disease and in activated cells. Luciferase assays confirmed the PU.1-miR-150-5p interaction. Overexpression of miR-150-5p in macrophages decreased the expression of proinflammatory cytokines and shifted the polarization of macrophages away from the M1-like phenotype.
Collapse
Affiliation(s)
- Leila Shakerian
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Samira Ghorbani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Talebi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Patent highlights from December 2017 to January 2018. Pharm Pat Anal 2018; 7:111-119. [PMID: 29676211 DOI: 10.4155/ppa-2018-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
27
|
Seuter S, Neme A, Carlberg C. ETS transcription factor family member GABPA contributes to vitamin D receptor target gene regulation. J Steroid Biochem Mol Biol 2018; 177:46-52. [PMID: 28870774 DOI: 10.1016/j.jsbmb.2017.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 01/31/2023]
Abstract
Binding motifs of the ETS-domain transcription factor GABPA are found with high significance below the summits of the vitamin D receptor (VDR) cistrome. VDR is the nuclear receptor for the biologically most active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). In this study, we determined the GABPA cistrome in THP-1 human monocytes and found that it is comprised of 3822 genomic loci, some 20% of which were modulated by 1,25(OH)2D3. The GABPA cistrome showed a high overlap rate with accessible chromatin and the pioneer transcription factor PU.1. Interestingly, 23 and 12% of persistent and transient VDR binding sites, respectively, co-localized with GABPA, which is clearly higher than the rate of secondary VDR loci (4%). Some 40% of GABPA binding sites were found at transcription start sites, nearly 100 of which are of 1,25(OH)2D3 target genes. On 593 genomic loci VDR and GABPA co-localized with PU.1, while only 175 VDR sites bound GABPA in the absence of PU.1. In total, VDR sites with GABPA co-localization may control some 450 vitamin D target genes. Those genes that are co-controlled by PU.1 preferentially participate in cellular and immune signaling processes, while the remaining genes are involved in cellular metabolism pathways. In conclusion, GABPA may contribute to differential VDR target gene regulation.
Collapse
Affiliation(s)
- Sabine Seuter
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Antonio Neme
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland.
| |
Collapse
|
28
|
Ji MM, Huang YH, Huang JY, Wang ZF, Fu D, Liu H, Liu F, Leboeuf C, Wang L, Ye J, Lu YM, Janin A, Cheng S, Zhao WL. Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified. Haematologica 2018; 103:679-687. [PMID: 29305415 PMCID: PMC5865443 DOI: 10.3324/haematol.2017.182444] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/03/2018] [Indexed: 01/03/2023] Open
Abstract
Due to heterogeneous morphological and immunophenotypic features, approximately 50% of peripheral T-cell lymphomas are unclassifiable and categorized as peripheral T-cell lymphomas, not otherwise specified. These conditions have an aggressive course and poor clinical outcome. Identification of actionable biomarkers is urgently needed to develop better therapeutic strategies. Epigenetic alterations play a crucial role in tumor progression. Histone modifications, particularly methylation and acetylation, are generally involved in chromatin state regulation. Here we screened the core set of genes related to histone methylation (KMT2D, SETD2, KMT2A, KDM6A) and acetylation (EP300, CREBBP) and identified 59 somatic mutations in 45 of 125 (36.0%) patients with peripheral T-cell lymphomas, not otherwise specified. Histone modifier gene mutations were associated with inferior progression-free survival time of the patients, irrespective of chemotherapy regimens, but an increased response to the histone deacetylase inhibitor chidamide. In vitro, chidamide significantly inhibited the growth of EP300-mutated T-lymphoma cells and KMT2D-mutated T-lymphoma cells when combined with the hypomethylating agent decitabine. Mechanistically, decitabine acted synergistically with chidamide to enhance the interaction of KMT2D with transcription factor PU.1, regulated H3K4me-associated signaling pathways, and sensitized T-lymphoma cells to chidamide. In a xenograft KMT2D-mutated T-lymphoma model, dual treatment with chidamide and decitabine significantly retarded tumor growth and induced cell apoptosis through modulation of the KMT2D/H3K4me axis. Our work thus contributes to the understanding of aberrant histone modification in peripheral T-cell lymphomas, not otherwise specified and the stratification of a biological subset that can benefit from epigenetic treatment.
