1
|
Olivieri P, Klabes M, Crack JC, Lehmann A, Bennett SP, Le Brun NE, Leimkühler S. Binding of IscU and TusA to different but competing sites of IscS influences the activity of IscS and directs sulfur to the respective biomolecular synthesis pathway. Microbiol Spectr 2024; 12:e0094924. [PMID: 38980029 PMCID: PMC11302665 DOI: 10.1128/spectrum.00949-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
All sulfur transfer pathways generally have in common an l-cysteine desulfurase as the initial sulfur-mobilizing enzyme, which serves as a sulfur donor for the biosynthesis of numerous sulfur-containing biomolecules in the cell. In Escherichia coli, the housekeeping l-cysteine desulfurase IscS functions as a hub for sulfur transfer through interactions with several partner proteins, which bind at different sites on IscS. So far, the interaction sites of IscU, Fdx, CyaY, and IscX involved in iron sulfur (Fe-S) cluster assembly, TusA, required for molybdenum cofactor biosynthesis and mnm5s2U34 transfer RNA (tRNA) modifications, and ThiI, involved in both the biosynthesis of thiamine and s4U8 tRNA modifications, have been mapped. Previous studies have suggested that IscS partner proteins bind only one at a time, with the exception of Fe-S cluster assembly, which involves the formation of a ternary complex involving IscS, IscU, and one of CyaY, Fdx, or IscX. Here, we show that the affinity of TusA for IscS is similar to but lower than that of IscU and that these proteins compete for binding to IscS. We show that heterocomplexes involving the IscS dimer and single IscU and TusA molecules are readily formed and that binding of both TusA and IscU to IscS affects its l-cysteine desulfurase activity. A model is proposed in which the delivery of sulfur to different sulfur-requiring pathways is controlled by sulfur acceptor protein levels, IscS-binding affinities, and acceptor protein-modulated IscS desulfurase activity.IMPORTANCEIron-sulfur clusters are evolutionarily ancient prosthetic groups. The housekeeping l-cysteine desulfurase IscS functions as a central core for sulfur transfer through interactions with several partner proteins, which bind at different sites on each IscS monomer with different affinities and partially overlapping binding sites. We show that heterocomplexes involving the IscS dimer and single IscU and TusA molecules at each site of the dimer are formed, thereby influencing the activity of IscS.
Collapse
Affiliation(s)
- Paolo Olivieri
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Moritz Klabes
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jason C. Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Angelika Lehmann
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Sophie P. Bennett
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
2
|
Hasnat MA, Leimkühler S. Shared functions of Fe-S cluster assembly and Moco biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119731. [PMID: 38631442 DOI: 10.1016/j.bbamcr.2024.119731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In the recent years it has become evident that the availability of Fe-S clusters play an important role for the biosynthesis of Moco. First, the MoaA protein binds two [4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional [4Fe-4S] cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the L-cysteine desulfurase IscS, which is an enzyme involved in the transfer of sulfur to various acceptor proteins with a main role in the assembly of Fe-S clusters. In this review, we dissect the dependence of the production of active molybdoenzymes in detail, starting from the regulation of gene expression and further explaining sulfur delivery and Fe-S cluster insertion into target enzymes. Further, Fe-S cluster assembly is also linked to iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, we explain that the expression of the genes is dependent on an active FNR protein. FNR is a very important transcription factor that represents the master-switch for the expression of target genes in response to anaerobiosis. Moco biosynthesis is further directly dependent on the presence of ArcA and also on an active Fur protein.
Collapse
Affiliation(s)
- Muhammad Abrar Hasnat
- University of Potsdam, Institute of Biochemistry and Biology, Department of Molecular Enzymology, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Silke Leimkühler
- University of Potsdam, Institute of Biochemistry and Biology, Department of Molecular Enzymology, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Weber JN, Minner-Meinen R, Behnecke M, Biedendieck R, Hänsch VG, Hercher TW, Hertweck C, van den Hout L, Knüppel L, Sivov S, Schulze J, Mendel RR, Hänsch R, Kaufholdt D. Moonlighting Arabidopsis molybdate transporter 2 family and GSH-complex formation facilitate molybdenum homeostasis. Commun Biol 2023; 6:801. [PMID: 37532778 PMCID: PMC10397214 DOI: 10.1038/s42003-023-05161-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
Molybdenum (Mo) as essential micronutrient for plants, acts as active component of molybdenum cofactor (Moco). Core metabolic processes like nitrate assimilation or abscisic-acid biosynthesis rely on Moco-dependent enzymes. Although a family of molybdate transport proteins (MOT1) is known to date in Arabidopsis, molybdate homeostasis remained unclear. Here we report a second family of molybdate transporters (MOT2) playing key roles in molybdate distribution and usage. KO phenotype-analyses, cellular and organ-specific localization, and connection to Moco-biosynthesis enzymes via protein-protein interaction suggest involvement in cellular import of molybdate in leaves and reproductive organs. Furthermore, we detected a glutathione-molybdate complex, which reveals how vacuolar storage is maintained. A putative Golgi S-adenosyl-methionine transport function was reported recently for the MOT2-family. Here, we propose a moonlighting function, since clear evidence of molybdate transport was found in a yeast-system. Our characterization of the MOT2-family and the detection of a glutathione-molybdate complex unveil the plant-wide way of molybdate.
