1
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
2
|
Zhan L, Qiu M, Zheng J, Lai M, Lin K, Dai J, Sun W, Xu E. Fractalkine/CX3CR1 axis is critical for neuroprotection induced by hypoxic postconditioning against cerebral ischemic injury. Cell Commun Signal 2024; 22:457. [PMID: 39327578 PMCID: PMC11426015 DOI: 10.1186/s12964-024-01830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Microglial activation-mediated neuroinflammation is a major contributor to neuronal damage after cerebral ischemia. The Fractalkine (FKN)/CX3C chemokine receptor 1 (CX3CR1) axis plays a critical role in regulating microglial activation and neuroinflammation. The aim of this study is to ascertain the role and mechanism of FKN/CX3CR1 axis in hypoxic postconditioning (HPC)-induced anti-inflammatory and neuroprotective effects on transient global cerebral ischemia (tGCI). We found that HPC suppressed microglial activation and alleviated neuroinflammation in hippocampal CA1 after tGCI. Meanwhile, HPC upregulated the expression of FKN and CX3CR1 in neurons, but it downregulated the expression of CX3CR1 in glial cells after tGCI. In addition, the overexpression of FKN induced by the administration of FKN-carried lentivirus reduced microglial activation and inhibited neuroinflammation in CA1 after tGCI. Furthermore, silencing CX3CR1 with CX3CRi-carried lentivirus in CA1 after tGCI suppressed microglial activation and neuroinflammation and exerted neuroprotective effects. Finally, the overexpression of FKN caused a marked increase of neuronal CX3CR1 receptors, upregulated the phosphorylation of Akt, and reduced neuronal loss of rats in CA1 after tGCI. These findings demonstrated that HPC protected against neuronal damage in CA1 of tGCI rats through inhibiting microglial activation and activating Akt signaling pathway via FKN/CX3CR1 axis.
Collapse
Affiliation(s)
- Lixuan Zhan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - Meiqian Qiu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - Jianhua Zheng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - Meijing Lai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - Kunqin Lin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - Jiahua Dai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - Weiwen Sun
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - En Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China.
| |
Collapse
|
3
|
Savant R, Pradhan RK, Bhagat S, Mythri RB, Varghese AM, Vengalil S, Nalini A, Sathyaprabha TN, Raju TR, Vijayalakshmi K. Enhanced levels of fractalkine and HSP60 in cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients. Int J Neurosci 2024:1-11. [PMID: 38625841 DOI: 10.1080/00207454.2024.2344581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/07/2024] [Indexed: 04/18/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a multifactorial neurodegenerative disorder with a significant contribution of non-cell autonomous mechanisms to motor neuronal degeneration. Amongst a plethora of molecules, fractalkine (C-X3-C motif chemokine ligand 1), and Heat Shock Protein 60 (HSP60), are key modulators of microglial activation. The contribution of these molecules in Sporadic ALS (SALS) remains unexplored. To investigate this, fractalkine levels were estimated in Cerebrospinal fluid (CSF) of SALS patients (ALS-CSF; n = 44) by Enzyme-linked Immunosorbent Assay (ELISA) and correlated with clinical parameters including disease severity and duration. CSF HSP60 levels were estimated by Western blotting (ALS-CSF; n = 19). Also, CSF levels of Chitotriosidase-1 (CHIT-1), a microglia-specific neuroinflammatory molecule, were measured and its association, if any, with fractalkine and HSP60 was investigated. Both fractalkine and HSP60 levels were significantly elevated in ALS-CSF. Similar to our earlier observation, CHIT-1 levels were also upregulated. Fractalkine showed a moderate negative correlation with the ALS-Functional Rating Scale (ALSFRS) score indicating its significant rise in mild cases which plateaued in cases with high disease severity. However, no obvious correlation was found between fractalkine, HSP60, and CHIT-1. Our study hints that high fractalkine levels in mild cases might be conferring neuroprotection by combating microglial activation and highlights its importance as a novel therapeutic target for SALS. On the other hand, significantly enhanced levels of HSP60, a pro-inflammatory molecule, hint towards its role in accentuating microgliosis, although, it doesn't act synergistically with CHIT-1. Our study suggests that fractalkine and HSP60 act independently of CHIT-1 to suppress and accentuate neuroinflammation, respectively.
Collapse
Affiliation(s)
- Rashmi Savant
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Raj Kumar Pradhan
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Savita Bhagat
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Rajeswara Babu Mythri
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Anu Mary Varghese
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Talakad N Sathyaprabha
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Trichur R Raju
- A.S. Paintal Distinguished Scientific Chair National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - K Vijayalakshmi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Tian J, Zuo C, Shi J, Ma D, Shi C. Peripheral immune cell traits and Parkinson's disease: A Mendelian randomization study. PLoS One 2024; 19:e0299026. [PMID: 38442099 PMCID: PMC10914262 DOI: 10.1371/journal.pone.0299026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/04/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The peripheral immune system is altered in Parkinson's disease (PD), but the causal relationship between the two remains controversial. In this study, we aimed to estimate the causal relationship between peripheral immune features and PD using a two-sample Mendelian randomization (MR) approach. METHODS Genome-wide association study (GWAS) data of peripheral blood immune signatures from European populations were used for exposure and PD summary statistics were used as results. We conducted a two-sample MR study using the inverse-variance weighted (IVW), MR-Egger, and weighted median methods to evaluate the causal association between these factors. MR-Egger and MR-PRESSO were used for sensitivity analysis to test and correct horizontal pleiotropy. RESULTS A total of 731 immune traits were analyzed for association with PD using three MR methods. After adjustment for FDR, we observed four peripheral immunological features associated with PD using the IVW method, including expression of CX3CR1 on monocytes [OR: 0.85, 95% CI: (0.81, 0.91), P = 6.56E-07] and CX3CR1 on CD14+CD16+ monocytes [OR: 0.87, 95% CI: (0.82, 0.93), P = 9.95E-06]. CONCLUSIONS Our study further revealed the important role of monocytes in PD and indicated that CX3CR1 expression on monocytes is associated with a reduced risk of PD.
Collapse
Affiliation(s)
- Jie Tian
- Zheng Zhou Railway Vocational and Technical College, Zhengzhou, Henan, China
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Marriott H, Kabiljo R, Hunt GP, Khleifat AA, Jones A, Troakes C, Pfaff AL, Quinn JP, Koks S, Dobson RJ, Schwab P, Al-Chalabi A, Iacoangeli A. Unsupervised machine learning identifies distinct ALS molecular subtypes in post-mortem motor cortex and blood expression data. Acta Neuropathol Commun 2023; 11:208. [PMID: 38129934 PMCID: PMC10734072 DOI: 10.1186/s40478-023-01686-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) displays considerable clinical and genetic heterogeneity. Machine learning approaches have previously been utilised for patient stratification in ALS as they can disentangle complex disease landscapes. However, lack of independent validation in different populations and tissue samples have greatly limited their use in clinical and research settings. We overcame these issues by performing hierarchical clustering on the 5000 most variably expressed autosomal genes from motor cortex expression data of people with sporadic ALS from the KCL BrainBank (N = 112). Three molecular phenotypes linked to ALS pathogenesis were identified: synaptic and neuropeptide signalling, oxidative stress and apoptosis, and neuroinflammation. Cluster validation was achieved by applying linear discriminant analysis models to cases from TargetALS US motor cortex (N = 93), as well as Italian (N = 15) and Dutch (N = 397) blood expression datasets, for which there was a high assignment probability (80-90%) for each molecular subtype. The ALS and motor cortex specificity of the expression signatures were tested by mapping KCL BrainBank controls (N = 59), and occipital cortex (N = 45) and cerebellum (N = 123) samples from TargetALS to each cluster, before constructing case-control and motor cortex-region logistic regression classifiers. We found that the signatures were not only able to distinguish people with ALS from controls (AUC 0.88 ± 0.10), but also reflect the motor cortex-based disease process, as there was perfect discrimination between motor cortex and the other brain regions. Cell types known to be involved in the biological processes of each molecular phenotype were found in higher proportions, reinforcing their biological interpretation. Phenotype analysis revealed distinct cluster-related outcomes in both motor cortex datasets, relating to disease onset and progression-related measures. Our results support the hypothesis that different mechanisms underpin ALS pathogenesis in subgroups of patients and demonstrate potential for the development of personalised treatment approaches. Our method is available for the scientific and clinical community at https://alsgeclustering.er.kcl.ac.uk .