Collapse
Affiliation(s)
- Meng-Meng Ji
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology; Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yao-Hui Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology; Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jin-Yan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology; Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhao-Fu Wang
- Department of Pathology, Shanghai Rui Jin Hospital; Shanghai Jiao Tong University School of Medicine, China
| | - Di Fu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology; Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Han Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology; Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Feng Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology; Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Christophe Leboeuf
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.,U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology; Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Jing Ye
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Yi-Ming Lu
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Anne Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.,U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology; Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology; Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| |
Collapse
|
29
|
Etzrodt M, Schroeder T. Illuminating stem cell transcription factor dynamics: long-term single-cell imaging of fluorescent protein fusions. Curr Opin Cell Biol 2017; 49:77-83. [PMID: 29276951 DOI: 10.1016/j.ceb.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
Most single-cell approaches to date are based on destructive snapshot measurements which do not permit to correlate a current molecular state with future fate. However, to understand how cell fate choices are established by transcription factor networks (TFNs) regulating cell fates, TFN dynamics must be continuously monitored in single cells. Here we review how quantitative time-lapse imaging can contribute to understanding TFN dependent cell fate regulation at the single-cell level. We outline potentials of the technology and highlight challenges for interpreting the dynamics of fluorescent protein reporters that may interfere with endogenous TF function. We provide an outlook on how continuous observation of TF dynamics and single-cell fates may be complemented by perturbation studies and be linked to multidimensional molecular profiling in the future.
Collapse
Affiliation(s)
- Martin Etzrodt
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
30
|
Abstract
The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.
Collapse
Affiliation(s)
- Gregory M K Poon
- a Department of Chemistry , Georgia State University , Atlanta , GA , USA.,b Center for Diagnostics and Therapeutics, Georgia State University , Atlanta , GA , USA
| | - Hye Mi Kim
- a Department of Chemistry , Georgia State University , Atlanta , GA , USA
| |
Collapse
|
31
|
Kumar D, Puan KJ, Andiappan AK, Lee B, Westerlaken GHA, Haase D, Melchiotti R, Li Z, Yusof N, Lum J, Koh G, Foo S, Yeong J, Alves AC, Pekkanen J, Sun LD, Irwanto A, Fairfax BP, Naranbhai V, Common JEA, Tang M, Chuang CK, Jarvelin MR, Knight JC, Zhang X, Chew FT, Prabhakar S, Jianjun L, Wang DY, Zolezzi F, Poidinger M, Lane EB, Meyaard L, Rötzschke O. A functional SNP associated with atopic dermatitis controls cell type-specific methylation of the VSTM1 gene locus. Genome Med 2017; 9:18. [PMID: 28219444 PMCID: PMC5319034 DOI: 10.1186/s13073-017-0404-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Expression quantitative trait loci (eQTL) databases represent a valuable resource to link disease-associated SNPs to specific candidate genes whose gene expression is significantly modulated by the SNP under investigation. We previously identified signal inhibitory receptor on leukocytes-1 (SIRL-1) as a powerful regulator of human innate immune cell function. While it is constitutively high expressed on neutrophils, on monocytes the SIRL-1 surface expression varies strongly between individuals. The underlying mechanism of regulation, its genetic control as well as potential clinical implications had not been explored yet. METHODS Whole blood eQTL data of a Chinese cohort was used to identify SNPs regulating the expression of VSTM1, the gene encoding SIRL-1. The genotype effect was validated by flow cytometry (cell surface expression), correlated with electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) and bisulfite sequencing (C-methylation) and its functional impact studied the inhibition of reactive oxygen species (ROS). RESULTS We found a significant association of a single CpG-SNP, rs612529T/C, located in the promoter of VSTM1. Through flow cytometry analysis we confirmed that primarily in the monocytes the protein level of SIRL-1 is strongly associated with genotype of this SNP. In monocytes, the T allele of this SNP facilitates binding of the transcription factors YY1 and PU.1, of which the latter has been recently shown to act as docking site for modifiers of DNA methylation. In line with this notion rs612529T associates with a complete demethylation of the VSTM1 promoter correlating with the allele-specific upregulation of SIRL-1 expression. In monocytes, this upregulation strongly impacts the IgA-induced production of ROS by these cells. Through targeted association analysis we found a significant Meta P value of 1.14 × 10-6 for rs612529 for association to atopic dermatitis (AD). CONCLUSION Low expression of SIRL-1 on monocytes is associated with an increased risk for the manifestation of an inflammatory skin disease. It thus underlines the role of both the cell subset and this inhibitory immune receptor in maintaining immune homeostasis in the skin. Notably, the genetic regulation is achieved by a single CpG-SNP, which controls the overall methylation state of the promoter gene segment.