Collapse
Affiliation(s)
- Jan-Niklas Weber
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Rieke Minner-Meinen
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Maria Behnecke
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Rebekka Biedendieck
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, Rebenring 56, D-38106, Braunschweig, Germany
| | - Veit G Hänsch
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Research and Infection Biology (HKI), Beutenbergstrasse 11a, Faculty of Biological Sciences, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Thomas W Hercher
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Research and Infection Biology (HKI), Beutenbergstrasse 11a, Faculty of Biological Sciences, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Lena van den Hout
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Lars Knüppel
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Simon Sivov
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Jutta Schulze
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Ralf-R Mendel
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany.
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, , Southwest University, Tiansheng Road No. 2, 400715, Chongqing, Beibei District, PR China.
| | - David Kaufholdt
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| |
Collapse
|
4
|
Ravichandran KE, Kaduhr L, Skupien‐Rabian B, Shvetsova E, Sokołowski M, Krutyhołowa R, Kwasna D, Brachmann C, Lin S, Guzman Perez S, Wilk P, Kösters M, Grudnik P, Jankowska U, Leidel SA, Schaffrath R, Glatt S. E2/E3-independent ubiquitin-like protein conjugation by Urm1 is directly coupled to cysteine persulfidation. EMBO J 2022; 41:e111318. [PMID: 36102610 PMCID: PMC9574740 DOI: 10.15252/embj.2022111318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Post-translational modifications by ubiquitin-like proteins (UBLs) are essential for nearly all cellular processes. Ubiquitin-related modifier 1 (Urm1) is a unique UBL, which plays a key role in tRNA anticodon thiolation as a sulfur carrier protein (SCP) and is linked to the noncanonical E1 enzyme Uba4 (ubiquitin-like protein activator 4). While Urm1 has also been observed to conjugate to target proteins like other UBLs, the molecular mechanism of its attachment remains unknown. Here, we reconstitute the covalent attachment of thiocarboxylated Urm1 to various cellular target proteins in vitro, revealing that, unlike other known UBLs, this process is E2/E3-independent and requires oxidative stress. Furthermore, we present the crystal structures of the peroxiredoxin Ahp1 before and after the covalent attachment of Urm1. Surprisingly, we show that urmylation is accompanied by the transfer of sulfur to cysteine residues in the target proteins, also known as cysteine persulfidation. Our results illustrate the role of the Uba4-Urm1 system as a key evolutionary link between prokaryotic SCPs and the UBL modifications observed in modern eukaryotes.
Collapse
Affiliation(s)
- Keerthiraju E Ravichandran
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
- Postgraduate School of Molecular MedicineWarsawPoland
| | - Lars Kaduhr
- Department for Microbiology, Institute for BiologyUniversity of KasselKasselGermany
| | | | - Ekaterina Shvetsova
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Mikołaj Sokołowski
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
- Postgraduate School of Molecular MedicineWarsawPoland
| | - Ros´cisław Krutyhołowa
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Dominika Kwasna
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| | - Cindy Brachmann
- Department for Microbiology, Institute for BiologyUniversity of KasselKasselGermany
| | - Sean Lin
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Sebastian Guzman Perez
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Piotr Wilk
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| | - Manuel Kösters
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Przemysław Grudnik
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| | - Sebastian A Leidel
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of BernBernSwitzerland
| | - Raffael Schaffrath
- Department for Microbiology, Institute for BiologyUniversity of KasselKasselGermany
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| |
Collapse
|
5
|
Beyond Moco Biosynthesis-Moonlighting Roles of MoaE and MOCS2. Molecules 2022; 27:molecules27123733. [PMID: 35744859 PMCID: PMC9228816 DOI: 10.3390/molecules27123733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Molybdenum cofactor (Moco) biosynthesis requires iron, copper, and ATP. The Moco-containing enzyme sulfite oxidase catalyzes terminal oxidation in oxidative cysteine catabolism, and another Moco-containing enzyme, xanthine dehydrogenase, functions in purine catabolism. Thus, molybdenum enzymes participate in metabolic pathways that are essential for cellular detoxication and energy dynamics. Studies of the Moco biosynthetic enzymes MoaE (in the Ada2a-containing (ATAC) histone acetyltransferase complex) and MOCS2 have revealed that Moco biosynthesis and molybdenum enzymes align to regulate signaling and metabolism via control of transcription and translation. Disruption of these functions is involved in the onset of dementia and neurodegenerative disease. This review provides an overview of the roles of MoaE and MOCS2 in normal cellular processes and neurodegenerative disease, as well as directions for future research.