Collapse
Affiliation(s)
- Heather Marriott
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Renata Kabiljo
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Guy P Hunt
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
| | - Ashley Jones
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
- MRC London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Richard J Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust and King's College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Patrick Schwab
- GlaxoSmithKline, Artificial Intelligence and Machine Learning, Durham, NC, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
- King's College Hospital, London, SE5 9RS, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK.
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- NIHR Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| |
Collapse
|
6
|
Jones C, Parkitny L, Strath L, Wagener BM, Barker A, Younger J. Altered response to Toll-like receptor 4 activation in fibromyalgia: A low-dose, human experimental endotoxemia pilot study. Brain Behav Immun Health 2023; 34:100707. [PMID: 38020479 PMCID: PMC10679487 DOI: 10.1016/j.bbih.2023.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
In this pilot study, a human intravenous injection of low-dose endotoxin (lipopolysaccharide, LPS) model was used to test if fibromyalgia is associated with altered immune responses to Toll-like receptor 4 (TLR4) activation. Eight women with moderately-severe fibromyalgia and eight healthy women were administered LPS at 0.1 ng/kg in session one and 0.4 ng/kg in session two. Blood draws were collected hourly to characterize the immune response. The primary analytes of interest, leptin and fractalkine, were assayed via commercial radioimmunoassay and enzyme-linked immunosorbent assay kits, respectively. Exploratory analyses were performed on 20 secreted cytokine assays by multiplex cytokine panels, collected hourly. Exploratory analyses were also performed on testosterone, estrogen, and cortisol levels, collected hourly. Additionally, standard clinical complete blood counts with differential (CBC-D) were collected before LPS administration and at the end of the session. The fibromyalgia group demonstrated enhanced leptin and suppressed fractalkine responses to LPS administration. In the exploratory analyses, the fibromyalgia group showed a lower release of IFN-γ, CXCL10, IL-17A, and IL-12 and higher release of IL-15, TARC, MDC, and eotaxin than the healthy group. The results of this study suggest that fibromyalgia may involve an altered immune response to TLR4 activation.
Collapse
Affiliation(s)
- Chloe Jones
- Department of Psychology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Luke Parkitny
- Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Larissa Strath
- Pain Research and Intervention Center of Excellence, The University of Florida, Gainesville, FL, USA
- College of Medicine, Department of Health Outcomes and Biomedical Informatics, The University of Florida, Gainesville, FL, USA
| | - Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew Barker
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarred Younger
- Department of Psychology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| |
Collapse
|
7
|
Eugenín J, Eugenín-von Bernhardi L, von Bernhardi R. Age-dependent changes on fractalkine forms and their contribution to neurodegenerative diseases. Front Mol Neurosci 2023; 16:1249320. [PMID: 37818457 PMCID: PMC10561274 DOI: 10.3389/fnmol.2023.1249320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | | | - Rommy von Bernhardi
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
8
|
Wang X, Xie Y, Niu Y, Wan B, Lu Y, Luo Q, Zhu L. CX3CL1/CX3CR1 signal mediates M1-type microglia and accelerates high-altitude-induced forgetting. Front Cell Neurosci 2023; 17:1189348. [PMID: 37234914 PMCID: PMC10206058 DOI: 10.3389/fncel.2023.1189348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Hypoxia-induced neuronal damage is the primary cause of cognitive impairment induced by high-altitude exposure. Microglia play a crucial regulatory role in the central nervous system (CNS) homeostasis and synaptic plasticity. M1-type polarized microglia are suspected to be responsible for CNS injury under hypoxic conditions, but the exact molecular mechanism is still unelucidated. Methods CX3CR1 knock out and wide type mice were exposed to a simulated plateau at 7000 m for 48 h to construct the model of hypobaric hypoxia-induced memory impairment. The memory impairment of mice was assessed by Morris water maze. The dendritic spine density in the hippocampus was examined by Golgi staining. The synapses in the CA1 region and the number of neurons in the DG region were examined by immunofluorescence staining. The synapses in microglia activation and phagocytosis were examined by immunofluorescence. The levels of CX3CL1/CX3CR1 and their downstream proteins were detected. CX3CR1 knockout primary microglia were treated with CX3CL1 combined with 1% O2. The levels of proteins related to microglial polarization, the uptake of synaptosome and phagocytotic ability of microglia were detected. Results In this study, mice exposed to a simulated 7000 m altitude for 48 h developed significant amnesia for recent memories, but no significant change in their anxiety levels was observed. Hypobaric hypoxia exposure (7000 m altitude above sea level for 48 h) resulted in synapse loss in the CA1 region of the hippocampus, but no significant changes occurred in the total number of neurons. Meanwhile, microglia activation, increased phagocytosis of synapses by microglia, and CX3CL1/CX3CR1 signal activation were observed under hypobaric hypoxic exposure. Further, we found that after hypobaric hypoxia exposure, CX3CR1-deficient mice showed less amnesia, less synaptic loss in the CA1 region, and less increase in M1 microglia, compared to their wildtype siblings. CX3CR1-deficient microglia did not exhibit M1-type polarization in response to either hypoxia or CX3CL1 induction. Both hypoxia and CX3CL1 induced the phagocytosis of synapses by microglia through the upregulation of microglial phagocytosis. Discussion The current study demonstrates that CX3CL1/CX3CR1 signal mediates the M1-type polarization of microglia under high-altitude exposure and upregulates microglial phagocytosis, which increases the phagocytosis of synapses in the CA1 region of the hippocampus, causing synaptic loss and inducing forgetting.
