1
|
Lei K, Wu R, Wang J, Lei X, Zhou E, Fan R, Gong L. Sirtuins as Potential Targets for Neuroprotection: Mechanisms of Early Brain Injury Induced by Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:1017-1034. [PMID: 37779164 PMCID: PMC11522081 DOI: 10.1007/s12975-023-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a prevalent cerebrovascular disease with significant global mortality and morbidity rates. Despite advancements in pharmacological and surgical approaches, the quality of life for SAH survivors has not shown substantial improvement. Traditionally, vasospasm has been considered a primary contributor to death and disability following SAH, but anti-vasospastic therapies have not demonstrated significant benefits for SAH patients' prognosis. Emerging studies suggest that early brain injury (EBI) may play a crucial role in influencing SAH prognosis. Sirtuins (SIRTs), a group of NAD + -dependent deacylases comprising seven mammalian family members (SIRT1 to SIRT7), have been found to be involved in neural tissue development, plasticity, and aging. They also exhibit vital functions in various central nervous system (CNS) processes, including cognition, pain perception, mood, behavior, sleep, and circadian rhythms. Extensive research has uncovered the multifaceted roles of SIRTs in CNS disorders, offering insights into potential markers for pathological processes and promising therapeutic targets (such as SIRT1 activators and SIRT2 inhibitors). In this article, we provide an overview of recent research progress on the application of SIRTs in subarachnoid hemorrhage and explore their underlying mechanisms of action.
Collapse
Affiliation(s)
- Kunqian Lei
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Rui Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Jin Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Xianze Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Erxiong Zhou
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Ruiming Fan
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| | - Lei Gong
- Department of Pharmacy, Institute of Medical Biotechnology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| |
Collapse
|
2
|
Wang M, Chen X, Li S, Wang L, Tang H, Pu Y, Zhang D, Fang B, Bai X. A crosstalk between autophagy and apoptosis in intracerebral hemorrhage. Front Cell Neurosci 2024; 18:1445919. [PMID: 39650799 PMCID: PMC11622039 DOI: 10.3389/fncel.2024.1445919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe condition that devastatingly harms human health and poses a financial burden on families and society. Bcl-2 Associated X-protein (Bax) and B-cell lymphoma 2 (Bcl-2) are two classic apoptotic markers post-ICH. Beclin 1 offers a competitive architecture with that of Bax, both playing a vital role in autophagy. However, the interaction between Beclin 1 and Bcl-2/Bax has not been conjunctively analyzed. This review aims to examine the crosstalk between autophagy and apoptosis in ICH by focusing on the interaction and balance of Beclin 1, Bax, and Bcl-2. We also explored the therapeutic potential of Western conventional medicine and traditional Chinese medicine (TCM) in ICH via controlling the crosstalk between autophagy and apoptosis.
Collapse
Affiliation(s)
- Moyan Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Shuangyang Li
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Lingxue Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yuting Pu
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Dechou Zhang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Bangjiang Fang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Emergency, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Bai
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Wei H, Wang X, Zhong H, Kong X, Zhu J, Li B. Artesunate improves learning and memory impairment in rats with vascular cognitive impairment by down-regulating the level of autophagy in cerebral cortex neurons. Heliyon 2024; 10:e33068. [PMID: 38948049 PMCID: PMC11211894 DOI: 10.1016/j.heliyon.2024.e33068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024] Open
Abstract
Background Vascular cognitive impairment (VCI) is the second leading cause of dementia. Cognitive impairment is a common consequence of VCI. However, there is no effective treatment for VCI and the underlying mechanism of its pathogenesis remains unclear. This study to investigate whether artesunate (ART) can improve the learning and memory function in rats with VCI by down-regulating he level of autophagy in cerebral cortex neurons. Methods The models for VCI were the rat bilateral common carotid artery occlusion (BACCO), which were randomized into three groups including the sham operation group (Sham), model + vehicle group (Model) and model + ART group (ART). Then the animal behaviors were recorded, as well as staining the results of cortical neurons. Western blot was performed to determine the protein expressions of LC3BⅡ/Ⅰ, p-AMPK, p-mTOR, and Beclin-1. Results Behavioral outcomes and the protein expressions in Model group were supposedly affected by the induction of autophagy in cerebral cortex neurons. Compared to the Model group, ART improved memory impairment in VCI rats. And the expression of LC3BⅡ/Ⅰ, p-AMPK/AMPK, Beclin-1 is significant decreased in the ART group, while significant increases of p-mTOR/mTOR were showed. These results suggest that ART improved learning and memory impairment in VCI rats by down-regulating the level of autophagy in cerebral cortex neurons. Conclusion The results suggest that autophagy occurs in cerebral cortex neurons in rats with VCI. It is speculated that ART can improve learning and memory impairment in VCI rats by down-regulating the level of autophagy in cerebral cortex neurons.
Collapse
Affiliation(s)
- Honqiao Wei
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530022, China
| | - Xiaokun Wang
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Hequan Zhong
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Xiangyu Kong
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Jie Zhu
- Department of Rehabilitation, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Bing Li
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| |
Collapse
|
4
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
5
|
Liu Y, Luo Y, Zhang A, Wang Z, Wang X, Yu Q, Zhang Z, Zhu Z, Wang K, Chen L, Nie X, Zhang JH, Zhang J, Fang Y, Su Z, Chen S. Long Non-coding RNA H19 Promotes NLRP3-Mediated Pyroptosis After Subarachnoid Hemorrhage in Rats. Transl Stroke Res 2023; 14:987-1001. [PMID: 36418735 DOI: 10.1007/s12975-022-01104-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