Collapse
|
6
|
Pintus A, Arca M. 1,2-Diselenolene ligands and related metal complexes: Design, synthesis and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Lamont EI, Lee M, Burgdorf D, Ibsen C, McQualter J, Sarhan R, Thompson O, Schulze SR. Mocs1 ( Molybdenum cofactor synthesis 1) may contribute to lifespan extension in Drosophila. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000517. [PMID: 35098048 PMCID: PMC8790633 DOI: 10.17912/micropub.biology.000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/05/2022]
Abstract
While evaluating the effect on lifespan of decreased ribosomal protein (Rp) expression in Drosophila, we discovered a potential function in the same process for the Molybdenum cofactor synthesis 1 (Mocs1) gene. We utilized the UAS-GAL4 inducible system, by crossing tissue-specific GAL4 drivers to the Harvard Drosophila Transgenic RNAi Project (TrIP) responder lines for Rp gene knockdown. We also employed a negative control that knocked down a gene unrelated to Drosophila (GAL4). Relative to the genetic background in which no driven transgenes were present, lifespan was significantly lengthened in females, both for Rp knockdown and the negative GAL4 control. We reasoned that the Mocs1 gene, located immediately downstream of the integration site on the third chromosome where all the TrIP responders are targeted might be responsible for the lifespan effects observed, due to the potential for upregulation using the UAS-GAL4 system. We repeated the lifespan experiment using an enhancer trap in the same location as the TrIP transgenes, and found that lifespan was significantly lengthened in females that possessed both the driver and responder, relative to controls, implicating Mocs1 in the biology of aging.
Collapse
Affiliation(s)
- Eleanor I. Lamont
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Michael Lee
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - David Burgdorf
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Camille Ibsen
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Jazmyne McQualter
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Ryan Sarhan
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Olivia Thompson
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Sandra R Schulze
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA,
Correspondence to: Sandra R Schulze ()
| |
Collapse
|
8
|
Cavazza C, Collin-Faure V, Pérard J, Diemer H, Cianférani S, Rabilloud T, Darrouzet E. Proteomic analysis of Rhodospirillum rubrum after carbon monoxide exposure reveals an important effect on metallic cofactor biosynthesis. J Proteomics 2022; 250:104389. [PMID: 34601154 DOI: 10.1016/j.jprot.2021.104389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
Some carboxydotrophs like Rhodospirillum rubrum are able to grow with CO as their sole source of energy using a Carbone monoxide dehydrogenase (CODH) and an Energy conserving hydrogenase (ECH) to perform anaerobically the so called water-gas shift reaction (WGSR) (CO + H2O → CO2 + H2). Several studies have focused at the biochemical and biophysical level on this enzymatic system and a few OMICS studies on CO metabolism. Knowing that CO is toxic in particular due to its binding to heme iron atoms, and is even considered as a potential antibacterial agent, we decided to use a proteomic approach in order to analyze R. rubrum adaptation in term of metabolism and management of the toxic effect. In particular, this study allowed highlighting a set of proteins likely implicated in ECH maturation, and important perturbations in term of cofactor biosynthesis, especially metallic cofactors. This shows that even this CO tolerant microorganism cannot avoid completely CO toxic effects associated with its interaction with metallic ions. SIGNIFICANCE: This proteomic study highlights the fact that even in a microorganism able to handle carbon monoxide and in some way detoxifying it via the intrinsic action of the carbon monoxide dehydrogenase (CODH), CO has important effects on metal homeostasis, metal cofactors and metalloproteins. These effects are direct or indirect via transcription regulation, and amplified by the high interdependency of cofactors biosynthesis.