Collapse
|
9
|
Wang Q, Zheng J, Pettersson S, Reynolds R, Tan EK. The link between neuroinflammation and the neurovascular unit in synucleinopathies. SCIENCE ADVANCES 2023; 9:eabq1141. [PMID: 36791205 PMCID: PMC9931221 DOI: 10.1126/sciadv.abq1141] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/19/2023] [Indexed: 05/28/2023]
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glial cells, and neurons. As a fundamental functional module in the central nervous system, the NVU maintains homeostasis in the microenvironment and the integrity of the blood-brain barrier. Disruption of the NVU and interactions among its components are involved in the pathophysiology of synucleinopathies, which are characterized by the pathological accumulation of α-synuclein. Neuroinflammation contributes to the pathophysiology of synucleinopathies, including Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. This review aims to summarize the neuroinflammatory response of glial cells and vascular cells in the NVU. We also review neuroinflammation in the context of the cross-talk between glial cells and vascular cells, between glial cells and pericytes, and between microglia and astroglia. Last, we discuss how α-synuclein affects neuroinflammation and how neuroinflammation influences the aggregation and spread of α-synuclein and analyze different properties of α-synuclein in synucleinopathies.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 308433, Singapore
- Karolinska Institutet, Department of Odontology, 171 77 Solna, Sweden
- Faculty of Medical Sciences, Sunway University, Subang Jaya, 47500 Selangor, Malaysia
- Department of Microbiology and Immunology, National University Singapore, Singapore 117545, Singapore
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
10
|
Fractalkine/CX3CR1-Dependent Modulation of Synaptic and Network Plasticity in Health and Disease. Neural Plast 2023; 2023:4637073. [PMID: 36644710 PMCID: PMC9833910 DOI: 10.1155/2023/4637073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 01/06/2023] Open
Abstract
CX3CR1 is a G protein-coupled receptor that is expressed exclusively by microglia within the brain parenchyma. The only known physiological CX3CR1 ligand is the chemokine fractalkine (FKN), which is constitutively expressed in neuronal cell membranes and tonically released by them. Through its key role in microglia-neuron communication, the FKN/CX3CR1 axis regulates microglial state, neuronal survival, synaptic plasticity, and a variety of synaptic functions, as well as neuronal excitability via cytokine release modulation, chemotaxis, and phagocytosis. Thus, the absence of CX3CR1 or any failure in the FKN/CX3CR1 axis has been linked to alterations in different brain functions, including changes in synaptic and network plasticity in structures such as the hippocampus, cortex, brainstem, and spinal cord. Since synaptic plasticity is a basic phenomenon in neural circuit integration and adjustment, here, we will review its modulation by the FKN/CX3CR1 axis in diverse brain circuits and its impact on brain function and adaptation in health and disease.
Collapse
|
11
|
Ren M, Zhang J, Dai S, Wang C, Chen Z, Zhang S, Xu J, Qin X, Liu F. CX3CR1 deficiency exacerbates immune-mediated hepatitis by increasing NF-κB-mediated cytokine production in macrophage and T cell. Exp Biol Med (Maywood) 2023; 248:117-129. [PMID: 36426712 PMCID: PMC10041049 DOI: 10.1177/15353702221128573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Immune-mediated hepatitis is marked by liver inflammation characterized by immune cell infiltration, chemokine/cytokine production, and hepatocyte injury. C-X3C motif receptor 1 (CX3CR1), as the receptor of chemokine C-X3C motif ligand 1 (CX3CL1)/fractalkine, is mainly expressed on immune cells including monocytes and T cells. Previous studies have shown that CX3CR1 protects against liver fibrosis, but the exact role of CX3CL1/CX3CR1 in acute immune-mediated hepatitis remains unknown. Here, we investigate the role of the CX3CL1/CX3CR1 axis in immune-mediated hepatitis using concanavalin A (ConA)-induced liver injury model in CX3CR1-deficient (Cx3cr1-/-) mice. We observed that Cx3cr1-/- mice had severe liver injury and increased pro-inflammatory cytokines (tumor necrosis factor-alpha [TNF-α], interferon-gamma [IFN-γ], interleukin-1 beta [IL-1β], and IL-6) in serum and liver compared to wild-type (Cx3cr1+/+) mice after ConA injection. The deficiency of CX3CR1 did not affect ConA-induced immune cell infiltration in liver but led to elevated production of TNF-α in macrophages as well as IFN-γ in T cells after ConA treatment. On the contrary, exogenous CX3CL1 attenuated ConA-induced cytokine production in wild type, but not CX3CR1-deficient macrophages and T cells. Furthermore, in vitro results showed that CX3CR1 deficiency promoted the pro-inflammatory cytokine expression by increasing the phosphorylation of nuclear factor kappa B (NF-κB) p65 (p-NF-κB p65). Finally, pre-treatment of p-NF-κB p65 inhibitor, resveratrol, attenuated ConA-induced liver injury and inflammatory responses, especially in Cx3cr1-/- mice. In conclusion, our data show that the deficiency of CX3CR1 promotes pro-inflammatory cytokine production in macrophages and T cells by enhancing the phosphorylation of NF-κB p65, which exacerbates liver injury in ConA-induced hepatitis.
Collapse
Affiliation(s)
- Mi Ren
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Jinyan Zhang
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Shen Dai
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250000, People's Republic of China
| | - Chenxiao Wang
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Zheng Chen
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Siqi Zhang
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Junming Xu
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Fengming Liu
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250000, People's Republic of China
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Sarikidi A, Kefalakes E, Falk CS, Esser R, Ganser A, Thau-Habermann N, Petri S. Altered Immunomodulatory Responses in the CX3CL1/CX3CR1 Axis Mediated by hMSCs in an Early In Vitro SOD1 G93A Model of ALS. Biomedicines 2022; 10:biomedicines10112916. [PMID: 36428484 PMCID: PMC9688016 DOI: 10.3390/biomedicines10112916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron (MN) disease characterized by progressive MN loss and muscular atrophy resulting in rapidly progressive paralysis and respiratory failure. Human mesenchymal stem/stromal cell (hMSC)-based therapy has been suggested to prolong MN survival via secretion of growth factors and modulation of cytokines/chemokines. We investigated the effects of hMSCs and a hMSC-conditioned medium (CM) on Cu/Zn superoxidase dismutase 1G93A (SOD1G93A) transgenic primary MNs. We found that co-culture of hMSCs and MNs resulted in slightly higher MN numbers, but did not protect against staurosporine (STS)-induced toxicity, implying marginal direct trophic effects of hMSCs. Aiming to elucidate the crosstalk between hMSCs and MNs in vitro, we found high levels of vascular endothelial growth factor (VEGF) and C-X3-C motif chemokine 1 (CX3CL1) in the hMSC secretome. Co-culture of hMSCs and MNs resulted in altered gene expression of growth factors and cytokines/chemokines in both MNs and hMSCs. hMSCs showed upregulation of CX3CL1 and its receptor CX3CR1 and downregulation of interleukin-1 β (IL1β) and interleukin-8 (IL8) when co-cultured with SOD1G93A MNs. MNs, on the other hand, showed upregulation of growth factors as well as CX3CR1 upon hMSC co-culture. Our results indicate that hMSCs only provide moderate trophic support to MNs by growth factor gene regulation and may mediate anti-inflammatory responses through the CX3CL1/CX3CR1 axis, but also increase expression of pro-inflammatory cytokines, which limits their therapeutic potential.