NLRP3 inflammasomes have been reported to be an essential mediator in the inflammatory response during early brain injury (EBI) following subarachnoid hemorrhage (SAH). Recent studies have indicated that NLRP3 inflammasome-mediated pyroptosis and long non-coding RNA (lncRNA) H19 can participate in the inflammatory response. However, the roles and functions of lncRNA H19 in NLRP3 inflammasome-mediated pyroptosis during EBI after SAH are unknown and need to be further elucidated. NLRP3 inflammasome proteins were significantly elevated in CSF of human with SAH induced EBI and presented a positive correlation with severity. In ipsilateral hemisphere cortex of rats, these NLRP3 inflammasome proteins were also increased and accompanied with upregulation of H19, and both of NLRP3 and H19 were peaked at 24 h after SAH. However, knockdown of H19 markedly decreased the expression of NLRP3 inflammasome proteins at 24 h after SAH in rats and also ameliorated EBI, showing improved neurobehavioral deficits, cerebral edema, and neuronal injury. Moreover, knocking down of H19 downregulated the expression of Gasdermin D (GSDMD) in microglia in SAH rats. Similarly, knockdown of H19 also alleviated OxyHb-induced pyroptosis and NLRP3-mediated inflammasomes activation in primary microglia. Lastly, H19 competitively sponged with rno-miR-138-5p and then upregulated NLRP3 expression in the post-SAH inflammatory response. lncRNA H19 promotes NLRP3-mediated pyroptosis by functioning as rno-miR-138-5p sponge in rats during EBI after SAH, which might provide a potential therapeutic target for post-SAH inflammation regulation.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yujie Luo
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong, China
| | - Anke Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zefeng Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Qian Yu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zeyu Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zhoule Zhu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Kaikai Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohu Nie
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Liu M, Chen Z, Zhang H, Cai Z, Liu T, Zhang M, Wu X, Ai F, Liu G, Zeng C, Shen J. Urolithin A alleviates early brain injury after subarachnoid hemorrhage by regulating the AMPK/mTOR pathway-mediated autophagy. Neurochirurgie 2023; 69:101480. [PMID: 37598622 DOI: 10.1016/j.neuchi.2023.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE Unfavorable outcomes in patients with subarachnoid hemorrhage (SAH) are mainly attributed to early brain injury (EBI). Reduction of neuronal death can improve the prognosis in SAH patients. Autophagy and apoptosis are critical players in neuronal death. Urolithin A (UA) is a natural compound produced by gut bacteria from ingested ellagitannins and ellagic acid. Here, we detected the role of UA in EBI post-SAH. METHODS We established an animal model of SAH in rats by endovascular perforation, with administration of UA, 3-methyladenine (3-MA) and Compound C. SAH grading, neurological function, brain water content, western blotting analysis of levels of proteins related to apoptosis, autophagy and pathways, blood-brain barrier (BBB) integrity, TUNEL staining, and immunofluorescence staining of LC3 were evaluated at 24h after SAH. RESULTS SAH induction led to neurological dysfunctions, BBB disruption, and cerebral edema at 24h post-SAH in rats, which were relieved by UA. Additionally, cortical neuronal apoptosis in SAH rats was also attenuated by UA. Moreover, UA restored autophagy level in SAH rats. Mechanistically, UA activated the AMPK/mTOR pathway. Furthermore, inhibition of autophagy and AMPK limited UA-mediated protection against EBI post-SAH CONCLUSION: UA alleviates neurological deficits, BBB permeability, and cerebral edema by inhibiting cortical neuronal apoptosis through regulating the AMPK/mTOR pathway-dependent autophagy in rats following SAH.
Collapse
Affiliation(s)
- Meiqiu Liu
- Department of Neurosurgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352000, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Huan Zhang
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Zhiji Cai
- Department of Neurosurgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352000, China
| | - Tiancheng Liu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Mengli Zhang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xian Wu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ganzhe Liu
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Chao Zeng
- Department of Neurosurgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352000, China.
| | - Jiancheng Shen
- Department of Neurosurgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352000, China.
| |
Collapse
|
7
|
Chu D, Li X, Qu X, Diwan D, Warner DS, Zipfel GJ, Sheng H. SIRT1 Activation Promotes Long-Term Functional Recovery After Subarachnoid Hemorrhage in Rats. Neurocrit Care 2023; 38:622-632. [PMID: 36224490 PMCID: PMC11531602 DOI: 10.1007/s12028-022-01614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND An increase in sirtuin 1 (SIRT1) reportedly attenuates early brain injury, delayed cerebral ischemia, and short-term neurologic deficits in rodent models of subarachnoid hemorrhage (SAH). This study investigates the effect of resveratrol, a SIRT1 activator, on long-term functional recovery in a clinically relevant rat model of SAH. METHODS Thirty male Wistar rats were subjected to fresh arterial blood injection into the prechiasmatic space and randomized to receive 7 days of intraperitoneal resveratrol (20 mg/kg) or vehicle injections. Body weight and rotarod performance were measured on days 0, 3, 7, and 34 post SAH. The neurologic score was assessed 7 and 34 days post SAH. Morris water maze performance was evaluated 29-33 days post SAH. Brain SIRT1 activity and CA1 neuronal survival were also assessed. RESULTS Blood pressure rapidly increased in all SAH rats, and no between-group differences in blood pressure, blood gases, or glucose were detected. SAH induced weight loss during the first 7 days, which gradually recovered in both groups. Neurologic score and rotarod performance were significantly improved after resveratrol treatment at 34 days post SAH (p = 0.01 and 0.04, respectively). Latency to find the Morris water maze hidden platform was shortened (p = 0.02). In the resveratrol group, more CA1 neurons survived following SAH (p = 0.1). An increase in brain SIRT1 activity was confirmed in the resveratrol group (p < 0.05). CONCLUSIONS Treatment with resveratrol for 1 week significantly improved the neurologic score, rotarod performance, and latency to find the Morris water maze hidden platform 34 days post SAH. These findings indicate that SIRT1 activation warrants further investigation as a mechanistic target for SAH therapy.
Collapse
Affiliation(s)
- Dongmei Chu
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Pediatrics, The Fifth Central Hospital of Tianjin, Tanggu District, Tianjin, China
| | - Xuan Li
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xingguang Qu
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Intensive Care Unit, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - David S Warner
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA.
| |
Collapse
|
8
|
Zhang Z, Liu C, Zhou X, Zhang X. The Critical Role of Sirt1 in Subarachnoid Hemorrhages: Mechanism and Therapeutic Considerations. Brain Sci 2023; 13:brainsci13040674. [PMID: 37190639 DOI: 10.3390/brainsci13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The subarachnoid hemorrhage (SAH) is an important cause of death and long-term disability worldwide. As a nicotinamide adenine dinucleotide-dependent deacetylase, silent information regulator 1 (Sirt1) is a multipotent molecule involved in many pathophysiological processes. A growing number of studies have demonstrated that Sirt1 activation may exert positive effects on SAHs by regulating inflammation, oxidative stress, apoptosis, autophagy, and ferroptosis. Thus, Sirt1 agonists may serve as potential therapeutic drugs for SAHs. In this review, we summarized the current state of our knowledge on the relationship between Sirt1 and SAHs and provided an updated overview of the downstream molecules of Sirt1 in SAHs.