Collapse
Affiliation(s)
- Christine Cavazza
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France.
| | | | - Julien Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France.
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048 (CNRS-CEA), 67087 Strasbourg, France.
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048 (CNRS-CEA), 67087 Strasbourg, France.
| | - Thierry Rabilloud
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France.
| | | |
Collapse
|
9
|
Belbellaa B, Reutenauer L, Messaddeq N, Monassier L, Puccio H. High Levels of Frataxin Overexpression Lead to Mitochondrial and Cardiac Toxicity in Mouse Models. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:120-138. [PMID: 33209958 PMCID: PMC7648087 DOI: 10.1016/j.omtm.2020.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Friedreich ataxia (FA) is currently an incurable inherited mitochondrial disease caused by reduced levels of frataxin (FXN). Cardiac dysfunction is the main cause of premature death in FA. Adeno-associated virus (AAV)-mediated gene therapy constitutes a promising approach for FA, as demonstrated in cardiac and neurological mouse models. While the minimal therapeutic level of FXN protein to be restored and biodistribution have recently been defined for the heart, it is unclear if FXN overexpression could be harmful. Indeed, depending on the vector delivery route and dose administered, the resulting FXN protein level could reach very high levels in the heart, cerebellum, or off-target organs such as the liver. The present study demonstrates safety of FXN cardiac overexpression up to 9-fold the normal endogenous level but significant toxicity to the mitochondria and heart above 20-fold. We show gradual severity with increasing FXN overexpression, ranging from subclinical cardiotoxicity to left ventricle dysfunction. This appears to be driven by impairment of the mitochondria respiratory chain and ultrastructure, which leads to cardiomyocyte subcellular disorganization, cell death, and fibrosis. Overall, this study underlines the need, during the development of gene therapy approaches, to consider appropriate vector expression level, long-term safety, and biomarkers to monitor such events.
Collapse
Affiliation(s)
- Brahim Belbellaa
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Laurence Reutenauer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire EA7296, Faculté de Médecine, Strasbourg 67085, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
10
|
Abstract
Tungsten is the heaviest element used in biological systems. It occurs in the active sites of several bacterial or archaeal enzymes and is ligated to an organic cofactor (metallopterin or metal binding pterin; MPT) which is referred to as tungsten cofactor (Wco). Wco-containing enzymes are found in the dimethyl sulfoxide reductase (DMSOR) and the aldehyde:ferredoxin oxidoreductase (AOR) families of MPT-containing enzymes. Some depend on Wco, such as aldehyde oxidoreductases (AORs), class II benzoyl-CoA reductases (BCRs) and acetylene hydratases (AHs), whereas others may incorporate either Wco or molybdenum cofactor (Moco), such as formate dehydrogenases, formylmethanofuran dehydrogenases or nitrate reductases. The obligately tungsten-dependent enzymes catalyze rather unusual reactions such as ones with extremely low-potential electron transfers (AOR, BCR) or an unusual hydration reaction (AH). In recent years, insights into the structure and function of many tungstoenzymes have been obtained. Though specific and unspecific ABC transporter uptake systems have been described for tungstate and molybdate, only little is known about further discriminative steps in Moco and Wco biosynthesis. In bacteria producing Moco- and Wco-containing enzymes simultaneously, paralogous isoforms of the metal insertase MoeA may be specifically involved in the molybdenum- and tungsten-insertion into MPT, and in targeting Moco or Wco to their respective apo-enzymes. Wco-containing enzymes are of emerging biotechnological interest for a number of applications such as the biocatalytic reduction of CO2, carboxylic acids and aromatic compounds, or the conversion of acetylene to acetaldehyde.
Collapse
|
11
|
Pintus A, Ambrosio L, Aragoni MC, Binda M, Coles SJ, Hursthouse MB, Isaia F, Lippolis V, Meloni G, Natali D, Orton JB, Podda E, Sampietro M, Arca M. Photoconducting Devices with Response in the Visible-Near-Infrared Region Based on Neutral Ni Complexes of Aryl-1,2-dithiolene Ligands. Inorg Chem 2020; 59:6410-6421. [PMID: 32302124 DOI: 10.1021/acs.inorgchem.0c00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Metal bis(1,2-dithiolene) complexes belonging to the class [Ni(Ar-edt)2]x- [Ar-edt2- = arylethylene-1,2-dithiolate; Ar = phenyl, (1x-), 2-naphthyl (2x-); x = 0 and 1] were fully characterized by NMR, UV-visible-near-infrared (UV-vis-NIR), diffuse reflectance, and FT-IR spectroscopy, as well as cyclic voltammetry and single-crystal X-ray diffraction analysis. These complexes have emerged as new photoconducting materials that allowed for the development of a prototype of photodetectors with response in the vis-NIR region. The photodetecting devices showed in some cases quantum efficiencies orders of magnitude higher than those of previously reported 1,2-dithiolene systems.