Collapse
Affiliation(s)
- Anastasia Sarikidi
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Ekaterini Kefalakes
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Ruth Esser
- Institute of Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
| | - Arnold Ganser
- Institute of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | | | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-3740
| |
Collapse
|
13
|
Barbosa M, Santos M, de Sousa N, Duarte-Silva S, Vaz AR, Salgado AJ, Brites D. Intrathecal Injection of the Secretome from ALS Motor Neurons Regulated for miR-124 Expression Prevents Disease Outcomes in SOD1-G93A Mice. Biomedicines 2022; 10:biomedicines10092120. [PMID: 36140218 PMCID: PMC9496075 DOI: 10.3390/biomedicines10092120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with short life expectancy and no effective therapy. We previously identified upregulated miR-124 in NSC-34-motor neurons (MNs) expressing human SOD1-G93A (mSOD1) and established its implication in mSOD1 MN degeneration and glial cell activation. When anti-miR-124-treated mSOD1 MN (preconditioned) secretome was incubated in spinal cord organotypic cultures from symptomatic mSOD1 mice, the dysregulated homeostatic balance was circumvented. To decipher the therapeutic potential of such preconditioned secretome, we intrathecally injected it in mSOD1 mice at the early stage of the disease (12-week-old). Preconditioned secretome prevented motor impairment and was effective in counteracting muscle atrophy, glial reactivity/dysfunction, and the neurodegeneration of the symptomatic mSOD1 mice. Deficits in corticospinal function and gait abnormalities were precluded, and the loss of gastrocnemius muscle fiber area was avoided. At the molecular level, the preconditioned secretome enhanced NeuN mRNA/protein expression levels and the PSD-95/TREM2/IL-10/arginase 1/MBP/PLP genes, thus avoiding the neuronal/glial cell dysregulation that characterizes ALS mice. It also prevented upregulated GFAP/Cx43/S100B/vimentin and inflammatory-associated miRNAs, specifically miR-146a/miR-155/miR-21, which are displayed by symptomatic animals. Collectively, our study highlights the intrathecal administration of the secretome from anti-miR-124-treated mSOD1 MNs as a therapeutic strategy for halting/delaying disease progression in an ALS mouse model.
Collapse
Affiliation(s)
- Marta Barbosa
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Marta Santos
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Nídia de Sousa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Guimarães, Portugal
| | - Sara Duarte-Silva
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Guimarães, Portugal
| | - Ana Rita Vaz
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - António J. Salgado
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Guimarães, Portugal
| | - Dora Brites
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
14
|
Brandi E, Torres-Garcia L, Svanbergsson A, Haikal C, Liu D, Li W, Li JY. Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Front Aging Neurosci 2022; 14:910988. [PMID: 36092814 PMCID: PMC9459169 DOI: 10.3389/fnagi.2022.910988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia cells are the macrophage population within the central nervous system, which acts as the first line of the immune defense. These cells present a high level of heterogeneity among different brain regions regarding morphology, cell density, transcriptomes, and expression of different inflammatory mediators. This region-specific heterogeneity may lead to different neuroinflammatory responses, influencing the regional involvement in several neurodegenerative diseases. In this study, we aimed to evaluate microglial response in 16 brain regions. We compared different aspects of the microglial response, such as the extension of their morphological changes, sensitivity, and ability to convert an acute inflammatory response to a chronic one. Then, we investigated the synaptic alterations followed by acute and chronic inflammation in substantia nigra. Moreover, we estimated the effect of partial ablation of fractalkine CX3C receptor 1 (CX3CR1) on microglial response. In the end, we briefly investigated astrocytic heterogeneity and activation. To evaluate microglial response in different brain regions and under the same stimulus, we induced a systemic inflammatory reaction through a single intraperitoneal (i.p.) injection of lipopolysaccharides (LPS). We performed our study using C57BL6 and CX3CR1+/GFP mice to investigate microglial response in different regions and the impact of CX3CR1 partial ablation. We conducted a topographic study quantifying microglia alterations in 16 brain regions through immunohistochemical examination and computational image analysis. Assessing Iba1-immunopositive profiles and the density of the microglia cells, we have observed significant differences in region-specific responses of microglia populations in all parameters considered. Our results underline the peculiar microglial inflammation in the substantia nigra pars reticulata (SNpr). Here and in concomitance with the acute inflammatory response, we observed a transient decrease of dopaminergic dendrites and an alteration of the striato-nigral projections. Additionally, we found a significant decrease in microglia response and the absence of chronic inflammation in CX3CR1+/GFP mice compared to the wild-type ones, suggesting the CX3C axis as a possible pharmacological target against neuroinflammation induced by an increase of systemic tumor necrosis factor-alpha (TNFα) or/and LPS. Finally, we investigated astrocytic heterogeneity in this model. We observed different distribution and morphology of GFAP-positive astrocytes, a heterogeneous response under inflammatory conditions, and a decrease in their activation in CX3CR1 partially ablated mice compared with C57BL6 mice. Altogether, our data confirm that microglia and astrocytes heterogeneity lead to a region-specific inflammatory response in presence of a systemic TNFα or/and LPS treatment.
Collapse
Affiliation(s)
- Edoardo Brandi
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Di Liu
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
- *Correspondence: Jia-Yi Li, ,
| |
Collapse
|
15
|
Puntambekar SS, Moutinho M, Lin PBC, Jadhav V, Tumbleson-Brink D, Balaji A, Benito MA, Xu G, Oblak A, Lasagna-Reeves CA, Landreth GE, Lamb BT. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer's disease. Mol Neurodegener 2022; 17:47. [PMID: 35764973 PMCID: PMC9241248 DOI: 10.1186/s13024-022-00545-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite its identification as a key checkpoint regulator of microglial activation in Alzheimer's disease, the overarching role of CX3CR1 signaling in modulating mechanisms of Aβ driven neurodegeneration, including accumulation of hyperphosphorylated tau is not well understood. METHODOLOGY Accumulation of soluble and insoluble Aβ species, microglial activation, synaptic dysregulation, and neurodegeneration is investigated in 4- and 6-month old 5xFAD;Cx3cr1+/+ and 5xFAD;Cx3cr1-/- mice using immunohistochemistry, western blotting, transcriptomic and quantitative real time PCR analyses of purified microglia. Flow cytometry based, in-vivo Aβ uptake assays are used for characterization of the effects of CX3CR1-signaling on microglial phagocytosis and lysosomal acidification as indicators of clearance of methoxy-X-04+ fibrillar Aβ. Lastly, we use Y-maze testing to analyze the effects of Cx3cr1 deficiency on working memory. RESULTS Disease progression in 5xFAD;Cx3cr1-/- mice is characterized by increased deposition of filamentous plaques that display defective microglial plaque engagement. Microglial Aβ phagocytosis and lysosomal acidification in 5xFAD;Cx3cr1-/- mice is impaired in-vivo. Interestingly, Cx3cr1 deficiency results in heighted accumulation of neurotoxic, oligomeric Aβ, along with severe neuritic dystrophy, preferential loss of post-synaptic densities, exacerbated tau pathology, neuronal loss and cognitive impairment. Transcriptomic analyses using cortical RNA, coupled with qRT-PCR using purified microglia from 6 month-old mice indicate dysregulated TGFβ-signaling and heightened ROS metabolism in 5xFAD;Cx3cr1-/- mice. Lastly, microglia in 6 month-old 5xFAD;Cx3cr1-/- mice express a 'degenerative' phenotype characterized by increased levels of Ccl2, Ccl5, Il-1β, Pten and Cybb along with reduced Tnf, Il-6 and Tgfβ1 mRNA. CONCLUSIONS Cx3cr1 deficiency impairs microglial uptake and degradation of fibrillar Aβ, thereby triggering increased accumulation of neurotoxic Aβ species. Furthermore, loss of Cx3cr1 results in microglial dysfunction typified by dampened TGFβ-signaling, increased oxidative stress responses and dysregulated pro-inflammatory activation. Our results indicate that Aβ-driven microglial dysfunction in Cx3cr1-/- mice aggravates tau hyperphosphorylation, neurodegeneration, synaptic dysregulation and impairs working memory.
