1
|
Zheng X, Hou Z, Qian Y, Zhang Y, Cui Q, Wang X, Shen Y, Liu Z, Zhou Y, Fu B, Sun R, Tian Z, Huang G, Wei H. Tumors evade immune cytotoxicity by altering the surface topology of NK cells. Nat Immunol 2023; 24:802-813. [PMID: 36959292 DOI: 10.1038/s41590-023-01462-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023]
Abstract
The highly variable response rates to immunotherapies underscore our limited knowledge about how tumors can manipulate immune cells. Here the membrane topology of natural killer (NK) cells from patients with liver cancer showed that intratumoral NK cells have fewer membrane protrusions compared with liver NK cells outside tumors and with peripheral NK cells. Dysregulation of these protrusions prevented intratumoral NK cells from recognizing tumor cells, from forming lytic immunological synapses and from killing tumor cells. The membranes of intratumoral NK cells have altered sphingomyelin (SM) content and dysregulated serine metabolism in tumors contributed to the decrease in SM levels of intratumoral NK cells. Inhibition of SM biosynthesis in peripheral NK cells phenocopied the disrupted membrane topology and cytotoxicity of the intratumoral NK cells. Targeting sphingomyelinase confers powerful antitumor efficacy, both as a monotherapy and as a combination therapy with checkpoint blockade.
Collapse
Affiliation(s)
- Xiaohu Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
| | - Zhuanghao Hou
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- School of Chemistry and Materials Science and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Yeben Qian
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongwei Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quanwei Cui
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuben Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yiqing Shen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Zhenbang Liu
- Core Facility Center for Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
- Research Unit Of NK Cells, Chinese Academy Of Medical Sciences, Hefei, China.
| | - Guangming Huang
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
- School of Chemistry and Materials Science and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.
| | - Haiming Wei
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
- Research Unit Of NK Cells, Chinese Academy Of Medical Sciences, Hefei, China.
| |
Collapse
|
2
|
Rabelo IB, Chiba AK, Moritz E, D'Amora P, Silva IDCG, Rodrigues CA, Barros MMO, Bordin JO. Metabolomic profile in patients with primary warm autoimmune haemolytic anaemia. Br J Haematol 2022; 201:140-149. [PMID: 36484101 DOI: 10.1111/bjh.18584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
Autoimmune haemolytic anaemia (AIHA) is a rare clinical condition with immunoglobulin fixation on the surface of erythrocytes, with or without complement activation. The pathophysiology of AIHA is complex and multifactorial, presenting functional abnormalities of T and B lymphocytes that generate an imbalance between lymphocyte activation, immunotolerance and cytokine production that culminates in autoimmune haemolysis. In AIHA, further laboratory data are needed to predict relapse and refractoriness of therapy, and thus, prevent adverse side-effects and treatment-induced toxicity. The metabolomic profile of AIHA has not yet been described. Our group developed a cross-sectional study with follow-up to assess the metabolomic profile in these patients, as well as to compare the metabolites found depending on the activity and intensity of haemolysis. We analysed the plasma of 26 patients with primary warm AIHA compared to 150 healthy individuals by mass spectrometry. Of the 95 metabolites found in the patients with AIHA, four acylcarnitines, two phosphatidylcholines (PC), asymmetric dimethylarginine (ADMA) and three sphingomyelins were significantly increased. There was an increase in PC, spermine and spermidine in the AIHA group with haemolytic activity. The PC ae 34:3/PC ae 40:2 ratio, seen only in the 12-month relapse group, was a predictor of relapse with 81% specificity and 100% sensitivity. Increased sphingomyelin, ADMA, PC and polyamines in patients with warm AIHA can interfere in autoantigen and autoimmune recognition mechanisms in a number of ways (deficient action of regulatory T lymphocytes on erythrocyte recognition as self, negative regulation of macrophage nuclear factor kappa beta activity, perpetuation of effector T lymphocyte and antibody production against erythrocyte antigens). The presence of PC ae 34:3/PC ae 40:2 ratio as a relapse predictor can help in identifying cases that require more frequent follow-up or early second-line therapies.
Collapse
Affiliation(s)
- Iara B. Rabelo
- Clinical and Experimental Oncology Department, Haematology and Hemotherapy Division College of Medicine of the Federal University of São Paulo (EPM‐UNIFESP) São Paulo Brazil
| | - Akemi K. Chiba
- Clinical and Experimental Oncology Department, Haematology and Hemotherapy Division College of Medicine of the Federal University of São Paulo (EPM‐UNIFESP) São Paulo Brazil
| | - Elyse Moritz
- Clinical and Experimental Oncology Department, Haematology and Hemotherapy Division College of Medicine of the Federal University of São Paulo (EPM‐UNIFESP) São Paulo Brazil
| | - Paulo D'Amora
- Gynecology Department College of Medicine of the Federal University of São Paulo (EPM‐UNIFESP) São Paulo Brazil
| | - Ismael Dale C. G. Silva
- Gynecology Department College of Medicine of the Federal University of São Paulo (EPM‐UNIFESP) São Paulo Brazil
| | - Celso A. Rodrigues
- Clinical and Experimental Oncology Department, Haematology and Hemotherapy Division College of Medicine of the Federal University of São Paulo (EPM‐UNIFESP) São Paulo Brazil
| | - Melca M. O. Barros
- Clinical and Experimental Oncology Department, Haematology and Hemotherapy Division College of Medicine of the Federal University of São Paulo (EPM‐UNIFESP) São Paulo Brazil
| | - José O. Bordin
- Clinical and Experimental Oncology Department, Haematology and Hemotherapy Division College of Medicine of the Federal University of São Paulo (EPM‐UNIFESP) São Paulo Brazil
| |
Collapse
|
3
|
Synthesis and Characterization of Ceramide-Containing Liposomes as Membrane Models for Different T Cell Subpopulations. J Funct Biomater 2022; 13:jfb13030111. [PMID: 35997449 PMCID: PMC9397063 DOI: 10.3390/jfb13030111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022] Open
Abstract
A fine balance of regulatory (Treg) and conventional CD4+ T cells (Tconv) is required to prevent harmful immune responses, while at the same time ensuring the development of protective immunity against pathogens. As for many cellular processes, sphingolipid metabolism also crucially modulates the Treg/Tconv balance. However, our understanding of how sphingolipid metabolism is involved in T cell biology is still evolving and a better characterization of the tools at hand is required to advance the field. Therefore, we established a reductionist liposomal membrane model system to imitate the plasma membrane of mouse Treg and Tconv with regards to their ceramide content. We found that the capacity of membranes to incorporate externally added azide-functionalized ceramide positively correlated with the ceramide content of the liposomes. Moreover, we studied the impact of the different liposomal preparations on primary mouse splenocytes in vitro. The addition of liposomes to resting, but not activated, splenocytes maintained viability with liposomes containing high amounts of C16-ceramide being most efficient. Our data thus suggest that differences in ceramide post-incorporation into Treg and Tconv reflect differences in the ceramide content of cellular membranes.