Collapse
Affiliation(s)
- Zhonghua Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Cong Liu
- Department of Ophthalmology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
9
|
Jin T, Zhang Y, Botchway BOA, Huang M, Lu Q, Liu X. Quercetin activates the Sestrin2/AMPK/SIRT1 axis to improve amyotrophic lateral sclerosis. Biomed Pharmacother 2023; 161:114515. [PMID: 36913894 DOI: 10.1016/j.biopha.2023.114515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease with poor prognosis. The intricacies surrounding its pathophysiology could partly account for the lack of effective treatment for ALS. Sestrin2 has been reported to improve metabolic, cardiovascular and neurodegenerative diseases, and is involved in the direct and indirect activation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/silent information regulator 1 (SIRT1) axis. Quercetin, as a phytochemical, has considerable biological activities, such as anti-oxidation, anti-inflammation, anti-tumorigenicity, and neuroprotection. Interestingly, quercetin can activate the AMPK/SIRT1 signaling pathway to reduce endoplasmic reticulum stress, and alleviate apoptosis and inflammation. This report examines the molecular relationship between Sestrin2 and AMPK/SIRT1 axis, as well as the main biological functions and research progress of quercetin, together with the correlation between quercetin and Sestrin2/AMPK/SIRT1 axis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Bupa Cromwell Hospital, London, UK
| | - Min Huang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
10
|
Zhou Z, Liu Z, Zhang C, Zhang W, Zhang C, Chen T, Wang Y. Mild hypothermia alleviates early brain injury after subarachnoid hemorrhage via suppressing pyroptosis through AMPK/NLRP3 inflammasome pathway in rats. Brain Res Bull 2023; 193:72-83. [PMID: 36535306 DOI: 10.1016/j.brainresbull.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
As a subtype of stroke, subarachnoid hemorrhage (SAH) has a notoriously high rate of disability and mortality owing to the lack of effective intervention. Early brain injury (EBI) is the main factor responsible for the dismal prognosis of SAH patients. The current study intends to explore the molecular mechanism underlying the effect of MH on EBI after SAH from a novel perspective of pyroptosis, a highly specific inflammatory programmed cell death, in the SAH rat model. Sprague-Dawley (SD) rats were divided into different groups in accordance with various treatments. In the treatment group, the rats underwent mild hypothermia for 4 h after modeling; in the inhibitor group, Compound C (an inhibitor of AMPK) was administered intravenous injections (i.v.) 30 min before modeling. Neurological score, neuronal death, brain water content, inflammatory reaction, and expression levels of pyroptosis-related proteins were evaluated in the rats. Our results indicate that the MH therapy significantly increased the neurological score and assuaged brain edema, neuronal injury, and inflammatory reaction induced by SAH. Meanwhile, MH therapy upregulated the level of AMPK phosphorylation whereas downregulated the protein expressions of NLRP3, ASC, cleaved caspase-1, GSDMD, IL-1β, and IL-18. The reversed effect of MH therapy by Compound C concretely indicated that MH therapy inhibited pyroptosis through an AMPK-dependent pathway. Our study also found that MH therapy potently curbed the increasing trend of brain temperature (BT), rectal temperature (RT), and ICP after SAH. Taken together, our data indicate that the neuroprotective effects of MH therapy were manifested by inhibiting pyroptosis via the AMPK/NLRP3 inflammasome pathway, which may serve as a promising therapy for the intervention of SAH.
Collapse
Affiliation(s)
- Zhaopeng Zhou
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Zhuanghua Liu
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Chenxu Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Wang Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Chunlei Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China.
| | - Yuhai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China.
| |
Collapse
|
11
|
Li B, Li W, Zheng M, Wang Y, Diao Y, Mou X, Liu J. Corilagin alleviates intestinal ischemia/reperfusion injury by relieving oxidative stress and apoptosis via AMPK/Sirt1-autophagy pathway. Exp Biol Med (Maywood) 2023; 248:317-326. [PMID: 36680375 PMCID: PMC10159520 DOI: 10.1177/15353702221147560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Intestinal ischemia/reperfusion (II/R) injury is a common pathological process with high clinical morbidity and mortality. Autophagy plays an important role in the pathological development of II/R. Corilagin (CA) is a natural ellagitannin with various pharmacological effects such as autophagy regulation, antioxidant, and antiapoptosis. However, whether CA alleviates II/R injury is still unclear. In this study, we had found that CA significantly attenuated II/R induced intestinal tissue pathological damage, oxidative stress, and cell apoptosis in rats. Further studies showed that CA significantly promoted AMPK phosphorylation and sirt1 expression, and thus activated autophagy by upregulating protein expression of autophagy-related proteins Beclin1 and LC3II and promoting SQSTM1/P62 degradation both in vivo and in vitro. Inhibition of AMPK phosphorylation by its inhibitor compound C(CC) significantly abolished CA-mediated autophagy activation and the relievable effects on oxidative stress and apoptosis in vitro, suggesting the excellent protective activity of CA against II/R injury via AMPK/Sirt1-autophagy pathway. These findings confirmed the potent effects of CA against II/R injury, and provided novel insights into the mechanisms of the compound as a potential candidate for the treatment of II/R.
Collapse
Affiliation(s)
- Bin Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, China
| | - Wenlian Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Meiling Zheng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, China
| | - Xiaojuan Mou
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, China
| |
Collapse
|
12
|
Chen J, Li M, Liu Z, Wang Y, Xiong K. Molecular mechanisms of neuronal death in brain injury after subarachnoid hemorrhage. Front Cell Neurosci 2022; 16:1025708. [PMID: 36582214 PMCID: PMC9793715 DOI: 10.3389/fncel.2022.1025708] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Subarachnoid haemorrhage (SAH) is a common cerebrovascular disease with high disability and mortality rates worldwide. The pathophysiological mechanisms involved in an aneurysm rupture in SAH are complex and can be divided into early brain injury and delayed brain injury. The initial mechanical insult results in brain tissue and vascular disruption with hemorrhages and neuronal necrosis. Following this, the secondary injury results in diffused cerebral damage in the peri-core area. However, the molecular mechanisms of neuronal death following an aneurysmal SAH are complex and currently unclear. Furthermore, multiple cell death pathways are stimulated during the pathogenesis of brain damage. Notably, particular attention should be devoted to necrosis, apoptosis, autophagy, necroptosis, pyroptosis and ferroptosis. Thus, this review discussed the mechanism of neuronal death and its influence on brain injury after SAH.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China,Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhuanghua Liu
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Yuhai Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China,*Correspondence: Yuhai Wang,
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China,Kun Xiong,
| |
Collapse
|
13
|
Ibrahim WW, Kamel AS, Wahid A, Abdelkader NF. Dapagliflozin as an autophagic enhancer via LKB1/AMPK/SIRT1 pathway in ovariectomized/D-galactose Alzheimer's rat model. Inflammopharmacology 2022; 30:2505-2520. [PMID: 35364737 PMCID: PMC9700568 DOI: 10.1007/s10787-022-00973-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/05/2022] [Indexed: 12/17/2022]
Abstract
Autophagy and mitochondrial deficits are characteristics of early phase of Alzheimer's disease (AD). Sodium-glucose cotransporter-2 inhibitors have been nominated as a promising class against AD hallmarks. However, there are no available data yet to discuss the impact of gliflozins on autophagic pathways in AD. Peripherally, dapagliflozin's (DAPA) effect is mostly owed to autophagic signals. Thus, the goal of this study is to screen the power of DAPA centrally on LKB1/AMPK/SIRT1/mTOR signaling in the ovariectomized/D-galactose (OVX/D-Gal) rat model. Animals were arbitrarily distributed between 5 groups; the first group undergone sham operation, while remaining groups undergone OVX followed by D-Gal (150 mg/kg/day; i.p.) for 70 days. After 6 weeks, the third, fourth, and fifth groups received DAPA (1 mg/kg/day; p.o.); concomitantly with the AMPK inhibitor dorsomorphin (DORSO, 25 µg/rat, i.v.) in the fourth group and the SIRT1 inhibitor EX-527 (10 µg/rat, i.v.) in the fifth group. DAPA mitigated cognitive deficits of OVX/D-Gal rats, as mirrored in neurobehavioral task with hippocampal histopathological examination and immunohistochemical aggregates of p-Tau. The neuroprotective effect of DAPA was manifested by elevation of energy sensors; AMP/ATP ratio and LKB1/AMPK protein expressions along with autophagic markers; SIRT1, Beclin1, and LC3B expressions. Downstream the latter, DAPA boosted mTOR and mitochondrial function; TFAM, in contrary lessened BACE1. Herein, DORSO or EX-527 co-administration prohibited DAPA's actions where DORSO elucidated DAPA's direct effect on LKB1 while EX-527 mirrored its indirect effect on SIRT1. Therefore, DAPA implied its anti-AD effect, at least in part, via boosting hippocampal LKB1/AMPK/SIRT1/mTOR signaling in OVX/D-Gal rat model.