Collapse
Affiliation(s)
- Shweta S. Puntambekar
- Stark Neurosciences Research Institute, Indiana University-School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University-School of Medicine, Indianapolis, IN USA
| | - Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University-School of Medicine, Indianapolis, IN USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University-School of Medicine, Indianapolis, IN USA
| | - Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, Indiana University-School of Medicine, Indianapolis, IN USA
- Indiana Biomedical Gateway (IBMG) Program, Indiana University-School of Medicine, Indianapolis, IN USA
| | - Vaishnavi Jadhav
- Stark Neurosciences Research Institute, Indiana University-School of Medicine, Indianapolis, IN USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA USA
| | - Danika Tumbleson-Brink
- Stark Neurosciences Research Institute, Indiana University-School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University-School of Medicine, Indianapolis, IN USA
| | - Ananya Balaji
- Stark Neurosciences Research Institute, Indiana University-School of Medicine, Indianapolis, IN USA
- Indiana Clinical and Translational Institute (CTSI), Summer Research Program (SRP), Indianapolis, IN USA
| | - Martin Alvarado Benito
- Stark Neurosciences Research Institute, Indiana University-School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University-School of Medicine, Indianapolis, IN USA
| | - Guixiang Xu
- Stark Neurosciences Research Institute, Indiana University-School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University-School of Medicine, Indianapolis, IN USA
| | - Adrian Oblak
- Stark Neurosciences Research Institute, Indiana University-School of Medicine, Indianapolis, IN USA
- Department of Radiology, Indiana University-School of Medicine, Indianapolis, IN USA
| | - Cristian A. Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University-School of Medicine, Indianapolis, IN USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University-School of Medicine, Indianapolis, IN USA
| | - Gary E. Landreth
- Stark Neurosciences Research Institute, Indiana University-School of Medicine, Indianapolis, IN USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University-School of Medicine, Indianapolis, IN USA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute, Indiana University-School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University-School of Medicine, Indianapolis, IN USA
| |
Collapse
|
16
|
Inoue K. Potential significance of CX3CR1 dynamics in stress resilience against neuronal disorders. Neural Regen Res 2022; 17:2153-2156. [PMID: 35259822 PMCID: PMC9083172 DOI: 10.4103/1673-5374.335831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent findings have implicated inflammatory responses in the central nervous system in a variety of neuropsychiatric and neurodegenerative diseases, and the understanding and control of immunological responses could be a major factor of future therapeutic strategies for neurological disorders. Microglia, derived from myelogenous cells, respond to a number of stimuli and make immune responses, resulting in a prominent role as cells that act on inflammation in the central nervous system. Fractalkine (FKN or CX3CL1) signaling is an important factor that influences the inflammatory response of microglia. The receptor for FKN, CX3CR1, is usually expressed in microglia in the brain, and therefore the inflammatory response of microglia is modified by FKN. Reportedly, FKN often suppresses inflammatory responses in microglia and activation of its receptor may be effective in the treatment of inflammatory neurological disorders. However, it has also been suggested that inflammatory responses facilitated by FKN signaling aggravate neurological disorders. Thus, further studies are still required to resolve the conflicting interpretation of the protective or deleterious contribution of microglial FKN signaling. Yet notably, regulation of FKN signaling has recently been shown to be beneficial in the treatment of human diseases, although not neurological diseases. In addition, a CX3CR1 inhibitor has been developed and successfully tested in animal models, and it is expected to be in human clinical trials in the future. In this review, I describe the potential therapeutic consideration of microglial CX3CR1 dynamics through altered FKN signaling.
Collapse
Affiliation(s)
- Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
17
|
Jiang M, Xie H, Zhang C, Wang T, Tian H, Lu L, Xu JY, Xu GT, Liu L, Zhang J. Enhancing fractalkine/CX3CR1 signalling pathway can reduce neuroinflammation by attenuating microglia activation in experimental diabetic retinopathy. J Cell Mol Med 2022; 26:1229-1244. [PMID: 35023309 PMCID: PMC8831940 DOI: 10.1111/jcmm.17179] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 12/19/2021] [Indexed: 12/19/2022] Open
Abstract
The concept of diabetic retinopathy (DR) has been extended from microvascular disease to neurovascular disease in which microglia activation plays a remarkable role. Fractalkine (FKN)/CX3CR1 is reported to regulate microglia activation in central nervous system diseases. To characterize the effect of FKN on microglia activation in DR, we employed streptozotocin‐induced diabetic rats, glyoxal‐treated R28 cells and hypoxia‐treated BV2 cells to mimic diabetic conditions and explored retinal neuronal apoptosis, reactive oxygen species (ROS), as well as the expressions of FKN, Iba‐1, TSPO, NF‐κB, Nrf2 and inflammation‐related cytokines. The results showed that FKN expression declined with diabetes progression and in glyoxal‐treated R28 cells. Compared with normal control, retinal microglia activation and inflammatory factors surged in both diabetic rat retinas and hypoxia‐treated microglia, which was largely dampened by FKN. The NF‐κB and Nrf2 expressions and intracellular ROS were up‐regulated in hypoxia‐treated microglia compared with that in normoxia control, and FKN significantly inhibited NF‐κB activation, activated Nrf2 pathway and decreased intracellular ROS. In conclusion, the results demonstrated that FKN deactivated microglia via inhibiting NF‐κB pathway and activating Nrf2 pathway, thus to reduce the production of inflammation‐related cytokines and ROS, and protect the retina from diabetes insult.
Collapse
Affiliation(s)
- Mengmeng Jiang
- Department of Ophthalmology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Xie
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Tianqin Wang
- Department of Ophthalmology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibin Tian
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Jing-Ying Xu
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Guo-Tong Xu
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Lin Liu
- Department of Ophthalmology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
18
|
Pampalakis G, Angelis G, Zingkou E, Vekrellis K, Sotiropoulou G. A chemogenomic approach is required for effective treatment of amyotrophic lateral sclerosis. Clin Transl Med 2022; 12:e657. [PMID: 35064780 PMCID: PMC8783349 DOI: 10.1002/ctm2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
ALS is a fatal untreatable disease involving degeneration of motor neurons. Μultiple causative genes encoding proteins with versatile functions have been identified indicating that diverse biological pathways lead to ALS. Chemical entities still represent a promising choice to delay ALS progression, attenuate symptoms and/or increase life expectancy, but also gene-based and stem cell-based therapies are in the process of development, and some are tested in clinical trials. Various compounds proved effective in transgenic models overexpressing distinct ALS causative genes unfortunately though, they showed no efficacy in clinical trials. Notably, while animal models provide a uniform genetic background for preclinical testing, ALS patients are not stratified, and the distinct genetic forms of ALS are treated as one group, which could explain the observed discrepancies between treating genetically homogeneous mice and quite heterogeneous patient cohorts. We suggest that chemical entity-genotype correlation should be exploited to guide patient stratification for pharmacotherapy, that is administered drugs should be selected based on the ALS genetic background.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacology - Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Angelis
- Department of Pharmacology - Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Kostas Vekrellis
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
19
|
Xie M, Zhao S, Bosco DB, Nguyen A, Wu LJ. Microglial TREM2 in amyotrophic lateral sclerosis. Dev Neurobiol 2022; 82:125-137. [PMID: 34874625 PMCID: PMC8898078 DOI: 10.1002/dneu.22864] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is an aggressive motor neuron degenerative disease characterized by selective loss of both upper and lower motor neurons. The mechanisms underlying disease initiation and progression are poorly understood. The involvement of nonmotor neuraxis emphasizes the contribution of glial cells in disease progress. Microglia comprise a unique subset of glial cells and are the principal immune cells in the central nervous system (CNS). Triggering receptor expressed on myeloid cell 2 (TREM2) is a surface receptor that, within the CNS, is exclusively expressed on microglia and plays crucial roles in microglial proliferation, migration, activation, metabolism, and phagocytosis. Genetic evidence has linked TREM2 to neurodegenerative diseases including ALS, but its function in ALS pathogenesis is largely unknown. In this review, we summarize how microglial activation, with a specific focus on TREM2 function, affects ALS progression clinically and experimentally. Understanding microglial TREM2 function will help pinpoint the molecular target for ALS treatment.