Collapse
|
4
|
Park SS, Perez Perez JL, Perez Gandara B, Agudelo CW, Rodriguez Ortega R, Ahmed H, Garcia-Arcos I, McCarthy C, Geraghty P. Mechanisms Linking COPD to Type 1 and 2 Diabetes Mellitus: Is There a Relationship between Diabetes and COPD? Medicina (B Aires) 2022; 58:medicina58081030. [PMID: 36013497 PMCID: PMC9415273 DOI: 10.3390/medicina58081030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients frequently suffer from multiple comorbidities, resulting in poor outcomes for these patients. Diabetes is observed at a higher frequency in COPD patients than in the general population. Both type 1 and 2 diabetes mellitus are associated with pulmonary complications, and similar therapeutic strategies are proposed to treat these conditions. Epidemiological studies and disease models have increased our knowledge of these clinical associations. Several recent genome-wide association studies have identified positive genetic correlations between lung function and obesity, possibly due to alterations in genes linked to cell proliferation; embryo, skeletal, and tissue development; and regulation of gene expression. These studies suggest that genetic predisposition, in addition to weight gain, can influence lung function. Cigarette smoke exposure can also influence the differential methylation of CpG sites in genes linked to diabetes and COPD, and smoke-related single nucleotide polymorphisms are associated with resting heart rate and coronary artery disease. Despite the vast literature on clinical disease association, little direct mechanistic evidence is currently available demonstrating that either disease influences the progression of the other, but common pharmacological approaches could slow the progression of these diseases. Here, we review the clinical and scientific literature to discuss whether mechanisms beyond preexisting conditions, lifestyle, and weight gain contribute to the development of COPD associated with diabetes. Specifically, we outline environmental and genetic confounders linked with these diseases.
Collapse
Affiliation(s)
- Sangmi S. Park
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Jessica L. Perez Perez
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Christina W. Agudelo
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Romy Rodriguez Ortega
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Huma Ahmed
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Itsaso Garcia-Arcos
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Cormac McCarthy
- University College Dublin School of Medicine, Education and Research Centre, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland;
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
- Correspondence: ; Tel.: +1-718-270-3141
| |
Collapse
|
5
|
Chai J, Sun Z, Xu J. A Contemporary Insight of Metabolomics Approach for Type 1 Diabetes: Potential for Novel Diagnostic Targets. Diabetes Metab Syndr Obes 2022; 15:1605-1625. [PMID: 35642181 PMCID: PMC9148614 DOI: 10.2147/dmso.s357007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
High-throughput omics has been widely applied in metabolic disease, type 1 diabetes (T1D) was one of the most typical diseases. Effective prevention and early diagnosis are very important because of infancy and persistent characteristics of T1D. The occurrence and development of T1D is a chronic and continuous process, in which the production of autoantibodies (ie serum transformation) occupies the central position. Metabolomics can evaluate the metabolic characteristics of serum before seroconversion, the changes with age and T1D complications. And the addition of natural drug metabolomics is more conducive to the systematic and comprehensive diagnosis and treatment of T1D. This paper reviewed the metabolic changes and main pathogenesis from pre-diagnosis to treatment in T1D. The metabolic spectrum of significant abnormal energy and glucose-related metabolic pathway, down-regulation of lipid metabolism and up-regulation of some antioxidant pathways has appeared before seroconversion, indicating that the body has been in the dual state of disease progression and disease resistance before T1D onset. Some metabolites (such as methionine) are closely related to age, and the types of autoantibodies produced are age-specific. Some metabolites may jointly predict DN with eGFR, and metabolomics can further contribute to the pathogenesis based on the correlation between DN and DR. Many natural drug components have been proved to act on abnormal metabolic pathways of T1D and have a positive impact on some metabolic levels, which is very important for further finding therapeutic targets and developing new drugs with small side effects. Metabolomics can provide auxiliary value for the diagnosis of T1D and provide a new direction to reveal the pathogenesis of T1D and find new therapeutic targets. The development of T1D metabolomics shows that high-throughput research methods are expected to be introduced into clinical practice.