Collapse
Affiliation(s)
- Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
14
|
Abdul Khaliq H, Alhouayek M, Quetin-Leclercq J, Muccioli GG. 5'AMP-activated protein kinase: an emerging target of phytochemicals to treat chronic inflammatory diseases. Crit Rev Food Sci Nutr 2022; 64:4763-4788. [PMID: 36450301 DOI: 10.1080/10408398.2022.2145264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Inflammation is a defensive response of the organism to traumatic, infectious, toxic, ischemic, and autoimmune injury. Inflammatory mediators are released to effectively eliminate the inflammatory trigger and restore homeostasis. However, failure of these processes can lead to chronic inflammatory conditions and diseases such as inflammatory bowel diseases, rheumatoid arthritis, inflammatory lung diseases, atherosclerosis, and neurodegenerative diseases. The cure of chronic inflammatory diseases remains challenging as current therapies have various limitations, such as pronounced side effects, progressive loss of efficacy, and high cost especially for biologics. In this context, phytochemicals (such as alkaloids, flavonoids, lignans, phenolic acids, saponins, terpenoids, and other classes) are considered as an interesting alternative approach. Among the numerous targets of phytochemicals, AMP-activated protein kinase (AMPK) can be considered as an interesting target in the context of inflammation. AMPK regulates inflammatory response by inhibiting inflammatory pathways (NF-κB, JAK/STAT, and MAPK) and regulating several other processes of the inflammatory response (oxidative stress, autophagy, and apoptosis). In this review, we summarize and discuss the studies focusing on phytochemicals that showed beneficial effects by blocking different inflammatory pathways implicating AMPK activation in chronic inflammatory disease models. We also highlight elements to consider when investigating AMPK in the context of phytochemicals.
Collapse
Affiliation(s)
- Hafiz Abdul Khaliq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
15
|
Jin J, Duan J, Du L, Xing W, Peng X, Zhao Q. Inflammation and immune cell abnormalities in intracranial aneurysm subarachnoid hemorrhage (SAH): Relevant signaling pathways and therapeutic strategies. Front Immunol 2022; 13:1027756. [PMID: 36505409 PMCID: PMC9727248 DOI: 10.3389/fimmu.2022.1027756] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Intracranial aneurysm subarachnoid hemorrhage (SAH) is a cerebrovascular disorder associated with high overall mortality. Currently, the underlying mechanisms of pathological reaction after aneurysm rupture are still unclear, especially in the immune microenvironment, inflammation, and relevant signaling pathways. SAH-induced immune cell population alteration, immune inflammatory signaling pathway activation, and active substance generation are associated with pro-inflammatory cytokines, immunosuppression, and brain injury. Crosstalk between immune disorders and hyperactivation of inflammatory signals aggravated the devastating consequences of brain injury and cerebral vasospasm and increased the risk of infection. In this review, we discussed the role of inflammation and immune cell responses in the occurrence and development of aneurysm SAH, as well as the most relevant immune inflammatory signaling pathways [PI3K/Akt, extracellular signal-regulated kinase (ERK), hypoxia-inducible factor-1α (HIF-1α), STAT, SIRT, mammalian target of rapamycin (mTOR), NLRP3, TLR4/nuclear factor-κB (NF-κB), and Keap1/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/ARE cascades] and biomarkers in aneurysm SAH. In addition, we also summarized potential therapeutic drugs targeting the aneurysm SAH immune inflammatory responses, such as nimodipine, dexmedetomidine (DEX), fingolimod, and genomic variation-related aneurysm prophylactic agent sunitinib. The intervention of immune inflammatory responses and immune microenvironment significantly reduces the secondary brain injury, thereby improving the prognosis of patients admitted to SAH. Future studies should focus on exploring potential immune inflammatory mechanisms and developing additional therapeutic strategies for precise aneurysm SAH immune inflammatory regulation and genomic variants associated with aneurysm formation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Leiya Du
- 4Department of Oncology, The Second People Hospital of Yibin, Yibin, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| |
Collapse
|
16
|
Tang Y, Xie J, Chen X, Sun L, Xu L, Chen X. A novel link between silent information regulator 1 and autophagy in cerebral ischemia-reperfusion. Front Neurosci 2022; 16:1040182. [PMID: 36507335 PMCID: PMC9726917 DOI: 10.3389/fnins.2022.1040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of death and disability worldwide. Although revascularization via reperfusion combined with advanced anticoagulant therapy is currently a gold standard treatment for patients, the reperfusion itself also results in a serious dysfunction termed cerebral ischemia-reperfusion (I/R) injury. Silent information regulator 1 (sirtuin 1, SIRT1), is a classic NAD+-dependent deacetylase, which has been proposed as an important mediator in the alleviation of cerebral ischemia through modulating multiple physiological processes, including apoptosis, inflammation, DNA repair, oxidative stress, and autophagy. Recent growing evidence suggests that SIRT1-mediated autophagy plays a key role in the pathophysiological process of cerebral I/R injury. SIRT1 could both activate and inhibit the autophagy process by mediating different autophagy pathways, such as the SIRT1-FOXOs pathway, SIRT1-AMPK pathway, and SIRT1-p53 pathway. However, the autophagic roles of SIRT1 in cerebral I/R injury have not been systematically summarized. Here, in this review, we will first introduce the molecular mechanisms and effects of SIRT1 in cerebral ischemia and I/R injury. Next, we will discuss the involvement of autophagy in the pathogenesis of cerebral I/R injury. Finally, we will summarize the latest advances in the interaction between SIRT1 and autophagy in cerebral I/R injury. A good understanding of these relationships would serve to consolidate a framework of mechanisms underlying SIRT1's neuroprotective effects and provides evidence for the development of drugs targeting SIRT1.