Collapse
Affiliation(s)
- Anna Pintus
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - Lucia Ambrosio
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - M Carla Aragoni
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - Maddalena Binda
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Simon J Coles
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
| | - Michael B Hursthouse
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
| | - Francesco Isaia
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - Vito Lippolis
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - Giammarco Meloni
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - Dario Natali
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy.,Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Via Ponzio 34/5, 20133 Milano, Italy
| | - James B Orton
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
| | - Enrico Podda
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - Marco Sampietro
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy.,Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Via Ponzio 34/5, 20133 Milano, Italy
| | - Massimiliano Arca
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| |
Collapse
|
12
|
Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation. J Biol Inorg Chem 2020; 25:547-569. [PMID: 32279136 DOI: 10.1007/s00775-020-01787-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they carry out. Therefore, obtaining abundant quantities of active enzyme is necessary for exploring this family's biochemical capability. This mini-review summarizes the methods for overexpressing mononuclear molybdenum enzymes in the context of the challenges encountered in the process. Effective methods for molybdenum cofactor synthesis and incorporation, optimization of expression conditions, improving isolation of active vs. inactive enzyme, incorporation of additional prosthetic groups, and inclusion of redox enzyme maturation protein chaperones are discussed in relation to the current molybdenum enzyme literature. This article summarizes the heterologous and homologous expression studies providing underlying patterns and potential future directions.
Collapse
|
13
|
Peng L, Chen DQ, Jiang GM, Ou JY, Jiang Q, Zeng LT, Xiao Y, Jiang QY, Yang L, Ning Sun. Transcriptome Analysis of Two Strains of Proteus mirabilis with Swarming Migration Deficiency Isolated from Patients with Urinary Tract Infection. Curr Microbiol 2020; 77:1381-1389. [PMID: 32152756 DOI: 10.1007/s00284-020-01931-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
Two rare strains of Proteus mirabilis with swarming migration deficiency were isolated from urine samples of two patients with urinary tract infections and were named as G121 and G137. Migration experiments showed that P. mirabilis HI4320 had typical migration on blood agar, while G121 and G137 had significantly weakened migration ability. Results of adhesion tests showed that the adhesion ability of G121 and G137 to the bladder epithelial cell line 5637 was significantly reduced. High-throughput sequencing and alignment analysis of the transcriptomes of the three P. mirabilis strains were conducted, with P. mirabilis HI4320 as the reference strain. Reverse transcription quantitative PCR (RT-qPCR) was used to verify differentially expressed genes. Results of transcriptome analysis and RT-qPCR showed that, compared to the HI4320 strain, genes related to flagellum and fimbria formation, dicarboxylate transport, and cystathionine and anthranilate metabolism were down-regulated in G121 and G137, while genes related to iron transport, molybdenum metabolism, and metalloprotease were up-regulated, suggesting that these genes may be involved in the migration ability and epithelial cell adhesion ability of P. mirabilis. These results provide important insight to the search for virulence genes and the screening of new antibacterial targets for P. mirabilis.
Collapse
Affiliation(s)
- Liang Peng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Ding-Qiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Guan-Ming Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jing-Yi Ou
- Department of Clinical Laboratory, Guangzhou No. 8 People's Hospital, Guangzhou, 510000, Guangdong, China
| | - Qiao Jiang
- Intensive Care Unit, Guangdong 999 Brain Hospital, Guangzhou, 510510, Guangdong, China
| | - Li-Ting Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Yi Xiao
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Qiong-Yan Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Ling Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China.
| | - Ning Sun
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China.