Collapse
Affiliation(s)
- Jiatong Chai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zeyu Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Jiancheng Xu, Department of Laboratory Medicine, The First Bethune Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, People’s Republic of China, Tel +86-431-8878-2595, Fax +86-431-8878-6169, Email
| |
Collapse
|
6
|
Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, Chen P, Yang J, Fan X, Liang Y, Lin H. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol 2021; 14:169. [PMID: 34654454 PMCID: PMC8518176 DOI: 10.1186/s13045-021-01179-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immunosuppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the transcriptional output of human cells and have been shown to regulate numerous cellular processes under developmental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remodeling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with tumor metabolism and immune cell infiltration based on a bioinformatic approach.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
7
|
Untargeted Metabolomic Profiling of Cuprizone-Induced Demyelination in Mouse Corpus Callosum by UPLC-Orbitrap/MS Reveals Potential Metabolic Biomarkers of CNS Demyelination Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7093844. [PMID: 34567412 PMCID: PMC8457991 DOI: 10.1155/2021/7093844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disorder characterized by periodic neuronal demyelination, which leads to a range of symptoms and eventually to disability. The goal of this research was to use UPLC-Orbitrap/MS to identify validated biomarkers and explore the metabolic mechanisms of MS in mice. Thirty-two C57BL/6 male mice were randomized into two groups that were fed either normal food or 0.2% CPZ for 11 weeks. The mouse demyelination model was assessed by LFB and the expression of MBP by immunofluorescence and immunohistochemistry. The metabolites of the corpus callosum were quantified using UPLC-Orbitrap/MS. The mouse pole climbing experiment was used to assess coordination ability. Multivariate statistical analysis was adopted for screening differential metabolites, and the ingenuity pathway analysis (IPA) was used to reveal the metabolite interaction network. We successfully established the demyelination model. The CPZ group slowly lost weight and showed an increased pole climbing time during feeding compared to the CON group. A total of 81 metabolites (VIP > 1 and P < 0.05) were determined to be enriched in 24 metabolic pathways; 41 metabolites were markedly increased, while 40 metabolites were markedly decreased in the CPZ group. The IPA results revealed that these 81 biomarker metabolites were associated with neuregulin signaling, PI3K-AKT signaling, mTOR signaling, and ERK/MAPK signaling. KEGG pathway analysis showed that two significantly different metabolic pathways were enriched, namely, the glycerophospholipid and sphingolipid metabolic pathways, comprising a total of nine biomarkers. Receiver operating characteristic analysis showed that the metabolites (e.g., PE (16 : 0/22 : 6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)), PC (18 : 0/22 : 4(7Z, 10Z, 13Z, 16Z)), cytidine 5′-diphosphocholine, PS (18 : 0/22 : 6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)), glycerol 3-phosphate, SM (d18 : 0/16 : 1(9Z)), Cer (d18:1/18 : 0), galabiosylceramide (d18:1/18 : 0), and GlcCer (d18:1/18 : 0)) have good discrimination ability for the CPZ group. In conclusion, the differential metabolites have great potential to serve as biomarkers of demyelinating diseases. In addition, we identified metabolic pathways associated with CPZ-induced demyelination pathogenesis, which provided a new perspective for understanding the relationship between metabolites and CNS demyelination pathogenesis.
Collapse
|
8
|
Song Z, Yan W, Abulikemu M, Wang J, Xing Y, Zhou Q, Ma S, Chang C. Sphingolipid profiles and their relationship with inflammatory factors in asthmatic patients of different sexes. Chronic Dis Transl Med 2021; 7:199-205. [PMID: 34505020 PMCID: PMC8413120 DOI: 10.1016/j.cdtm.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 11/26/2022] Open
Abstract
Background Asthma is a heterogeneous disease with distinct prevalence and manifestation between sexes. This study was to identify sex-specific features of asthma via metabolomic analysis of sphingolipids. Methods Forty-two asthma patients (27 women and 15 men) admitted to the Peking University Third Hospital from January 2015 to December 2015 were enrolled. Peripheral venous blood was collected for metabolomic analysis by targeted liquid chromatography-mass spectrometry. Sex hormones(estradiol, progesterone, testosterone, and androstenedione) and multiple inflammatory factors (periostin, leptin, IgE, IL-4, IL-5, IL-10, IL-13, IL-17A, and IFN-γ) were also assessed. The eosinophil percentage in induced sputum was also detected. All these data were applied to comparative analysis between sexes. Results Testosterone was negatively related to periostin (ρ = −0.420, P = 0.009) and IL-5 (ρ = −0.540, P = 0.012), while estradiol was positively related to the blood eosinophil percentage (ρ = 0.384, P = 0.025). Among the eighteen species of sphingolipids detected in the 42 patients, five ceramide (Cer) species (Cer16:0, Cer:20:0, Cer22:0, Cer24:0, and Cer26:0) and one sphingomyelin (SM) species (SM38:0) were significantly higher in male than in female patients. Further investigation found that the correlation between Cer20:0 and IL-5 was positive in males (ρ = 0.943, P = 0.005) but negative in females (ρ = −0.561, P = 0.030). Conclusions Testosterone was negatively correlated with eosinophil inflammatory factors, but estradiol was positively correlated. Male asthma patients had higher ceramide and sphingomyelin levels than female patients. Different sexes had opposite correlations with ceramide and IL-5, respectively, suggesting that therapeutic strategies targeting ceramide should be different between sexes.
Collapse
Affiliation(s)
- Zhu Song
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Wei Yan
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Mairipaiti Abulikemu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Juan Wang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yan Xing
- Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China
| | - Qingtao Zhou
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shaohua Ma
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Chun Chang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
9
|
Claus RA, Graeler MH. Sphingolipidomics in Translational Sepsis Research-Biomedical Considerations and Perspectives. Front Med (Lausanne) 2021; 7:616578. [PMID: 33553212 PMCID: PMC7854573 DOI: 10.3389/fmed.2020.616578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Scientific Background: Sphingolipids are a highly diverse group of lipids with respect to physicochemical properties controlling either structure, distribution, or function, all of them regulating cellular response in health and disease. Mass spectrometry, on the other hand, is an analytical technique characterizing ionized molecules or fragments thereof by mass-to-charge ratios, which has been prosperingly developed for rapid and reliable qualitative and quantitative identification of lipid species. Parallel to best performance of in-depth chromatographical separation of lipid classes, preconditions of precise quantitation of unique molecular species by preprocessing of biological samples have to be fulfilled. As a consequence, “lipid profiles” across model systems and human individuals, esp. complex (clinical) samples, have become eminent over the last couple of years due to sensitivity, specificity, and discriminatory capability. Therefore, it is significance to consider the entire experimental strategy from sample collection and preparation, data acquisition, analysis, and interpretation. Areas Covered: In this review, we outline considerations with clinical (i.e., human) samples with special emphasis on sample handling, specific physicochemical properties, target measurements, and resulting profiling of sphingolipids in biomedicine and translational research to maximize sensitivity and specificity as well as to provide robust and reproducible results. A brief commentary is also provided regarding new insights of “clinical sphingolipidomics” in translational sepsis research. Expert Opinion: The role of mass spectrometry of sphingolipids and related species (“sphingolipidomics”) to investigate cellular and compartment-specific response to stress, e.g., in generalized infection and sepsis, is on the rise and the ability to integrate multiple datasets from diverse classes of biomolecules by mass spectrometry measurements and metabolomics will be crucial to fostering our understanding of human health as well as response to disease and treatment.