Collapse
|
17
|
Liu C, Zhang R, Yang L, Ji T, Zhu C, Liu B, Zhang H, Xu C, Zhang N, Huang S, Chen L. Neuroprotection of resveratrol against cadmium-poisoning acts through dual inhibition of mTORC1/2 signaling. Neuropharmacology 2022; 219:109236. [PMID: 36049535 PMCID: PMC9524506 DOI: 10.1016/j.neuropharm.2022.109236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Resveratrol is a natural polyphenol with neuroprotective function. The underlying mechanism is not well understood. Our previous studies have identified that resveratrol antagonizes cadmium (Cd) neurotoxicity via targeting PP2A/PP5-mediated Erk1/2 and JNK pathways. Here we show that resveratrol protected against Cd-poisoning also by blocking Cd-induced activation of mTORC1 and mTORC2 pathways in PC12 cells and murine primary neurons. Co-treatment with inhibitors of mTORC1 (rapamycin), mTORC1/2 (PP242), Erk1/2 (U0126) and/or JNK (SP600125), knockdown of mTOR, or disruption of mTORC1 and/or mTORC2 by silencing raptor, rictor or raptor/rictor, respectively, markedly potentiated the inhibitory effects of resveratrol on Cd-induced phosphorylation of S6K1/4E-BP1 (mTORC1 substrates), Akt (mTORC2 substrate), Erk1/2 and/or JNK/c-Jun, cleavage of caspase-3 and cell death in PC12 cells and/or primary neurons. Knockdown of S6K1 or 4E-BP1, or ectopic expression of constitutively hypophosphorylated 4E-BP1 (4E-BP1-5A) reinforced the resveratrol's inhibition on Cd-evoked cell death, whereas ectopic expression of constitutively active S6K1 or knockdown of 4E-BP1 attenuated the resveratrol's inhibition on Cd-induced cell death. Co-treatment with Akt inhibitor or overexpression of dominant negative Akt (dn-Akt) strengthened the resveratrol's suppression on Cd-induced ROS, Erk1/2 activation and apoptosis, whereas overexpression of constitutively active Akt (myr-Akt) conferred high resistance to the resveratrol's inhibitory effects in the neuronal cells. Taken together, the results indicate that resveratrol attenuates Cd-induced neuronal apoptosis partly through inhibition of mTORC1/2 pathways. Our studies highlight that resveratrol can be exploited for the prevention of Cd toxicity related to neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunxiao Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China; Department of Medical Technology, Suzhou Vocational Health College, Suzhou, 215009, PR China
| | - Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China; College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Liu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tong Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Cuilan Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Beibei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Hai Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Chong Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Nana Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Shreveport, LA, 71130-3932, USA; Department of Hematology and Oncology, Shreveport, LA, 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
18
|
Song B, Zhou W. Amarogentin has protective effects against sepsis-induced brain injury via modulating the AMPK/SIRT1/NF-κB pathway. Brain Res Bull 2022; 189:44-56. [PMID: 35985610 DOI: 10.1016/j.brainresbull.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/21/2022] [Accepted: 08/14/2022] [Indexed: 02/05/2023]
Abstract
Amarogentin (AMA), a secoiridoid glycoside that is mainly derived from SwertiaandGentiana roots, has been confirmed to exhibit antioxidative, tumor-suppressive and anti-diabetic properties. This research intends to investigate the protective effect of AMA against sepsis-induced brain injury and its mechanism. NSC-34 and HT22 cells were treated with lipopolysaccharide (LPS) to induce an in-vitro sepsis model and then treated with varying concentrations (1, 5, 10 µM) of AMA. Cell proliferation and apoptosis were evaluated. The intensity of inflammation and oxidative stress were assessed by different methods. The AMPK/SIRT1/NF-κB pathway expression was determined by WB. An in-vitro sepsis model was set up with cecal ligation and puncture (CLP) in adult C57/BL6J mice, and different concentrations (25, 50, 100 mg/kg) of AMA were applied for treatment. Neurological function was evaluated using the modified neurological severity scores (mNSS), and the brain tissue damage was measured using hematoxylin-eosin (H&E) staining and Nissl staining. Tissue apoptosis was tested using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Then, the AMPK inhibitor Compound C (CC) was administered to confirm AMA-mediated mechanism. Our finding illustrated that AMA mitigated LPS-induced neuronal damage, inflammation and oxidative stress, activated the AMPK/SIRT1 pathway and choked NF-κB phosphorylation. Furthermore, AMA improved neurological functions of sepsis mice by reliving neuroinflammation and oxidative stress. Inhibition of AMPK attenuated the protective effect of AMA on neurons or the mice's brain tissues. In conclusion, AMA protected against sepsis-induced brain injury by modulating the AMPK/SIRT1/NF-κB pathway.
Collapse
Affiliation(s)
- Bihui Song
- Emergency Department, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, China
| | - Wenhao Zhou
- Emergency Department, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, China.
| |
Collapse
|
19
|
Nantacharoen W, Baek SJ, Plaingam W, Charoenkiatkul S, Tencomnao T, Sukprasansap M. Cleistocalyx nervosum var. paniala Berry Promotes Antioxidant Response and Suppresses Glutamate-Induced Cell Death via SIRT1/Nrf2 Survival Pathway in Hippocampal HT22 Neuronal Cells. Molecules 2022; 27:molecules27185813. [PMID: 36144547 PMCID: PMC9503107 DOI: 10.3390/molecules27185813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Excessive glutamate neurotransmitters result in oxidative neurotoxicity, similar to neurodegeneration. An indigenous berry of Thailand, Cleistocalyx nervosum var. paniala (CNP), has been recognized for its robust antioxidants. We investigated the effects and mechanisms of CNP fruit extracts on antioxidant-related survival pathways against glutamate-induced neurotoxicity. The extract showed strong antioxidant capability and had high total phenolic and flavonoid contents, particularly resveratrol. Next, the protective effects of the CNP extract or resveratrol on the glutamate-induced neurotoxicity were examined in HT22 hippocampal cells. Our investigation showed that the pretreatment of cells with the CNP extract or resveratrol attenuated glutamate-induced neuronal death via suppression of apoptosis cascade by inhibiting the levels of cleaved- and pro-caspase-3 proteins. The CNP extract and resveratrol suppressed the intracellular ROS by increasing the mRNA expression level of antioxidant enzymes (SODs, GPx1, and CAT). We found that this extract and resveratrol significantly increased SIRT1 expression as a survival-related protein. Moreover, they also promoted the activity of the Nrf2 protein translocation into the nucleus and could bind to the promoter containing the antioxidant response element, inducing the expression of the downstream GPx1-antioxidant protein. Our data illustrate that the CNP extract and resveratrol inhibit apoptotic neuronal death via glutamate-induced oxidative neurotoxicity in HT22 cells through the activation of the SIRT1/Nrf2 survival mechanism.
Collapse
Affiliation(s)
- Wanchanok Nantacharoen
- Master Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Seung Joon Baek
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| | - Waluga Plaingam
- College of Oriental Medicine, Rangsit University, Pathum Thani 12000, Thailand
| | - Somsri Charoenkiatkul
- Institute of Nutrition, Salaya Campus, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura) Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (M.S.); Tel.: +66-22181533 (T.T.); +66-28002380 (M.S.)