| |
Collapse
|
14
|
Melior H, Li S, Madhugiri R, Stötzel M, Azarderakhsh S, Barth-Weber S, Baumgardt K, Ziebuhr J, Evguenieva-Hackenberg E. Transcription attenuation-derived small RNA rnTrpL regulates tryptophan biosynthesis gene expression in trans. Nucleic Acids Res 2020; 47:6396-6410. [PMID: 30993322 PMCID: PMC6614838 DOI: 10.1093/nar/gkz274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/01/2019] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
Ribosome-mediated transcription attenuation is a basic posttranscriptional regulation mechanism in bacteria. Liberated attenuator RNAs arising in this process are generally considered nonfunctional. In Sinorhizobium meliloti, the tryptophan (Trp) biosynthesis genes are organized into three operons, trpE(G), ppiD-trpDC-moaC-moeA, and trpFBA-accD-folC, of which only the first one, trpE(G), contains a short ORF (trpL) in the 5′-UTR and is regulated by transcription attenuation. Under conditions of Trp sufficiency, transcription is terminated between trpL and trpE(G), and a small attenuator RNA, rnTrpL, is produced. Here, we show that rnTrpL base-pairs with trpD and destabilizes the polycistronic trpDC mRNA, indicating rnTrpL-mediated downregulation of the trpDC operon in trans. Although all three trp operons are regulated in response to Trp availability, only in the two operons trpE(G) and trpDC the Trp-mediated regulation is controlled by rnTrpL. Together, our data show that the trp attenuator coordinates trpE(G) and trpDC expression posttranscriptionally by two fundamentally different mechanisms: ribosome-mediated transcription attenuation in cis and base-pairing in trans. Also, we present evidence that rnTrpL-mediated regulation of trpDC genes expression in trans is conserved in Agrobacterium and Bradyrhizobium, suggesting that the small attenuator RNAs may have additional conserved functions in the control of bacterial gene expression.
Collapse
Affiliation(s)
- Hendrik Melior
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Siqi Li
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University, Giessen, 35392, Germany
| | - Maximilian Stötzel
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, 35392, Germany
| | | |
Collapse
|
15
|
Wang Y, Maxi NA, Xie Y, Wei P, Schaefer HF, Robinson GH. Lewis base-complexed magnesium dithiolenes. Chem Commun (Camb) 2019; 55:8087-8089. [PMID: 31231726 DOI: 10.1039/c9cc03427g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first magnesium-based dithiolene, 2, was prepared by reaction of the lithium dithiolene radical, 1˙, with 2-mesitylmagnesium bromide. Reaction of 2 with N-heterocyclic carbenes (in toluene) gave a carbene-stabilized magnesium monodithiolene complex, 3. Complex 3, in turn, is readily converted to a THF-solvated magnesium bis-dithiolene dianion, 4, via partial hydrolysis in polar solvents (i.e., THF/CH3CN). Compounds 2, 3 and 4 have been spectroscopically and structurally characterized and probed by DFT computations.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Wang H, Chen X, Zhang W, Zhou W, Liu X, Rao Z. Structural analysis of molybdopterin synthases from two mycobacterial pathogens. Biochem Biophys Res Commun 2019; 511:21-27. [PMID: 30765225 DOI: 10.1016/j.bbrc.2019.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 11/25/2022]
Abstract
The molybdenum cofactor, composed of molybdopterin and molybdenum, is a necessary compound for the catalytic activity of molybdenum enzymes. Molybdenum cofactor biosynthesis is a conserved multi-step process involving several enzymes. Molybdopterin synthase, a hetero-tetrameric enzyme composed of a pair of MoaE-MoaD subunits, catalyzes the generation of the cis-dithiolene group of molybdopterin in the second step of the process. The cis-dithiolene group can covalently bind molybdenum. Most mycobacterial species possess several genes encoding the full pathway of molybdenum cofactor biosynthesis. In M. smegmatis, the moaD2 and moaE2 genes encode the functional molybdopterin synthase. However, M. tuberculosis has genes encoding several molybdopterin synthase subunit homologs, including moaD1, moaD2, moaE1, moaE2, and moaX, which encodes a MoaD-MoaE fusion protein. Previous studies have shown that moaD2 and moaE2 encode functional molybdopterin synthase. Here, we report the crystal structures of two substrate-free molybdopterin synthases from two different mycobacterial pathogens, M. tuberculosis and M. smegmatis, at 2.1 Å and 2.6 Å resolutions, respectively. The overall structure of both molybdopterin synthases was hetero-tetrameric, consisting of a MoaE2 dimer flanked on either side by single MoaD2 subunits. The carboxyl-terminal domain of MoaD2 inserted into MoaE2, forming the active pocket. A comparison with previously reported molybdopterin synthase structures showed that substrate-binding and catalytic residues were conserved, despite low sequence similarity among these enzymes. The low sequence identity at the MoaE-MoaD heterodimer interface may provide the structural basis to explore mycobacterial inhibitors.