Collapse
Affiliation(s)
- Ralf A Claus
- Department for Anesthesiology and Intensive Care Medicine, Sepsis Research, Jena University Hospital, Jena, Germany
| | - Markus H Graeler
- Department for Anesthesiology and Intensive Care Medicine, Sepsis Research, Jena University Hospital, Jena, Germany.,Center for Sepsis Care & Control, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| |
Collapse
|
10
|
Detection of Functionalized Sphingolipid Analogs in Detergent-Resistant Membranes of Immune Cells. Methods Mol Biol 2020. [PMID: 32770515 DOI: 10.1007/978-1-0716-0814-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The analysis of protein enrichment in the detergent-resistant membranes (DRMs) isolated from immune cells enables us to analyze a link between the membrane lipid dynamics and cell activation. Here, we describe the fractionation of detergent-resistant membranes and the correlative analysis of the enrichment of T cell receptor (TCR) and ω-azido-modified synthetic ceramide in those fractions upon TCR stimulation.
Collapse
|
11
|
Sen P, Dickens AM, López-Bascón MA, Lindeman T, Kemppainen E, Lamichhane S, Rönkkö T, Ilonen J, Toppari J, Veijola R, Hyöty H, Hyötyläinen T, Knip M, Orešič M. Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia 2020; 63:1017-1031. [PMID: 32043185 PMCID: PMC7145788 DOI: 10.1007/s00125-020-05107-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Previous metabolomics studies suggest that type 1 diabetes is preceded by specific metabolic disturbances. The aim of this study was to investigate whether distinct metabolic patterns occur in peripheral blood mononuclear cells (PBMCs) of children who later develop pancreatic beta cell autoimmunity or overt type 1 diabetes. METHODS In a longitudinal cohort setting, PBMC metabolomic analysis was applied in children who (1) progressed to type 1 diabetes (PT1D, n = 34), (2) seroconverted to ≥1 islet autoantibody without progressing to type 1 diabetes (P1Ab, n = 27) or (3) remained autoantibody negative during follow-up (CTRL, n = 10). RESULTS During the first year of life, levels of most lipids and polar metabolites were lower in the PT1D and P1Ab groups compared with the CTRL group. Pathway over-representation analysis suggested alanine, aspartate, glutamate, glycerophospholipid and sphingolipid metabolism were over-represented in PT1D. Genome-scale metabolic models of PBMCs during type 1 diabetes progression were developed by using publicly available transcriptomics data and constrained with metabolomics data from our study. Metabolic modelling confirmed altered ceramide pathways, known to play an important role in immune regulation, as specifically associated with type 1 diabetes progression. CONCLUSIONS/INTERPRETATION Our data suggest that systemic dysregulation of lipid metabolism, as observed in plasma, may impact the metabolism and function of immune cells during progression to overt type 1 diabetes. DATA AVAILABILITY The GEMs for PBMCs have been submitted to BioModels (www.ebi.ac.uk/biomodels/), under accession number MODEL1905270001. The metabolomics datasets and the clinical metadata generated in this study were submitted to MetaboLights (https://www.ebi.ac.uk/metabolights/), under accession number MTBLS1015.
Collapse
Affiliation(s)
- Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
| | - Alex M Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - María Asunción López-Bascón
- Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain
- Department of Chemistry, Örebro University, Örebro, Sweden
| | - Tuomas Lindeman
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Esko Kemppainen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Tuukka Rönkkö
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Centre, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | | | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Tampere Centre for Child Health Research, Tampere University Hospital, Tampere, Finland.
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
- School of Medical Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
12
|
Gonnet J, Poncelet L, Meriaux C, Gonçalves E, Weiss L, Tchitchek N, Pedruzzi E, Soria A, Boccara D, Vogt A, Bonduelle O, Hamm G, Ait-Belkacem R, Stauber J, Fournier I, Wisztorski M, Combadiere B. Mechanisms of innate events during skin reaction following intradermal injection of seasonal influenza vaccine. J Proteomics 2020; 216:103670. [PMID: 31991189 DOI: 10.1016/j.jprot.2020.103670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/03/2019] [Accepted: 01/25/2020] [Indexed: 12/15/2022]
Abstract
The skin plays a crucial role in host defences against microbial attack and the innate cells must provide the immune system with sufficient information to organize these defences. This unique feature makes the skin a promising site for vaccine administration. Although cellular innate immune events during vaccination have been widely studied, initial events remain poorly understood. Our aim is to determine molecular biomarkers of skin innate reaction after intradermal (i.d.) immunization. Using an ex vivo human explant model from healthy donors, we investigated by NanoLC-MS/MS analysis and MALDI-MSI imaging, to detect innate molecular events (lipids, metabolites, proteins) few hours after i.d. administration of seasonal trivalent influenza vaccine (TIV). This multimodel approach allowed to identify early molecules differentially expressed in dermal and epidermal layers at 4 and 18 h after TIV immunization compared with control PBS. In the dermis, the most relevant network of proteins upregulated were related to cell-to-cell signalling and cell trafficking. The molecular signatures detected were associated with chemokines such as CXCL8, a chemoattractant of neutrophils. In the epidermis, the most relevant networks were associated with activation of antigen-presenting cells and related to CXCL10. Our study proposes a novel step-forward approach to identify biomarkers of skin innate reaction. SIGNIFICANCE: To our knowledge, there is no study analyzing innate molecular reaction to vaccines at the site of skin immunization. What is known on skin reaction is based on macroscopic (erythema, redness…), microscopic (epidermal and dermal tissues) and cellular events (inflammatory cell infiltrate). Therefore, we propose a multimodal approach to analyze molecular events at the site of vaccine injection on skin tissue. We identified early molecular networks involved biological functions such cell migration, cell-to-cell interaction and antigen presentation, validated by chemokine expression, in the epidermis and dermis, then could be used as early indicator of success in immunization.