Collapse
Affiliation(s)
- Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Cinic, Rochester, MN 55905
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
20
|
NLRP3 Inflammasome Is Involved in Cocaine-Mediated Potentiation on Behavioral Changes in CX3CR1-Deficient Mice. J Pers Med 2021; 11:jpm11100963. [PMID: 34683104 PMCID: PMC8540128 DOI: 10.3390/jpm11100963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Microglia, the primary immunocompetent cells of the brain, are suggested to play a role in the development of drug addiction. Previous studies have identified the microglia-derived pro-inflammatory factor IL1β can promote the progression of cocaine addiction. Additionally, the activation status of microglia and “two-hit hypothesis” have been proposed in the field of drug addiction to explain how early life stress (ELS) could significantly increase the incidence of drug addiction in later life. However, the mechanisms underlying microglia prime and full activation and their roles in drug addiction remain greatly unexplored. Here, we employed CX3CR1-GFP mice (CX3CR1 functional deficiency, CX3CR1−/−) to explore whether primed microglia could potentiate cocaine-mediated behavioral changes and the possible underlying mechanisms. CX3CR1−/− mice revealed higher hyperlocomotion activity and conditional place preference than wild-type (WT) mice did under cocaine administration. In parallel, CX3CR1−/− mice showed higher activity of NLR family pyrin domain-containing 3 (NLRP3) inflammasome than WT mice. Interestingly, CX3CR1 deficiency itself could prime NLRP3 signaling by increasing the expression of NLPR3 and affect lysosome biogenesis under basal conditions. Taken together, our findings demonstrated that the functional status of microglia could have an impact on cocaine-mediated reward effects, and NLRP3 inflammasome activity was associated with this phenomenon. This study was consistent with the two-hit hypothesis and provided solid evidence to support the involvement of microglia in drug addiction. Targeting the NLRP3 inflammasome may represent a novel therapeutic approach for ameliorating or blocking the development of drug addiction.
Collapse
|
21
|
Subbarayan MS, Joly-Amado A, Bickford PC, Nash KR. CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacol Ther 2021; 231:107989. [PMID: 34492237 DOI: 10.1016/j.pharmthera.2021.107989] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation was initially thought of as a consequence of neurodegenerative disease pathology, but more recently it is becoming clear that it plays a significant role in the development and progression of disease. Thus, neuroinflammation is seen as a realistic and valuable therapeutic target for neurodegeneration. Neuroinflammation can be modulated by neuron-glial signaling through various soluble factors, and one such critical modulator is Fractalkine or C-X3-C Motif Chemokine Ligand 1 (CX3CL1). CX3CL1 is produced in neurons and is a unique chemokine that is initially translated as a transmembrane protein but can be proteolytically processed to generate a soluble chemokine. CX3CL1 has been shown to signal through its sole receptor CX3CR1, which is located on microglial cells within the central nervous system (CNS). Although both the membrane bound and soluble forms of CX3CL1 appear to interact with CX3CR1, they do seem to have different signaling capabilities. It is believed that the predominant function of CX3CL1 within the CNS is to reduce the proinflammatory response and many studies have shown neuroprotective effects. However, in some cases CX3CL1 appears to be promoting neurodegeneration. This review focusses on presenting a comprehensive overview of the complex nature of CX3CL1/CX3CR1 signaling in neurodegeneration and how it may present as a therapeutic in some neurodegenerative diseases but not others. The role of CX3CL1/CXCR1 is reviewed in the context of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), ischemia, retinopathies, spinal cord and neuropathic pain, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy.
Collapse
Affiliation(s)
- Meena S Subbarayan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Paula C Bickford
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA.
| |
Collapse
|
22
|
MacLean M, Juranek J, Cuddapah S, López-Díez R, Ruiz HH, Hu J, Frye L, Li H, Gugger PF, Schmidt AM. Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1 G93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. J Neuroinflammation 2021; 18:139. [PMID: 34130712 PMCID: PMC8207569 DOI: 10.1186/s12974-021-02191-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Burgeoning evidence highlights seminal roles for microglia in the pathogenesis of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). The receptor for advanced glycation end products (RAGE) binds ligands relevant to ALS that accumulate in the diseased spinal cord and RAGE has been previously implicated in the progression of ALS pathology. Methods We generated a novel mouse model to temporally delete Ager from microglia in the murine SOD1G93A model of ALS. Microglia Ager deficient SOD1G93A mice and controls were examined for changes in survival, motor function, gliosis, motor neuron numbers, and transcriptomic analyses of lumbar spinal cord. Furthermore, we examined bulk-RNA-sequencing transcriptomic analyses of human ALS cervical spinal cord. Results Transcriptomic analysis of human cervical spinal cord reveals a range of AGER expression in ALS patients, which was negatively correlated with age at disease onset and death or tracheostomy. The degree of AGER expression related to differential expression of pathways involved in extracellular matrix, lipid metabolism, and intercellular communication. Microglia display increased RAGE immunoreactivity in the spinal cords of high AGER expressing patients and in the SOD1G93A murine model of ALS vs. respective controls. We demonstrate that microglia Ager deletion at the age of symptomatic onset, day 90, in SOD1G93A mice extends survival in male but not female mice. Critically, many of the pathways identified in human ALS patients that accompanied increased AGER expression were significantly ameliorated by microglia Ager deletion in male SOD1G93A mice. Conclusions Our results indicate that microglia RAGE disrupts communications with cell types including astrocytes and neurons, intercellular communication pathways that divert microglia from a homeostatic to an inflammatory and tissue-injurious program. In totality, microglia RAGE contributes to the progression of SOD1G93A murine pathology in male mice and may be relevant in human disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02191-2.
Collapse
Affiliation(s)
- Michael MacLean
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Judyta Juranek
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.,Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Swetha Cuddapah
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Henry H Ruiz
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health and the Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Laura Frye
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Huilin Li
- Division of Biostatistics, Department of Population Health and the Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
23
|
Lee B, Shin M, Park Y, Won SY, Cho KS. Physical Exercise-Induced Myokines in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22115795. [PMID: 34071457 PMCID: PMC8198301 DOI: 10.3390/ijms22115795] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are disorders characterized by progressive degeneration of the nervous system. Currently, there is no disease-modifying treatments for most NDs. Meanwhile, numerous studies conducted on human and animal models over the past decades have showed that exercises had beneficial effects on NDs. Inter-tissue communication by myokine, a peptide produced and secreted by skeletal muscles during exercise, is thought to be an important underlying mechanism for the advantages. Here, we reviewed studies about the effects of myokines regulated by exercise on NDs and their mechanisms. Myokines could exert beneficial effects on NDs through a variety of regulatory mechanisms, including cell survival, neurogenesis, neuroinflammation, proteostasis, oxidative stress, and protein modification. Studies on exercise-induced myokines are expected to provide a novel strategy for treating NDs, for which there are no adequate treatments nowadays. To date, only a few myokines have been investigated for their effects on NDs and studies on mechanisms involved in them are in their infancy. Therefore, future studies are needed to discover more myokines and test their effects on NDs.