Collapse
Affiliation(s)
- Huiying Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China
| | - Xiaobo Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China
| | - Wei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China
| | - Weihong Zhou
- College of Life Science, Nankai University, Tianjin, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China; Laboratory of Structural Biology, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Molybdenum cofactor transfer from bacteria to nematode mediates sulfite detoxification. Nat Chem Biol 2019; 15:480-488. [PMID: 30911177 PMCID: PMC6470025 DOI: 10.1038/s41589-019-0249-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/14/2019] [Indexed: 11/26/2022]
Abstract
The kingdoms of life share many small molecule cofactors and coenzymes. Molybdenum cofactor (Moco) is synthesized by many archaea, bacteria, and eukaryotes, and is essential for human viability. The genome of the animal Caenorhabditis elegans contains all of the Moco biosynthesis genes, and surprisingly these genes are not essential if animals are fed a bacterial diet that synthesizes Moco. C. elegans lacking both endogenous Moco synthesis and dietary Moco from bacteria arrest development, demonstrating interkingdom Moco transfer. Our screen of E. coli mutants identified genes necessary for synthesis of bacterial Moco or transfer to C. elegans. Moco-deficient C. elegans developmental arrest is caused by loss of sulfite oxidase, a Moco-requiring enzyme, and is suppressed by mutations in either C. elegans cystathionine gamma-lyase or cysteine dioxygenase, blocking toxic sulfite production from cystathionine. Thus, we define the genetic pathways for an interkingdom dialogue focused on sulfur homeostasis.
Collapse
|
19
|
Neukranz Y, Kotter A, Beilschmidt L, Marelja Z, Helm M, Gräf R, Leimkühler S. Analysis of the Cellular Roles of MOCS3 Identifies a MOCS3-Independent Localization of NFS1 at the Tips of the Centrosome. Biochemistry 2019; 58:1786-1798. [PMID: 30817134 DOI: 10.1021/acs.biochem.8b01160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The deficiency of the molybdenum cofactor (Moco) is an autosomal recessive disease, which leads to the loss of activity of all molybdoenzymes in humans with sulfite oxidase being the essential protein. Moco deficiency generally results in death in early childhood. Moco is a sulfur-containing cofactor synthesized in the cytosol with the sulfur being provided by a sulfur relay system composed of the l-cysteine desulfurase NFS1, MOCS3, and MOCS2A. Human MOCS3 is a dual-function protein that was shown to play an important role in Moco biosynthesis and in the mcm5s2U thio modifications of nucleosides in cytosolic tRNAs for Lys, Gln, and Glu. In this study, we constructed a homozygous MOCS3 knockout in HEK293T cells using the CRISPR/Cas9 system. The effects caused by the absence of MOCS3 were analyzed in detail. We show that sulfite oxidase activity was almost completely abolished, on the basis of the absence of Moco in these cells. In addition, mcm5s2U thio-modified tRNAs were not detectable. Because the l-cysteine desulfurase NFS1 was shown to act as a sulfur donor for MOCS3 in the cytosol, we additionally investigated the impact of a MOCS3 knockout on the cellular localization of NFS1. By different methods, we identified a MOCS3-independent novel localization of NFS1 at the centrosome.
Collapse
Affiliation(s)
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry , Johannes Gutenberg-Universität Mainz , 55128 Mainz , Germany
| | | | | | - Mark Helm
- Institute of Pharmacy and Biochemistry , Johannes Gutenberg-Universität Mainz , 55128 Mainz , Germany
| | | | | |
Collapse
|
20
|
Wang Y, Xie Y, Wei P, Schaefer HF, Robinson GH. Redox chemistry of an anionic dithiolene radical. Dalton Trans 2019; 48:3543-3546. [DOI: 10.1039/c8dt04989k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The redox reactivity of a stable anionic dithiolene radical has been explored, giving the corresponding dithiolate and neutral dithiolene dimers.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry
- The University of Georgia
- Athens
- USA
| | - Yaoming Xie
- Department of Chemistry
- The University of Georgia
- Athens
- USA
| | - Pingrong Wei
- Department of Chemistry
- The University of Georgia
- Athens
- USA
| | | | | |
Collapse
|
21
|
Demtröder L, Narberhaus F, Masepohl B. Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum. Mol Microbiol 2018; 111:17-30. [PMID: 30325563 DOI: 10.1111/mmi.14152] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 12/01/2022]
Abstract
Biological nitrogen fixation, the reduction of chemically inert dinitrogen to bioavailable ammonia, is a central process in the global nitrogen cycle highly relevant for life on earth. N2 reduction to NH3 is catalyzed by nitrogenases exclusively synthesized by diazotrophic prokaryotes. All diazotrophs have a molybdenum nitrogenase containing the unique iron-molybdenum cofactor FeMoco. In addition, some diazotrophs encode one or two alternative Mo-free nitrogenases that are less efficient at reducing N2 than Mo-nitrogenase. To permit biogenesis of Mo-nitrogenase and other molybdoenzymes when Mo is scarce, bacteria synthesize the high-affinity molybdate transporter ModABC. Generally, Mo supports expression of Mo-nitrogenase genes, while it represses production of Mo-free nitrogenases and ModABC. Since all three nitrogenases and ModABC can reach very high levels at suitable Mo concentrations, tight Mo-mediated control saves considerable resources and energy. This review outlines the similarities and differences in Mo-responsive regulation of nitrogen fixation and molybdate transport in diverse diazotrophs.