Collapse
Affiliation(s)
- Jessica Gonnet
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Lauranne Poncelet
- Univ. Lille, INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France; ImaBiotech, 152 rue du Docteur Yersin, 59120 Loos, France
| | - Celine Meriaux
- Univ. Lille, Inserm, U1192 - Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Elena Gonçalves
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Lina Weiss
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France; Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin (2), 10117 Berlin, Germany
| | - Nicolas Tchitchek
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Institut de Biologie François Jacob, 92265 Fontenay-aux-Roses, France
| | - Eric Pedruzzi
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Angele Soria
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France; Service de Dermatologie et d'Allergologie, Hôpital Tenon, 4 rue de la Chine, Hôpitaux Universitaire Est Parisien (HUEP), Assistance Publique Hôpitaux de Paris (APHP), 75020 Paris, France
| | - David Boccara
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France; Service de chirurgie plastique reconstructrice, esthétique, centre des brûlés, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Annika Vogt
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France; Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin (2), 10117 Berlin, Germany
| | - Olivia Bonduelle
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Gregory Hamm
- ImaBiotech, 152 rue du Docteur Yersin, 59120 Loos, France
| | | | | | - Isabelle Fournier
- Univ. Lille, Inserm, U1192 - Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Maxence Wisztorski
- Univ. Lille, Inserm, U1192 - Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Behazine Combadiere
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France.
| |
Collapse
|
13
|
Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15:635-650. [PMID: 31534209 DOI: 10.1038/s41574-019-0254-y] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes mellitus (T1DM) results from the destruction of pancreatic β-cells that is mediated by the immune system. Multiple genetic and environmental factors found in variable combinations in individual patients are involved in the development of T1DM. Genetic risk is defined by the presence of particular allele combinations, which in the major susceptibility locus (the HLA region) affect T cell recognition and tolerance to foreign and autologous molecules. Multiple other loci also regulate and affect features of specific immune responses and modify the vulnerability of β-cells to inflammatory mediators. Compared with the genetic factors, environmental factors that affect the development of T1DM are less well characterized but contact with particular microorganisms is emerging as an important factor. Certain infections might affect immune regulation, and the role of commensal microorganisms, such as the gut microbiota, are important in the education of the developing immune system. Some evidence also suggests that nutritional factors are important. Multiple islet-specific autoantibodies are found in the circulation from a few weeks to up to 20 years before the onset of clinical disease and this prediabetic phase provides a potential opportunity to manipulate the islet-specific immune response to prevent or postpone β-cell loss. The latest developments in understanding the heterogeneity of T1DM and characterization of major disease subtypes might help in the development of preventive treatments.
Collapse
Affiliation(s)
- Jorma Ilonen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland.
| | - Johanna Lempainen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Paediatrics, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
14
|
Avota E, de Lira MN, Schneider-Schaulies S. Sphingomyelin Breakdown in T Cells: Role of Membrane Compartmentalization in T Cell Signaling and Interference by a Pathogen. Front Cell Dev Biol 2019; 7:152. [PMID: 31457008 PMCID: PMC6700246 DOI: 10.3389/fcell.2019.00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids are major components of cellular membranes, and at steady-state level, their metabolic fluxes are tightly controlled. On challenge by external signals, they undergo rapid turnover, which substantially affects the biophysical properties of membrane lipid and protein compartments and, consequently, signaling and morphodynamics. In T cells, external cues translate into formation of membrane microdomains where proximal signaling platforms essential for metabolic reprograming and cytoskeletal reorganization are organized. This review will focus on sphingomyelinases, which mediate sphingomyelin breakdown and ensuing ceramide release that have been implicated in T-cell viability and function. Acting at the sphingomyelin pool at the extrafacial or cytosolic leaflet of cellular membranes, acid and neutral sphingomyelinases organize ceramide-enriched membrane microdomains that regulate T-cell homeostatic activity and, upon stimulation, compartmentalize receptors, membrane proximal signaling complexes, and cytoskeletal dynamics as essential for initiating T-cell motility and interaction with endothelia and antigen-presenting cells. Prominent examples to be discussed in this review include death receptor family members, integrins, CD3, and CD28 and their associated signalosomes. Progress made with regard to experimental tools has greatly aided our understanding of the role of bioactive sphingolipids in T-cell biology at a molecular level and of targets explored by a model pathogen (measles virus) to specifically interfere with their physiological activity.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Maria Nathalia de Lira
- Institute for Virology and Immunobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
15
|
Grip T, Dyrlund TS, Ahonen L, Domellöf M, Hernell O, Hyötyläinen T, Knip M, Lönnerdal B, Orešič M, Timby N. Serum, plasma and erythrocyte membrane lipidomes in infants fed formula supplemented with bovine milk fat globule membranes. Pediatr Res 2018; 84:726-732. [PMID: 30120403 DOI: 10.1038/s41390-018-0130-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Supplementation of formula with bovine milk fat globule membranes has been shown to narrow the gap in immunological and cognitive development between breast-fed and formula-fed infants. METHOD In a double-blinded randomized controlled trial 160 formula-fed infants received an experimental formula (EF), supplemented with bovine milk fat globule membranes, or standard formula until 6 months of age. A breast-fed reference group was recruited. Lipidomic analyses were performed on plasma and erythrocyte membranes at 6 months and on serum at 4 and 12 months of age. RESULTS At 6 months of age, we observed a significant separation in the plasma lipidome between the two formula groups, mostly due to differences in concentrations of sphingomyelins (SM), phosphatidylcholines (PC), and ceramides, and in the erythrocyte membrane lipidome, mostly due to SMs, PEs and PCs. Already at 4 months, a separation in the serum lipidome was evident where SMs and PCs contributed. The separation was not detected at 12 months. CONCLUSIONS The effect of MFGM supplementation on the lipidome is likely part of the mechanisms behind the positive cognitive and immunological effects of feeding the EF previously reported in the same study population.