Collapse
Affiliation(s)
- Dilip Kumar
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - Geertje H A Westerlaken
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, P.O. box 85090, Utrecht, 3508 AB, The Netherlands
| | - Doreen Haase
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - Rossella Melchiotti
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - Zhuang Li
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - Nurhashikin Yusof
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - Geraldine Koh
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - Shihui Foo
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - Joe Yeong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore.,Department of Pathology, Singapore General Hospital, Singapore, Republic of Singapore
| | - Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Juha Pekkanen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - Liang Dan Sun
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Astrid Irwanto
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research of Singapore (A*STAR), Singapore, Republic of Singapore
| | - Benjamin P Fairfax
- Wellcome Trust Centre for Human Genetics, Oxford, UK.,Department of Oncology, Cancer and Haematology Centre, Churchill Hospital, Oxford, UK
| | - Vivek Naranbhai
- Wellcome Trust Centre for Human Genetics, Oxford, UK.,Department of Oncology, Cancer and Haematology Centre, Churchill Hospital, Oxford, UK
| | - John E A Common
- Institute of Medical Biology (IMB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
| | - Mark Tang
- National Skin Center, Singapore, Republic of Singapore
| | - Chin Keh Chuang
- Institute of Molecular & Cellular Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Republic of Singapore.,Department of Physiology, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,Center for Life Course Epidemiology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, P.O. Box 5000, Aapistie 5A, 90014, Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, 90029 OYS, P.O. Box 20, 90220, Oulu, Finland
| | | | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Shyam Prabhakar
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research of Singapore (A*STAR), Singapore, Republic of Singapore
| | - Liu Jianjun
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research of Singapore (A*STAR), Singapore, Republic of Singapore
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, Singapore, Republic of Singapore.,Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore
| | - E Birgitte Lane
- Institute of Medical Biology (IMB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
| | - Linde Meyaard
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, P.O. box 85090, Utrecht, 3508 AB, The Netherlands.
| | - Olaf Rötzschke
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove #04-06, Singapore, 138648, Republic of Singapore.
| |
Collapse
|
32
|
Seuter S, Neme A, Carlberg C. Epigenomic PU.1-VDR crosstalk modulates vitamin D signaling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:405-415. [PMID: 28232093 DOI: 10.1016/j.bbagrm.2017.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 01/15/2023]
Abstract
The ETS-domain transcription factor PU.1 acts as a pioneer factor for other transcription factors including nuclear receptors. In this study, we report that in THP-1 human monocytes the PU.1 cistrome comprises 122,319 genomic sites. Interestingly, at 6498 (5.3%) of these loci PU.1 binding was significantly modulated by the vitamin D receptor (VDR) ligand 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). In most cases 1,25(OH)2D3 increased PU.1 association, which correlated strongly with VDR co-location and overlap ratios for canonical DR3-type VDR binding sites. Genome-wide 6488 sites associating both with PU.1 and VDR as well as 5649 non-VDR overlapping, 1,25(OH)2D3-sensitive PU.1 loci represent the PU.1-VDR crosstalk and can be described by four gene regulatory scenarios, each. Chromatin accessibility was the major discriminator between these models. The location of the PU.1 binding loci in open chromatin coincided with a significantly smaller mean distance to the closest 1,25(OH)2D3 target gene. PU.1 knockdown indicated that the pioneer factor is relevant for the transcriptional activation of 1,25(OH)2D3 target genes but its impact differed in magnitude and orientation. In conclusion, PU.1 is an important modulator of VDR signaling in monocytes, including but also exceeding its role as a pioneer factor, but we found no evidence for a direct interaction of both proteins.
Collapse
Affiliation(s)
- Sabine Seuter
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Antonio Neme
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
33
|
Treude F, Gladbach T, Plaster J, Hartkamp J. Assessment of HDACi-Induced Protein Cleavage by Caspases. Methods Mol Biol 2017; 1510:11-22. [PMID: 27761810 DOI: 10.1007/978-1-4939-6527-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aberrant histone deacetylase (HDAC) activity often correlates with neoplastic transformation and inhibition of HDACs by small molecules has emerged as a promising strategy to treat hematological malignancies in particular. Treatment with HDAC inhibitors (HDACis) often prompts tumor cells to undergo apoptosis, thereby causing a caspase-dependent cleavage of target proteins. An unexpectedly large number of proteins are in vivo caspase substrates and defining caspase-mediated substrate specificity is a major challenge. In this chapter we demonstrate that the hematopoietic transcription factor PU.1 becomes cleaved after treatment of acute myeloid leukemia (AML) cells with the HDACis LBH589 (panobinostat) or MS-275 (entinostat). To define caspase specificity for PU.1, an in vitro caspase assay including caspases 1-10 with in vitro-translated PU.1 is described in detail.