Collapse
Affiliation(s)
- Lisa Demtröder
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | | - Bernd Masepohl
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
22
|
Yang YM, Won YB, Ji CJ, Kim JH, Ryu SH, Ok YH, Lee JW. Cleavage of molybdopterin synthase MoaD-MoaE linear fusion by JAMM/MPN + domain containing metalloprotease DR0402 from Deinococcus radiodurans. Biochem Biophys Res Commun 2018; 502:48-54. [PMID: 29777693 DOI: 10.1016/j.bbrc.2018.05.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Molybdenum cofactor (Moco), molybdopterin (MPT) complexed with molybdenum, is an essential cofactor required for the catalytic center of diverse enzymes in all domains of life. Since Moco cannot be taken up as a nutrient unlike many other cofactors, Moco requires de novo biosynthesis. During the synthesis of MPT, the sulfur atom on the C-terminus of MoaD is transferred to cyclic pyranopterin monophosphate (cPMP) which is bound in the substrate pocket of MoaE. MoaD is a ubiquitin-like (Ubl) protein and has a C-terminal di-Gly motif which is a common feature of Ubl proteins. Despite the importance of free C terminal di-Gly motif of MoaD as a sulfur carrier, some bacteria encode a fused MPT synthase in which MoaD- and MoaE-like domains are located on a single peptide. Although it has recently been reported that the fused MPT synthase MoaX from Mycobacterium tuberculosis is posttranslationally cleaved into functional MoaD and MoaE in M. smegmatis, the protease responsible for the cleavage of MoaD-MoaE fusion protein has remained unknown to date. Here we report that the JAMM/MPN+ domain containing metalloprotease DR0402 (JAMMDR) from Deinococcus radiodurans can cleave the MoaD-MoaE fusion protein DR2607, the sole MPT synthase in D. radiodurans, generating the MoaD having a C-terminal di-Gly motif. Furthermore, JAMMDR can also cleave off the MoaD from MoaD-eGFP fusion protein suggesting that JAMMDR recognizes the MoaD region rather than MoaE region in the cleaving process of MoaD-MoaE fusion protein.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young-Bin Won
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chang-Jun Ji
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jung-Hoon Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Su-Hyun Ryu
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youn-Ha Ok
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin-Won Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
23
|
The functional principle of eukaryotic molybdenum insertases. Biochem J 2018; 475:1739-1753. [PMID: 29717023 DOI: 10.1042/bcj20170935] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
The molybdenum cofactor (Moco) is a redox-active prosthetic group found in the active site of Moco-dependent enzymes, which are vitally important for life. Moco biosynthesis involves several enzymes that catalyze the subsequent conversion of GTP into cyclic pyranopterin monophosphate (cPMP), molybdopterin (MPT), adenylated MPT (MPT-AMP), and finally Moco. While the underlying principles of cPMP, MPT, and MPT-AMP formation are well understood, the molybdenum insertase (Mo-insertase)-catalyzed final Moco maturation step is not. In the present study, we analyzed high-resolution X-ray datasets of the plant Mo-insertase Cnx1E that revealed two molybdate-binding sites within the active site, hence improving the current view on Cnx1E functionality. The presence of molybdate anions in either of these sites is tied to a distinctive backbone conformation, which we suggest to be essential for Mo-insertase molybdate selectivity and insertion efficiency.
Collapse
|
24
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|