Collapse
Affiliation(s)
- Tove Grip
- Clinical Sciences/Pediatrics, Umeå University, Umeå, Sweden
| | | | - Linda Ahonen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | - Olle Hernell
- Clinical Sciences/Pediatrics, Umeå University, Umeå, Sweden
| | | | - Mikael Knip
- Children´s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Institute, Helsinki, Finland
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, United States
| | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Academy University, Turku, Finland.,School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Niklas Timby
- Clinical Sciences/Pediatrics, Umeå University, Umeå, Sweden.
| |
Collapse
|
16
|
Schneider-Schaulies J, Beyersdorf N. CD4+ Foxp3+ regulatory T cell-mediated immunomodulation by anti-depressants inhibiting acid sphingomyelinase. Biol Chem 2018; 399:1175-1182. [DOI: 10.1515/hsz-2018-0159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/30/2018] [Indexed: 01/14/2023]
Abstract
AbstractAcid sphingomyelinase (ASM) is the rate-limiting enzyme cleaving sphingomyelin into ceramide and phosphorylcholin. CD4+Foxp3+regulatory T (Treg) cells depend on CD28 signaling for their survival and function, a receptor that activates the ASM. Both, basal and CD28-induced ASM activities are higher in Treg cells than in conventional CD4+T (Tconv) cells. In ASM-deficient (Smpd1−/−) as compared to wt mice, membranes of T cells contain 7–10-fold more sphingomyelin and two- to three-fold more ceramide, and are in a state of higher order than membranes of T cells from wt mice, which may facilitate their activation. Indeed, the frequency of Treg cells among CD4+T cells in ASM-deficient mice and their suppressive activityin vitroare increased. Moreover,in vitrostimulation of ASM-deficient T cells in the presence of TGF-β and IL-2 leads to higher numbers of induced Treg cells. Pharmacological inhibition of the ASM with a clinically used tricyclic antidepressant such as amitriptyline in mice or in tissue culture of murine or human T cells induces higher frequencies of Treg cells among CD4+T cells within a few days. This fast alteration of the balance between T cell populationsin vitrois due to the elevated cell death of Tconv cells and protection of the CD25highTreg cells by IL-2. Together, these findings suggest that ASM-inhibiting antidepressants, including a fraction of the serotonin re-uptake inhibitors (SSRIs), are moderately immunosuppressive and should be considered for the therapy of inflammatory and autoimmune disorders.
Collapse
|
17
|
Dynamics of Plasma Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes - Type 1 Diabetes Prediction and Prevention Study (DIPP). Sci Rep 2018; 8:10635. [PMID: 30006587 PMCID: PMC6045612 DOI: 10.1038/s41598-018-28907-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is one of the most prevalent autoimmune diseases among children in Western countries. Earlier metabolomics studies suggest that T1D is preceded by dysregulation of lipid metabolism. Here we used a lipidomics approach to analyze molecular lipids in a prospective series of 428 plasma samples from 40 children who progressed to T1D (PT1D), 40 children who developed at least a single islet autoantibody but did not progress to T1D during the follow-up (P1Ab) and 40 matched controls (CTR). Sphingomyelins were found to be persistently downregulated in PT1D when compared to the P1Ab and CTR groups. Triacylglycerols and phosphatidylcholines were mainly downregulated in PT1D as compared to P1Ab at the age of 3 months. Our study suggests that distinct lipidomic signatures characterize children who progressed to islet autoimmunity or overt T1D, which may be helpful in the identification of at-risk children before the initiation of autoimmunity.
Collapse
|
18
|
Hough KP, Wilson LS, Trevor JL, Strenkowski JG, Maina N, Kim YI, Spell ML, Wang Y, Chanda D, Dager JR, Sharma NS, Curtiss M, Antony VB, Dransfield MT, Chaplin DD, Steele C, Barnes S, Duncan SR, Prasain JK, Thannickal VJ, Deshane JS. Unique Lipid Signatures of Extracellular Vesicles from the Airways of Asthmatics. Sci Rep 2018; 8:10340. [PMID: 29985427 PMCID: PMC6037776 DOI: 10.1038/s41598-018-28655-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/27/2018] [Indexed: 12/30/2022] Open
Abstract
Asthma is a chronic inflammatory disease process involving the conductive airways of the human lung. The dysregulated inflammatory response in this disease process may involve multiple cell-cell interactions mediated by signaling molecules, including lipid mediators. Extracellular vesicles (EVs) are lipid membrane particles that are now recognized as critical mediators of cell-cell communication. Here, we compared the lipid composition and presence of specific lipid mediators in airway EVs purified from the bronchoalveolar lavage (BAL) fluid of healthy controls and asthmatic subjects with and without second-hand smoke (SHS) exposure. Airway exosome concentrations were increased in asthmatics, and correlated with blood eosinophilia and serum IgE levels. Frequencies of HLA-DR+ and CD54+ exosomes were also significantly higher in asthmatics. Lipidomics analysis revealed that phosphatidylglycerol, ceramide-phosphates, and ceramides were significantly reduced in exosomes from asthmatics compared to the non-exposed control groups. Sphingomyelin 34:1 was more abundant in exosomes of SHS-exposed asthmatics compared to healthy controls. Our results suggest that chronic airway inflammation may be driven by alterations in the composition of lipid mediators within airway EVs of human subjects with asthma.
Collapse
Affiliation(s)
- Kenneth P Hough
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Landon S Wilson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L Trevor
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John G Strenkowski
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Njeri Maina
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Young-Il Kim
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marion L Spell
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yong Wang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diptiman Chanda
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jose Rodriguez Dager
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nirmal S Sharma
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Miranda Curtiss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Veena B Antony
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark T Dransfield
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David D Chaplin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad Steele
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven R Duncan
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeevan K Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessy S Deshane
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Acid sphingomyelinase mediates human CD4 + T-cell signaling: potential roles in T-cell responses and diseases. Cell Death Dis 2017; 8:e2963. [PMID: 28749465 PMCID: PMC5550889 DOI: 10.1038/cddis.2017.360] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022]
Abstract
Acid sphingomyelinase (ASM) is a lipid hydrolase. By generating ceramide, ASM had been reported to have an important role in regulating immune cell functions inclusive of macrophages, NK cells, and CD8+ T cells, whereas the role of ASM bioactivity in regulation of human CD4+ T-cell functions remained uncertain. Recent studies have provided novel findings in this field. Upon stimulation of CD3 and/or CD28, ASM-dependent ceramide signaling mediates intracellular downstream signal cascades of CD3 and CD28, and regulates CD4+ T-cell activation and proliferation. Meanwhile, CD39 and CD161 have direct interactions with ASM, which mediates downstream signals inclusive of STAT3 and mTOR and thus defines human Th17 cells. Intriguingly, ASM mediates Th1 responses, but negatively regulates Treg functions. In this review, we summarized the pivotal roles of ASM in regulation of human CD4+ T-cell activation and responses. ASM/sphingolipid signaling may be a novel target for the therapy of human autoimmune diseases.