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Salaya Campus, Mahidol University, Nakhon Pathom 73170, Thailand
- Correspondence: (T.T.); (M.S.); Tel.: +66-22181533 (T.T.); +66-28002380 (M.S.)
| |
Collapse
|
20
|
Tan J, Song R, Luo S, Fu W, Ma Y, Zheng L, He Z. Efficacy of Resveratrol in Experimental Subarachnoid Hemorrhage Animal Models: A Stratified Meta-Analysis. Front Pharmacol 2022; 13:905208. [PMID: 35847035 PMCID: PMC9277348 DOI: 10.3389/fphar.2022.905208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a serious neurosurgical emergency with extremely high morbidity and mortality rates. Resveratrol (RES), a natural polyphenolic phytoalexin, is broadly presented in a wide variety of plants. Previous research had reasonably revealed its neuroprotective effects on experimental SAH animal models to some extent. But the results were more controversial. Therefore, we conducted a meta-analysis to evaluate the evidence on the effectiveness of RES in improving outcomes in SAH animal models. Methods: A systematic literature review was conducted in PubMed, EMBASE, and Web of Science databases to incorporate experimental control studies on the efficacy of RES on SAH models into our research. The standardized mean difference (SMD) was used to compare the brain water content (BWC) and neurological score (NS) between the treatment and control groups. Results: Overall, 16 articles published from 2014 to 2022 met the inclusion criteria. The meta-analysis of BWC showed a significant difference in favor of RES treatment (SMD: -1.026; 95% CI: -1.380, -0.672; p = 0.000) with significant heterogeneity (Q = 84.97; I2 = 60.0%; p = 0.000). Further stratified analysis was performed for methodological differences, especially dosage, time of treatments, and time-point of outcome assessment. The meta-analysis of NS showed a significant difference in favor of RES treatment (SMD: 1.342; 95% CI: 1.089, 1.595; p = 0.000) with low heterogeneity (Q = 25.58; I2 = 17.9%; p = 0.223). Conclusion: Generally, RES treatment showed an improvement in both pathological and behavioral outcomes in SAH animal models. The results of this study may provide a reference for preclinical and clinical studies in the future to some extent, with great significance for human health.
Collapse
Affiliation(s)
- Jiahe Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Song
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyue Luo
- Clinical Medicine, The Second Clinical College of Chongqing Medical University, Chongqing, China
| | - Wenqiao Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinrui Ma
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lian Zheng
- Department of Neurosurgery, The Fifth People's Hospital of Chongqing Municipality, Chongqing, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Arruri V, Vemuganti R. Role of autophagy and transcriptome regulation in acute brain injury. Exp Neurol 2022; 352:114032. [PMID: 35259350 PMCID: PMC9187300 DOI: 10.1016/j.expneurol.2022.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular system that routes distinct cytoplasmic cargo to lysosomes for degradation and recycling. Accumulating evidence highlight the mechanisms of autophagy, such as clearance of proteins, carbohydrates, lipids and damaged organelles. The critical role of autophagy in selective degradation of the transcriptome is still emerging and could shape the total proteome of the cell, and thus can regulate the homeostasis under stressful conditions. Unregulated autophagy that potentiates secondary brain damage is a key pathological features of acute CNS injuries such as stroke and traumatic brain injury. This review discussed the mutual modulation of autophagy and RNA and its significance in mediating the functional consequences of acute CNS injuries.
Collapse
Affiliation(s)
- Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
22
|
A Systematic Review of Inflammatory Cytokine Changes Following Aneurysmal Subarachnoid Hemorrhage in Animal Models and Humans. Transl Stroke Res 2022; 13:881-897. [PMID: 35260989 DOI: 10.1007/s12975-022-01001-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe form of stroke that occurs following rupture of a cerebral aneurysm. Acute inflammation and secondary delayed inflammatory responses, both largely controlled by cytokines, work together to create high mortality and morbidity for this group. The trajectory and time course of cytokine change must be better understood in order to effectively manage unregulated inflammation and improve patient outcomes following aSAH. A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three different search phrases ("cytokines and subarachnoid hemorrhage," "cytokine levels and subarachnoid hemorrhage," and "cytokine measurement and subarachnoid hemorrhage") were applied across three databases (PubMed, SCOPUS, and the Cochrane Library). Our procedures returned 856 papers. After application of inclusion/exclusion criteria, 95 preclinical animal studies and 41 clinical studies remained. Across studies, 22 different cytokines had been investigated, 5 different tissue types were analyzed, and 3 animal models were utilized. Three main pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) demonstrated reliable increases following aSAH across the included studies. While this is a promising area of research for potential therapeutics, there are gaps in the knowledge base that bar progress for clinical translation of this information. In particular, there is a need for investigations that explore the systemic inflammatory response following injury in a more diverse number of cytokines, the balance of specific pro-/anti- inflammatory cytokines, and how these biomarkers relate to patient outcomes and recovery over time.
Collapse
|
23
|
Liu J, He J, Huang Y, Hu Z. Resveratrol has an Overall Neuroprotective Role in Ischemic Stroke: A Meta-Analysis in Rodents. Front Pharmacol 2022; 12:795409. [PMID: 34987407 PMCID: PMC8721173 DOI: 10.3389/fphar.2021.795409] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Resveratrol, a natural polyphenolic phytoalexin, is broadly presented in dietary sources. Previous research has suggested its potential neuroprotective effects on ischemic stroke animal models. However, these results have been disputable. Here, we conducted a meta-analysis to comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Objective: To comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Methods: A literature search of the databases Pubmed, Embase, and Web of science identified 564 studies that were subjected to pre-defined inclusion criteria. 54 studies were included and analyzed using a random-effects model to calculate the standardized mean difference (SMD) with corresponding confidence interval (CI). Results: As compared with controls, resveratrol significantly decreased infarct volume (SMD −4.34; 95% CI −4.98 to −3.69; p < 0.001) and the neurobehavioral score (SMD −2.26; 95% CI −2.86 to −1.67; p < 0.001) in rodents with ischemic stroke. Quality assessment was performed using a 10-item checklist. Studies quality scores ranged from 3 to 8, with a mean value of 5.94. In the stratified analysis, a significant decrease of infarct volume and the neurobehavioral score was achieved in resveratrol sub-groups with a dosage of 20–50 mg/kg. In the meta-regression analysis, the impact of the delivery route on an outcome is the possible source of high heterogeneity. Conclusion: Generally, resveratrol treatment presented neuroprotective effects in ischemic stroke models. Furthermore, this study can direct future preclinical and clinical trials, with important implications for human health.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Liao FX, Huang F, Ma WG, Qin KP, Xu PF, Wu YF, Wang H, Chang J, Yin ZS. The New Role of Sirtuin1 in Human Osteoarthritis Chondrocytes by Regulating Autophagy. Cartilage 2021; 13:1237S-1248S. [PMID: 31072129 PMCID: PMC8804807 DOI: 10.1177/1947603519847736] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The aim of this study is to investigate the role of Sirtuin1 (Sirt1) in the regulation of autophagy for human osteoarthritis (OA) chondrocytes. DESIGN All cartilage samples were collected from human donors, including young group, aged group, and OA group. Primary chondrocytes were isolated and cultured with Sirt1 activator or inhibitor. Sirt1 expression in cartilage tissue and chondrocytes was evaluated, and the deacetylation activity of Sirt1 was determined. The alteration of autophagy activity after upregulating or downregulating Sirt1 was detected. Chondrocytes were treated with autophagy activator and inhibitor, and then the protein level of Sirt1 was examined. The interactions between Sirt1 and autophagy-related proteins Atg7, microtubule associated protein 1 light chain 3 (LC3), and Beclin-1 were determined by using immunoprecipitation. RESULTS The assay of articular cartilage revealed that the expression of Sirt1 might be age-related: highly expressed in of younger people, and respectively decreased in the elderly people and OA patients. In vitro study was also validated this result. Further study confirmed that higher levels of Sirt1 significantly increased autophagy in aged chondrocytes, while the lower expression of Sirt1 reduced autophagy in young chondrocytes. Of note, the high levels of Sirt1 reduced autophagy in OA chondrocytes. When the chondrocytes were treated with autophagy activator or inhibitor, we found the expression of Sirt1 was not affected. In addition, we found that Sirt1 could interact with Atg7. CONCLUSION These results suggest that Sirt1 in human chondrocytes regulates autophagy by interacting with autophagy related Atg7, and Sirt1 may become a more important target in OA treatment.