Collapse
Affiliation(s)
- Fabian Treude
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Tobias Gladbach
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jacqueline Plaster
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jörg Hartkamp
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
34
|
Stephens DC, Poon GMK. Differential sensitivity to methylated DNA by ETS-family transcription factors is intrinsically encoded in their DNA-binding domains. Nucleic Acids Res 2016; 44:8671-8681. [PMID: 27270080 PMCID: PMC5062964 DOI: 10.1093/nar/gkw528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/30/2016] [Indexed: 01/25/2023] Open
Abstract
Transactivation by the ETS family of transcription factors, whose members share structurally conserved DNA-binding domains, is variably sensitive to methylation of their target genes. The mechanism by which DNA methylation controls ETS proteins remains poorly understood. Uncertainly also pervades the effects of hemi-methylated DNA, which occurs following DNA replication and in response to hypomethylating agents, on site recognition by ETS proteins. To address these questions, we measured the affinities of two sequence-divergent ETS homologs, PU.1 and Ets-1, to DNA sites harboring a hemi- and fully methylated CpG dinucleotide. While the two proteins bound unmethylated DNA with indistinguishable affinity, their affinities to methylated DNA are markedly heterogeneous and exhibit major energetic coupling between the two CpG methylcytosines. Analysis of simulated DNA and existing co-crystal structures revealed that hemi-methylation induced non-local backbone and groove geometries that were not conserved in the fully methylated state. Indirect readout of these perturbations was differentially achieved by the two ETS homologs, with the distinctive interfacial hydration in PU.1/DNA binding moderating the inhibitory effects of DNA methylation on binding. This data established a biophysical basis for the pioneering properties associated with PU.1, which robustly bound fully methylated DNA, but not Ets-1, which was substantially inhibited.
Collapse
Affiliation(s)
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
35
|
Botezatu L, Michel LC, Helness A, Vadnais C, Makishima H, Hönes JM, Robert F, Vassen L, Thivakaran A, Al-Matary Y, Lams RF, Schütte J, Giebel B, Görgens A, Heuser M, Medyouf H, Maciejewski J, Dührsen U, Möröy T, Khandanpour C. Epigenetic therapy as a novel approach for GFI136N-associated murine/human AML. Exp Hematol 2016; 44:713-726.e14. [PMID: 27216773 DOI: 10.1016/j.exphem.2016.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 02/02/2023]
Abstract
Epigenetic changes can contribute to development of acute myeloid leukemia (AML), a malignant disease of the bone marrow. A single-nucleotide polymorphism of transcription factor growth factor independence 1 (GFI1) generates a protein with an asparagine at position 36 (GFI1(36N)) instead of a serine at position 36 (GFI1(36S)), which is associated with de novo AML in humans. However, how GFI1(36N) predisposes to AML is poorly understood. To explore the mechanism, we used knock-in mouse strains expressing GFI1(36N) or GFI1(36S). Presence of GFI1(36N) shortened the latency and increased the incidence of AML in different murine models of myelodysplastic syndrome/AML. On a molecular level, GFI1(36N) induced genomewide epigenetic changes, leading to expression of AML-associated genes. On a therapeutic level, use of histone acetyltransferase inhibitors specifically impeded growth of GFI1(36N)-expressing human and murine AML cells in vitro and in vivo. These results establish, as a proof of principle, how epigenetic changes in GFI1(36N)-induced AML can be targeted.
Collapse
Affiliation(s)
- Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lars C Michel
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anne Helness
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Charles Vadnais
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH
| | - Judith M Hönes
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - François Robert
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Lothar Vassen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Aniththa Thivakaran
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yahya Al-Matary
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Robert F Lams
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Judith Schütte
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Hind Medyouf
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany; Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada.
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
36
|
Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat Genet 2016; 48:488-96. [PMID: 27064255 DOI: 10.1038/ng.3539] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022]
Abstract
Discriminating the gene target of a distal regulatory element from other nearby transcribed genes is a challenging problem with the potential to illuminate the causal underpinnings of complex diseases. We present TargetFinder, a computational method that reconstructs regulatory landscapes from diverse features along the genome. The resulting models accurately predict individual enhancer-promoter interactions across multiple cell lines with a false discovery rate up to 15 times smaller than that obtained using the closest gene. By evaluating the genomic features driving this accuracy, we uncover interactions between structural proteins, transcription factors, epigenetic modifications, and transcription that together distinguish interacting from non-interacting enhancer-promoter pairs. Most of this signature is not proximal to the enhancers and promoters but instead decorates the looping DNA. We conclude that complex but consistent combinations of marks on the one-dimensional genome encode the three-dimensional structure of fine-scale regulatory interactions.
Collapse
|
37
|
GFI1 as a novel prognostic and therapeutic factor for AML/MDS. Leukemia 2016; 30:1237-45. [DOI: 10.1038/leu.2016.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/08/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
|
38
|
Cerón-Maldonado R, Martínez-Tovar A, Ramos-Peñafiel C, Miranda-Peralta E, Mendoza-Salas I, Mendoza-García E, Rozen-Fuller E, Kassack-Ipiña J, Collazo-Jaloma J, Martínez-Herrera A, Olarte-Carrillo I. Detection and analysis of tumour biomarkers to strengthen the diagnosis of acute and chronic leukaemias. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2015. [DOI: 10.1016/j.hgmx.2015.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|