Collapse
|
20
|
Burgert A, Schlegel J, Bécam J, Doose S, Bieberich E, Schubert-Unkmeir A, Sauer M. Characterization of Plasma Membrane Ceramides by Super-Resolution Microscopy. Angew Chem Int Ed Engl 2017; 56:6131-6135. [PMID: 28379629 DOI: 10.1002/anie.201700570] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 01/04/2023]
Abstract
The sphingolipid ceramide regulates cellular processes such as differentiation, proliferation, growth arrest, and apoptosis. Ceramide-rich membrane areas promote structural changes within the plasma membrane that segregate membrane receptors and affect membrane curvature and vesicle formation, fusion, and trafficking. Ceramides were labeled by immunocytochemistry to visualize their distribution on the plasma membrane of different cells with virtually molecular resolution by direct stochastic optical reconstruction microscopy (dSTORM). Super-resolution images show that independent of labeling conditions and cell type 50-60 % of all membrane ceramides are located in ceramide-rich platforms (CRPs) with a size of about 75 nm that are composed of at least about 20 ceramides. Treatment of cells with Bacillus cereus sphingomyelinase (bSMase) increases the overall ceramide concentration in the plasma membrane, the quantity of CRPs, and their size. Simultaneously, the ceramide concentration in CRPs increases approximately twofold.
Collapse
Affiliation(s)
- Anne Burgert
- Department of Biotechnology and Biophysics, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jérôme Bécam
- Institute of Hygiene and Microbiology, Julius Maximilian University Würzburg, 97080, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
21
|
Burgert A, Schlegel J, Bécam J, Doose S, Bieberich E, Schubert‐Unkmeir A, Sauer M. Characterization of Plasma Membrane Ceramides by Super‐Resolution Microscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anne Burgert
- Department of Biotechnology and Biophysics Julius Maximilian University Würzburg Am Hubland 97074 Würzburg Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics Julius Maximilian University Würzburg Am Hubland 97074 Würzburg Germany
| | - Jérôme Bécam
- Institute of Hygiene and Microbiology Julius Maximilian University Würzburg 97080 Würzburg Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics Julius Maximilian University Würzburg Am Hubland 97074 Würzburg Germany
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine Medical College of Georgia Augusta University Augusta GA 30912 USA
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics Julius Maximilian University Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
22
|
Villoslada P, Alonso C, Agirrezabal I, Kotelnikova E, Zubizarreta I, Pulido-Valdeolivas I, Saiz A, Comabella M, Montalban X, Villar L, Alvarez-Cermeño JC, Fernández O, Alvarez-Lafuente R, Arroyo R, Castro A. Metabolomic signatures associated with disease severity in multiple sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e321. [PMID: 28180139 PMCID: PMC5278923 DOI: 10.1212/nxi.0000000000000321] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
Objective: To identify differences in the metabolomic profile in the serum of patients with multiple sclerosis (MS) compared to controls and to identify biomarkers of disease severity. Methods: We studied 2 cohorts of patients with MS: a retrospective longitudinal cohort of 238 patients and 74 controls and a prospective cohort of 61 patients and 41 controls with serial serum samples. Patients were stratified into active or stable disease based on 2 years of prospective assessment accounting for presence of clinical relapses or changes in disability measured with the Expanded Disability Status Scale (EDSS). Metabolomic profiling (lipids and amino acids) was performed by ultra-high-performance liquid chromatography coupled to mass spectrometry in serum samples. Data analysis was performed using parametric methods, principal component analysis, and partial least square discriminant analysis for assessing the differences between cases and controls and for subgroups based on disease severity. Results: We identified metabolomics signatures with high accuracy for classifying patients vs controls as well as for classifying patients with medium to high disability (EDSS >3.0). Among them, sphingomyelin and lysophosphatidylethanolamine were the metabolites that showed a more robust pattern in the time series analysis for discriminating between patients and controls. Moreover, levels of hydrocortisone, glutamic acid, tryptophan, eicosapentaenoic acid, 13S-hydroxyoctadecadienoic acid, lysophosphatidylcholines, and lysophosphatidylethanolamines were associated with more severe disease (non-relapse-free or increase in EDSS). Conclusions: We identified metabolomic signatures composed of hormones, lipids, and amino acids associated with MS and with a more severe course.