Collapse
Affiliation(s)
- Fa-Xue Liao
- Department of Orthopaedics, The First
Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s
Republic of China,Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Fei Huang
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Wen-Guang Ma
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Kun-Peng Qin
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Peng-Fei Xu
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Yun-Feng Wu
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Hao Wang
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Jun Chang
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Zong-Sheng Yin
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China,Zong-Sheng Yin, Department of Orthopaedics,
The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road,
Hefei, Anhui Province 230022, China.
| |
Collapse
|
25
|
Gravandi MM, Fakhri S, Zarneshan SN, Yarmohammadi A, Khan H. Flavonoids modulate AMPK/PGC-1α and interconnected pathways toward potential neuroprotective activities. Metab Brain Dis 2021; 36:1501-1521. [PMID: 33988807 DOI: 10.1007/s11011-021-00750-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 01/29/2023]
Abstract
As progressive, chronic, incurable and common reasons for disability and death, neurodegenerative diseases (NDDs) are significant threats to human health. Besides, the increasing prevalence of neuronal gradual degeneration and death during NDDs has made them a global concern. Since yet, no effective treatment has been developed to combat multiple dysregulated pathways/mediators and related complications in NDDs. Therefore, there is an urgent need to create influential and multi-target factors to combat neuronal damages. Accordingly, the plant kingdom has drawn a bright future. Among natural entities, flavonoids are considered a rich source of drug discovery and development with potential biological and medicinal activities. Growing studies have reported multiple dysregulated pathways in NDDs, which among those mediator AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) play critical roles. In this line, critical role of flavonoids in the upregulation of AMPK/PGC-1α pathway seems to pave the road in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), aging, central nervous system (brain/spinal cord) damages, stroke, and other NDDs. In the present study, the regulatory role of flavonoids in managing various NDDs has been shown to pass through AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
26
|
Ribeiro R, Santos AC, Calazans MO, De Oliveira ACP, Vieira LB. Is resveratrol a prospective therapeutic strategy in the co-association of glucose metabolism disorders and neurodegenerative diseases? Nutr Neurosci 2021; 25:2442-2457. [PMID: 34514962 DOI: 10.1080/1028415x.2021.1972514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objectives: The mechanism behind the progression of Mild Cognitive Impairment (MCI) to Alzheimer's disease (AD) remains poorly understood. However some evidence pointed out that the co-occurrence of metabolic conditions affecting glucose homeostasis, as type 2 diabetes mellitus (T2DM), may be an important catalyst in this context. Notably, candidate drugs which modulate common pathways in the development of MCI-to-AD mediated by T2DM may offer likely therapy for AD. Nonetheless, limited pharmacological alternatives that modulate common pathways in T2DM, MCI, and AD are available. In the recent decades, studies have shown that resveratrol may act as a neuroprotective compound, but little is known about its potential in improving cognitive and metabolic aspects associated with AD progression mediated by the co-association between TDM2-MCI.Methods: In this review, we discuss possible protective mechanisms of resveratrol on shared pathways associated with AD progression mediated by T2DM-MCI co-occurrence.Results: Some studies indicated that insulin resistance and hyperglycemia may be also a T2DM risk factor for the progression of MCI-to-AD, promoting alterations in metabolic pathways associated with neuronal plasticity, and increasing pro-inflammatory environment. Interestingly, basic research and clinical trials indicate that resveratrol may modulate those pathways, showing a potential neuroprotective effect of this polyphenol.Conclusion: Therefore, there is not enough clinical data supporting the translational therapeutic use of resveratrol in this scenario.
Collapse
Affiliation(s)
- R Ribeiro
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - A C Santos
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - M O Calazans
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - A C P De Oliveira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - L B Vieira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
27
|
Role of SIRT1 in Isoflurane Conditioning-Induced Neurovascular Protection against Delayed Cerebral Ischemia Secondary to Subarachnoid Hemorrhage. Int J Mol Sci 2021; 22:ijms22084291. [PMID: 33924243 PMCID: PMC8074752 DOI: 10.3390/ijms22084291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
We recently reported that isoflurane conditioning provided multifaceted protection against subarachnoid hemorrhage (SAH)-induced delayed cerebral ischemia (DCI), and this protection was through the upregulation of endothelial nitric oxide synthase (eNOS). SIRT1, an NAD-dependent deacetylase, was shown to be one of the critical regulators of eNOS. The aim of our current study is to examine the role of SIRT1 in isoflurane conditioning-induced neurovascular protection against SAH-induced DCI. Mice were divided into four groups: sham, SAH, or SAH with isoflurane conditioning (with and without EX-527). Experimental SAH via endovascular perforation was performed. Anesthetic conditioning was performed with isoflurane 2% for 1 h, 1 h after SAH. EX-527, a selective SIRT1 inhibitor, 10 mg/kg was injected intraperitoneally immediately after SAH in the EX-527 group. SIRT1 mRNA expression and activity levels were measured. Vasospasm, microvessel thrombosis, and neurological outcome were assessed. SIRT1 mRNA expression was downregulated, and no difference in SIRT1 activity was noted after isoflurane exposure. Isoflurane conditioning with and without EX-527 attenuated vasospasm, microvessel thrombosis and improved neurological outcomes. Our data validate our previous findings that isoflurane conditioning provides strong protection against both the macro and micro vascular deficits induced by SAH, but this protection is likely not mediated through the SIRT1 pathway.