Collapse
Affiliation(s)
- Banseok Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
| | - Myeongcheol Shin
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
| | - Youngjae Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
| | - So-Yoon Won
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
- Korea Hemp Institute, Konkuk University, Seoul 05029, Korea
- Correspondence: (S.-Y.W.); (K.S.C.); Tel.: +82-10-3688-5474 (S.-Y.W.); Tel.: +82-2-450-3424 (K.S.C.)
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
- Korea Hemp Institute, Konkuk University, Seoul 05029, Korea
- Correspondence: (S.-Y.W.); (K.S.C.); Tel.: +82-10-3688-5474 (S.-Y.W.); Tel.: +82-2-450-3424 (K.S.C.)
| |
Collapse
|
24
|
Inflammatory-Mediated Neuron-Glia Communication Modulates ALS Pathophysiology. J Neurosci 2021; 41:1142-1144. [PMID: 33568447 DOI: 10.1523/jneurosci.1970-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/01/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
|
25
|
Das Sarma J, Burrows A, Rayman P, Hwang MH, Kundu S, Sharma N, Bergmann C, Sen GC. Ifit2 deficiency restricts microglial activation and leukocyte migration following murine coronavirus (m-CoV) CNS infection. PLoS Pathog 2020; 16:e1009034. [PMID: 33253295 PMCID: PMC7738193 DOI: 10.1371/journal.ppat.1009034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
The interferon-induced tetratricopeptide repeat protein (Ifit2) protects mice from lethal neurotropic viruses. Neurotropic coronavirus MHV-RSA59 infection of Ifit2-/- mice caused pronounced morbidity and mortality accompanied by rampant virus replication and spread throughout the brain. In spite of the higher virus load, induction of many cytokines and chemokines in the brains of infected Ifit2-/- mice were similar to that in wild-type mice. In contrast, infected Ifit2-/- mice revealed significantly impaired microglial activation as well as reduced recruitment of NK1.1 T cells and CD4 T cells to the brain, possibly contributing to the lack of viral clearance. These two deficiencies were associated with a lower level of microglial expression of CX3CR1, the receptor of the CX3CL1 (Fractalkine) chemokine, which plays a critical role in both microglial activation and leukocyte recruitment. The above results uncovered a new potential role of an interferon-induced protein in immune protection. Interferons (IFNs) are known to protect from virus dissemination and pathogenesis. Several IFN stimulated genes (ISG) regulate neuropathogenesis but the mechanisms underlying the antiviral effects are not clearly understood. IFN induced tetratricopeptide repeats (Ifit) are a class of ISGs. Among the Ifits, Ifit2 is known to play a beneficial role in restricting neurotropic viral replication. To provide better cellular insights into the protective mechanisms of Ifit2 functions, using a neurotropic coronavirus infection in Ifit2 depleted mice we report that in the absence of Ifit2, viral replication is dramatically increased and mice develop severe clinical signs and symptoms of neurological deficit. Despite the enormous viral load, Ifit2 deficient mice are impaired in microglial activation and recruitment of peripheral leukocytes into the CNS. This impaired leuocyte infiltration in Ifit2 deficient mice was also associated with reduced expression of a novel chemokine receptor CX3CR1,which is important for viral induced microglial activation and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
- * E-mail:
| | - Amy Burrows
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Patricia Rayman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Mi-Hyun Hwang
- Department of Neurosciences, Cleveland Clinic, Ohio, United States of America
| | - Soumya Kundu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Nikhil Sharma
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Cornelia Bergmann
- Department of Neurosciences, Cleveland Clinic, Ohio, United States of America
| | - Ganes C. Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| |
Collapse
|
26
|
Ebrahimi Meimand S, Rostam-Abadi Y, Rezaei N. Autism spectrum disorders and natural killer cells: a review on pathogenesis and treatment. Expert Rev Clin Immunol 2020; 17:27-35. [PMID: 33191807 DOI: 10.1080/1744666x.2020.1850273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Autism spectrum disorder (ASD), as a wide spectrum of neurodevelopmental disorders, is characterized by early-onset impairments in social-communication, repetitive behaviors, and restrictive interests.Areas covered: Although still unknown, there are some pieces of evidence suggesting altered immune function in the etiology of ASD. This review aims to summarize studies linking Natural Killer (NK) cells to ASD by searching through databases like MEDLINE and Scopus up to October 2020. NK cells play important roles in the innate immune system and immune regulation. As parts of the immune system, they interact with the neural system as well. Immune dysregulations such as autoimmunity and improper immune responses to both internal and external stimulations, especially in early developmental stages of the brain, may induce neurodevelopmental disorders. NK cells' dysfunction in children with ASD as well as their parents have been highlighted in many studies.Expert opinion: Changes in the frequency, gene expressions, cytotoxicity features, and receptors of NK cells are reported in children with ASD. Immune therapy for children with ASD with immune abnormality has shown promising results. However, further studies are needed to elucidate the exact role of NK cells in the pathogenesis of ASD providing future treatment options for these children.
Collapse
Affiliation(s)
- Sepideh Ebrahimi Meimand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasna Rostam-Abadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
27
|
Pawelec P, Ziemka-Nalecz M, Sypecka J, Zalewska T. The Impact of the CX3CL1/CX3CR1 Axis in Neurological Disorders. Cells 2020; 9:cells9102277. [PMID: 33065974 PMCID: PMC7600611 DOI: 10.3390/cells9102277] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Fractalkine (FKN, CX3CL1) is a transmembrane chemokine expressed by neurons in the central nervous system (CNS). CX3CL1 signals through its unique receptor, CX3CR1, that is expressed in microglia. Within the CNS, fractalkine acts as a regulator of microglia activation in response to brain injury or inflammation. During the last decade, there has been a growing interest in the roles that the CX3CL1/CX3CR1 signaling pathway plays in the neuropathology of a diverse array of brain disorders. However, the reported results have proven controversial, indicating that a disruption of the CX3CL1 axis induces a disease-specific microglial response that may have either beneficial or detrimental effects. Therefore, it has become clear that the understanding of neuron-to-glia signals mediated by CX3CL1/CX3CR1 at different stages of diseases could provide new insight into potential therapeutic targets. Hence, the aim of this review is to provide a summary of the literature on the emerging role of CX3CL1 in animal models of some brain disorders.
Collapse
|
28
|
Potential of the Cardiovascular Drug Levosimendan in the Management of Amyotrophic Lateral Sclerosis: An Overview of a Working Hypothesis. J Cardiovasc Pharmacol 2020; 74:389-399. [PMID: 31730560 DOI: 10.1097/fjc.0000000000000728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Levosimendan is a calcium sensitizer that promotes myocyte contractility through its calcium-dependent interaction with cardiac troponin C. Administered intravenously, it has been used for nearly 2 decades to treat acute and advanced heart failure and to support the heart function in various therapy settings characterized by low cardiac output. Effects of levosimendan on noncardiac muscle suggest a possible new application in the treatment of people with amyotrophic lateral sclerosis (ALS), a neuromuscular disorder characterized by progressive weakness, and eventual paralysis. Previous attempts to improve the muscle response in ALS patients and thereby maintain respiratory function and delay progression of disability have produced some mixed results. Continuing this line of investigation, levosimendan has been shown to enhance in vitro the contractility of the diaphragm muscle fibers of non-ALS patients and to improve in vivo diaphragm neuromuscular efficiency in healthy subjects. Possible positive effects on respiratory function in people with ALS were seen in an exploratory phase 2 study, and a phase 3 clinical trial is now underway to evaluate the potential benefit of an oral form of levosimendan on both respiratory and overall functions in patients with ALS. Here, we will review the various known pharmacologic effects of levosimendan, considering their relevance to people living with ALS.