Collapse
Affiliation(s)
- Pablo Villoslada
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Cristina Alonso
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Ion Agirrezabal
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Ekaterina Kotelnikova
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Irati Zubizarreta
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Irene Pulido-Valdeolivas
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Albert Saiz
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Manuel Comabella
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Xavier Montalban
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Luisa Villar
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Jose Carlos Alvarez-Cermeño
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Oscar Fernández
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Roberto Alvarez-Lafuente
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Rafael Arroyo
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| | - Azucena Castro
- Center of Neuroimmunology (P.V., I.A., E.K., I.Z., I.P.-V., A.S.), Institute d'Investigaciones Biomediques August Pi Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain; University of California (P.V.), San Francisco; OWL (C.A., A.C.), Parque Tecnológico de Bizkaia, Derio; Cemcat (M.C., X.M.), Hospital Vall d'Hebron, Barcelona; Hospital Ramon y Cajal (L.V., J.C.A.-C.), Madrid; Hospital Universitario Regional (O.F.), Instituto de Investigación Biomédica (IBIMA), Malaga; and Hospital Clinico San Carlos (R.A.-L., R.A.), Madrid, Spain
| |
Collapse
|
23
|
Hollmann C, Werner S, Avota E, Reuter D, Japtok L, Kleuser B, Gulbins E, Becker KA, Schneider-Schaulies J, Beyersdorf N. Inhibition of Acid Sphingomyelinase Allows for Selective Targeting of CD4+Conventional versus Foxp3+Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3130-3141. [DOI: 10.4049/jimmunol.1600691] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/20/2016] [Indexed: 01/01/2023]
|
24
|
Semba RD, Shardell M, Trehan I, Moaddel R, Maleta KM, Ordiz MI, Kraemer K, Khadeer M, Ferrucci L, Manary MJ. Metabolic alterations in children with environmental enteric dysfunction. Sci Rep 2016; 6:28009. [PMID: 27294788 PMCID: PMC4904796 DOI: 10.1038/srep28009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/27/2016] [Indexed: 01/28/2023] Open
Abstract
Environmental enteric dysfunction, an asymptomatic condition characterized by inflammation of the small bowel mucosa, villous atrophy, malabsorption, and increased intestinal permeability, is a major contributor to childhood stunting in low-income countries. Here we report the relationship of increased intestinal permeability with serum metabolites in 315 children without acute malnutrition, aged 12-59 months, in rural Malawi. Increased gut permeability was associated with significant differences in circulating metabolites that included lower serum phosphatidylcholines, sphingomyelins, tryptophan, ornithine, and citrulline, and elevated serum glutamate, taurine, and serotonin. Our findings suggest that environmental enteric dysfunction is characterized by alterations in important metabolites involved in growth and differentiation and gut function and integrity.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle Shardell
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Indi Trehan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110 USA.,School of Public Health and Family Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kenneth M Maleta
- School of Public Health and Family Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - M Isabel Ordiz
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Klaus Kraemer
- Sight and Life,, CH-4002, Basel, Switzerland.,Johns Hopkins Bloomberg School of Public HealthBaltimore, MD 21205, USA
| | - Mohammed Khadeer
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark J Manary
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110 USA.,School of Public Health and Family Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| |
Collapse
|
25
|
Semba RD, Shardell M, Sakr Ashour FA, Moaddel R, Trehan I, Maleta KM, Ordiz MI, Kraemer K, Khadeer MA, Ferrucci L, Manary MJ. Child Stunting is Associated with Low Circulating Essential Amino Acids. EBioMedicine 2016; 6:246-252. [PMID: 27211567 PMCID: PMC4856740 DOI: 10.1016/j.ebiom.2016.02.030] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
Background Stunting affects about one-quarter of children under five worldwide. The pathogenesis of stunting is poorly understood. Nutritional interventions have had only modest effects in reducing stunting. We hypothesized that insufficiency in essential amino acids may be limiting the linear growth of children. Methods We used a targeted metabolomics approach to measure serum amino acids, glycerophospholipids, sphingolipids, and other metabolites using liquid chromatography-tandem mass spectrometry in 313 children, aged 12–59 months, from rural Malawi. Children underwent anthropometry. Findings Sixty-two percent of the children were stunted. Children with stunting had lower serum concentrations of all nine essential amino acids (tryptophan, isoleucine, leucine, valine, methionine, threonine, histidine, phenylalanine, lysine) compared with nonstunted children (p < 0.01). In addition, stunted children had significantly lower serum concentrations of conditionally essential amino acids (arginine, glycine, glutamine), non-essential amino acids (asparagine, glutamate, serine), and six different sphingolipids compared with nonstunted children. Stunting was also associated with alterations in serum glycerophospholipid concentrations. Interpretation Our findings support the idea that children with a high risk of stunting may not be receiving an adequate dietary intake of essential amino acids and choline, an essential nutrient for the synthesis of sphingolipids and glycerophospholipids. We used metabolomics and mass spectrometry to gain insight into nutrition of stunted children. Stunted children in rural Africa had low circulating levels of essential amino acids. Children at risk of stunting may not have an adequate dietary intake of essential amino acids.
Worldwide, one-quarter of children under five years are short for their age (stunted), indicative of chronic malnutrition. Lipid-based nutrient supplements containing micronutrients have little to no effect in reducing child stunting. We examined the relationship between circulating metabolites with stunting in young children in Africa. Stunted children had lower serum levels of all nine essential amino acids compared with non-stunted children. These results challenge the widespread assumption that protein intake is adequate among young children in developing countries. The findings support the idea that children at high risk of stunting are not receiving adequate dietary intake of essential amino acids.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Michelle Shardell
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Fayrouz A Sakr Ashour
- Department of Nutrition & Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Indi Trehan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA; School of Public Health and Family Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - Kenneth M Maleta
- School of Public Health and Family Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - M Isabel Ordiz
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Klaus Kraemer
- Sight and Life, Basel, Switzerland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mohammed A Khadeer
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mark J Manary
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA; School of Public Health and Family Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| |
Collapse
|
26
|
Kumar A, Baycin-Hizal D, Zhang Y, Bowen MA, Betenbaugh MJ. Cellular traffic cops: the interplay between lipids and proteins regulates vesicular formation, trafficking, and signaling in mammalian cells. Curr Opin Biotechnol 2015; 36:215-21. [PMID: 26540512 DOI: 10.1016/j.copbio.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/18/2015] [Accepted: 09/17/2015] [Indexed: 11/30/2022]
Abstract
Protein secretion and vesicular trafficking in mammalian cells rely on several key lipids including sphingolipids, phospholipids, and neutral lipids crucial to protein processing and other intracellular events. Proteins interact with these lipids to alter the shape of lipid bilayer, thereby playing a pivotal role in cellular sorting. Although some efforts have elucidated the role of these components, extensive studies are needed to further decipher the protein-lipid interactions along with the effect of membrane curvature and rafts in sorting of proteins. The regulatory role of proteins in subcellular localization and metabolism of lipids also needs to be described. Recent studies on the role of lipid-protein interactions in modulating membrane shape, signal transduction, and vesicular trafficking are presented in this review.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Deniz Baycin-Hizal
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, USA
| | - Yue Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael A Bowen
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|