Collapse
|
29
|
González-Prieto M, Gutiérrez IL, García-Bueno B, Caso JR, Leza JC, Ortega-Hernández A, Gómez-Garre D, Madrigal JLM. Microglial CX3CR1 production increases in Alzheimer's disease and is regulated by noradrenaline. Glia 2020; 69:73-90. [PMID: 32662924 DOI: 10.1002/glia.23885] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
The loss of noradrenergic neurons and subsequent reduction of brain noradrenaline (NA) levels are associated with the progression of Alzheimer's disease (AD). This seems to be due mainly to the ability of NA to reduce the activation of microglial cells. We previously observed that NA induces the production of the chemokine Fractalkine/CX3CL1 in neurons. The activation of microglial CX3CR1, sole receptor for CX3CL1, reduces the activation of microglia, which is known to largely contribute to the neuronal damage characteristic of AD. Therefore, alterations of CX3CR1 production in microglia could translate into the enhancement or inhibition of CX3CL1 anti-inflammatory effects. In order to determine if microglial CX3CR1 production is altered in AD and if NA can control it, CX3CR1 expression and synthesis were analyzed in 5xFAD mice and human AD brain samples. In addition, the effects of NA and its reuptake inhibitor reboxetine were analyzed in microglial cultures and mice respectively. Our results indicate that in AD CX3CR1 production is increased in the brain cortex and that reboxetine administration further increases it and enhances microglial reactivity toward amyloid beta plaques. However, direct administration of NA to primary rat microglia or human HMC3 cells inhibits CX3CR1 production, suggesting that microglia responses to NA may be altered in the absence of CX3CL1-producing neurons or other nonmicroglial external factors.
Collapse
Affiliation(s)
- Marta González-Prieto
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM), Instituto de Investigación Sanitaria Hospital, Madrid, Spain
| | - Irene L Gutiérrez
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM), Instituto de Investigación Sanitaria Hospital, Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM), Instituto de Investigación Sanitaria Hospital, Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM), Instituto de Investigación Sanitaria Hospital, Madrid, Spain
| | - Juan C Leza
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM), Instituto de Investigación Sanitaria Hospital, Madrid, Spain
| | - Adriana Ortega-Hernández
- Vascular Biology Laboratory and Flow Cytometric Unit, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.,Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Vascular Biology Laboratory and Flow Cytometric Unit, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.,Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - José L M Madrigal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM), Instituto de Investigación Sanitaria Hospital, Madrid, Spain
| |
Collapse
|
30
|
Chamera K, Trojan E, Szuster-Głuszczak M, Basta-Kaim A. The Potential Role of Dysfunctions in Neuron-Microglia Communication in the Pathogenesis of Brain Disorders. Curr Neuropharmacol 2020; 18:408-430. [PMID: 31729301 PMCID: PMC7457436 DOI: 10.2174/1570159x17666191113101629] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 11/10/2019] [Indexed: 12/18/2022] Open
Abstract
The bidirectional communication between neurons and microglia is fundamental for the proper functioning of the central nervous system (CNS). Chemokines and clusters of differentiation (CD) along with their receptors represent ligand-receptor signalling that is uniquely important for neuron - microglia communication. Among these molecules, CX3CL1 (fractalkine) and CD200 (OX-2 membrane glycoprotein) come to the fore because of their cell-type-specific localization. They are principally expressed by neurons when their receptors, CX3CR1 and CD200R, respectively, are predominantly present on the microglia, resulting in the specific axis which maintains the CNS homeostasis. Disruptions to this balance are suggested as contributors or even the basis for many neurological diseases. In this review, we discuss the roles of CX3CL1, CD200 and their receptors in both physiological and pathological processes within the CNS. We want to underline the critical involvement of these molecules in controlling neuron - microglia communication, noting that dysfunctions in their interactions constitute a key factor in severe neurological diseases, such as schizophrenia, depression and neurodegeneration-based conditions.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Magdalena Szuster-Głuszczak
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| |
Collapse
|
31
|
Španić E, Langer Horvat L, Hof PR, Šimić G. Role of Microglial Cells in Alzheimer's Disease Tau Propagation. Front Aging Neurosci 2019; 11:271. [PMID: 31636558 PMCID: PMC6787141 DOI: 10.3389/fnagi.2019.00271] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
Uncontrolled immune response in the brain contributes to the progression of all neurodegenerative disease, including Alzheimer's disease (AD). Recent investigations have documented the prion-like features of tau protein and the involvement of microglial changes with tau pathology. While it is still unclear what sequence of events is causal, it is likely that tau seeding potential and microglial contribution to tau propagation act together, and are essential for the development and progression of degenerative changes. Based on available evidence, targeting tau seeds and controlling some signaling pathways in a complex inflammation process could represent a possible new therapeutic approach for treating neurodegenerative diseases. Recent findings propose novel diagnostic assays and markers that may be used together with standard methods to complete and improve the diagnosis and classification of these diseases. In conclusion, a novel perspective on microglia-tau relations reveals new issues to investigate and imposes different approaches for developing therapeutic strategies for AD.
Collapse
Affiliation(s)
- Ena Španić
- Laboratory for Developmental Neuropathology, Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lea Langer Horvat
- Laboratory for Developmental Neuropathology, Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer’s Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Laboratory for Developmental Neuropathology, Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
32
|
New insights on the disease contribution of neuroinflammation in amyotrophic lateral sclerosis. Curr Opin Neurol 2019; 32:764-770. [DOI: 10.1097/wco.0000000000000729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Luo P, Chu SF, Zhang Z, Xia CY, Chen NH. Fractalkine/CX3CR1 is involved in the cross-talk between neuron and glia in neurological diseases. Brain Res Bull 2018; 146:12-21. [PMID: 30496784 DOI: 10.1016/j.brainresbull.2018.11.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/17/2018] [Accepted: 11/23/2018] [Indexed: 01/27/2023]
Abstract
Fractalkine (CX3C chemokine ligand 1, CX3CL1) is an essential chemokine, for regulating adhesion and chemotaxis through binding to CX3CR1, which plays a critical role in the crosstalk between glial cells and neurons by direct or indirect ways in the central nervous system (CNS). Fractalkine/CX3CR1 axis regulates microglial activation and function, neuronal survival and synaptic function by controlling the release of inflammatory cytokines and synaptic plasticity in the course of the neurological disease. The multiple functions of fractalkine/CX3CR1 make it exert neuroprotective or neurotoxic effects, which determines the pathogenesis. However, the role of fractalkine/CX3CR1 in the CNS remains controversial. Whether it can be used as a therapeutic target for neurological diseases needs to be further investigated. In this review, we summarize the studies highlighting fractalkine/CX3CR1-mediated effects and discuss the potential neurotoxic and neuroprotective actions of fractalkine/CX3CR1 in brain injury for providing useful insights into the potential applications of fractalkine/CX3CR1 in neurological diseases.
Collapse
Affiliation(s)
- Piao Luo
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Nai-Hong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|