Collapse
|
28
|
Wang XD, Yu WL, Sun Y. Activation of AMPK restored impaired autophagy and inhibited inflammation reaction by up-regulating SIRT1 in acute pancreatitis. Life Sci 2021; 277:119435. [PMID: 33781829 DOI: 10.1016/j.lfs.2021.119435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
AIMS Acute pancreatitis (AP) is a common inflammatory disorder with high incidence and mortality. AMPK-SIRT1 pathway is involved in a variety of diseases, but its role in AP remains elusive. This study was aimed to explore the role of AMPK-SIRT1 pathway in AP. MAIN METHODS AP models in vivo and vitro were constructed by intraperitoneal administration of L-arginine and caerulein-stimulated respectively. Rat serum amylase, IL-6 and TNF-α were determined by ELISA. The expression levels of AMPK, SIRT1, Beclin-1, LC3 and p62 were determined by qRT-PCR and western blot. The number of autophagosome was checked by transmission electron microscope. KEY FINDINGS Compared with NC rats, serum amylase, IL-6 and TNF-α were increased in AP rats. The expressions of AMPK and SIRT1 were decreased, while Beclin-1, LC3II/Iratio and p62 were markedly increased in AP rats. After activation of AMPK by metformin, expressions of p-AMPKα, SIRT1 were significantly raised, while expressions of Beclin-1, LC3 II/I, p62, TNF-α, IL-6 were reduced, and the number of autophagosome was decreased significantly in caerulein-stimulated AR42J cells. The inhibition of AMPK by compound C obtained opposite results. SIGNIFICANCE During AP occurrence, p-AMPK and SIRT1 were down-regulated, leading to the accumulation of p62, increase of autophagic vacuoles, damage of autophagy, and the occurrence of inflammation. It hinted that activation of AMPK restored impaired autophagy and inhibited inflammation reaction by up-regulating SIRT1. Our findings might provide important theoretical basis for explaining the pathogenesis of AP and investigating therapeutic target to treat and prevent AP.
Collapse
Affiliation(s)
- Xiao-Die Wang
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Wei-Li Yu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Yun Sun
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| |
Collapse
|
29
|
Li L, Chen J, Zhou Y, Zhang J, Chen L. Artesunate alleviates diabetic retinopathy by activating autophagy via the regulation of AMPK/SIRT1 pathway. Arch Physiol Biochem 2021:1-8. [PMID: 33661722 DOI: 10.1080/13813455.2021.1887266] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONTEXT Artesunate (ART), an antimalarial drug, possesses the ability to induce autophagy and exhibits a protective effect on diabetes. OBJECTIVE This study aimed to evaluate the effects of ART on diabetic retinopathy (DR) and to explore the underlying mechanisms. METHODS Rats with streptozotocin-induced DR were given intravitreal injection of ART. RESULTS ART administration inhibited the increase in retinal thickness and prevented blood-retinal barrier in diabetic rats. Further, vascular leukocyte adherence, microglial activation, inflammatory cytokine, and ROS production in the retinas of diabetic rats were also inhibited by ART. Additionally, ART enhanced autophagy in the retinas of diabetic rats as demonstrated by up-regulated Beclin-1 expression and LC3II/I ratio and down-regulated p62. ART also activated AMP-activated protein kinase (AMPK)/sensor class III histone deacetylase sirtuin 1 (SIRT1) pathway. CONCLUSIONS ART, as an autophagy activator, has therapeutic potential in DR treatment.
Collapse
Affiliation(s)
- Lihua Li
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Jun Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Jiahua Zhang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Lei Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Deng S, Liu J, Wu X, Lu W. Golgi Apparatus: A Potential Therapeutic Target for Autophagy-Associated Neurological Diseases. Front Cell Dev Biol 2020; 8:564975. [PMID: 33015059 PMCID: PMC7509445 DOI: 10.3389/fcell.2020.564975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy has dual effects in human diseases: appropriate autophagy may protect cells from stress, while excessive autophagy may cause cell death. Additionally, close interactions exist between autophagy and the Golgi. This review outlines recent advances regarding the role of the Golgi apparatus in autophagy. The signaling processes of autophagy are dependent on the normal function of the Golgi. Specifically, (i) autophagy-related protein 9 is mainly located in the Golgi and forms new autophagosomes in response to stressors; (ii) Golgi fragmentation is induced by Golgi-related proteins and accompanied with autophagy induction; and (iii) the endoplasmic reticulum-Golgi intermediate compartment and the reticular trans-Golgi network play essential roles in autophagosome formation to provide a template for lipidation of microtubule-associated protein 1A/1B-light chain 3 and induce further ubiquitination. Golgi-related proteins regulate formation of autophagosomes, and disrupted formation of autophagy can influence Golgi function. Notably, aberrant autophagy has been demonstrated to be implicated in neurological diseases. Thus, targeted therapies aimed at protecting the Golgi or regulating Golgi proteins might prevent or ameliorate autophagy-related neurological diseases. Further studies are needed to investigate the potential application of Golgi therapy in autophagy-based neurological diseases.
Collapse
Affiliation(s)
- Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Vellimana AK, Aum DJ, Diwan D, Clarke JV, Nelson JW, Lawrence M, Han BH, Gidday JM, Zipfel GJ. SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage. Exp Neurol 2020; 334:113484. [PMID: 33010255 DOI: 10.1016/j.expneurol.2020.113484] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy. METHODS Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator). RESULTS Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH - beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1. CONCLUSION SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH.
Collapse
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Diane J Aum
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julian V Clarke
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James W Nelson
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Molly Lawrence
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byung Hee Han
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA
| | - Jeffrey M Gidday
- Departments of Ophthalmology, Physiology, Biochemistry, and Neuroscience, Louisiana State University, New Orleans, Louisiana, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
32
|
Naringenin reduces early brain injury in subarachnoid hemorrhage (SAH) mice: The role of the AMPK/SIRT3 signaling pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
33
|
Yang Q, Zhou Y, Sun Y, Luo Y, Shen Y, Shao A. Will Sirtuins Be Promising Therapeutic Targets for TBI and Associated Neurodegenerative Diseases? Front Neurosci 2020; 14:791. [PMID: 32848564 PMCID: PMC7411228 DOI: 10.3389/fnins.2020.00791] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI), a leading cause of morbidity worldwide, induces mechanical, persistent structural, and metabolic abnormalities in neurons and other brain-resident cells. The key pathological features of TBI include neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction. These pathological processes persist for a period of time after TBIs. Sirtuins are evolutionarily conserved nicotinamide-adenine dinucleotide (NAD+)-dependent deacetylases and mono-ADP-ribosyl transferases. The mammalian sirtuin family has seven members, referred to as Sirtuin (SIRT) 1-7. Accumulating evidence suggests that SIRT1 and SIRT3 play a neuroprotective role in TBI. Although the evidence is scant, considering the involvement of SIRT2, 4-7 in other brain injury models, they may also intervene in similar pathophysiology in TBI. Neurodegenerative diseases are generally accepted sequelae of TBI. It was found that TBI and neurodegenerative diseases have many similarities and overlaps in pathological features. Besides, sirtuins play some unique roles in some neurodegenerative diseases. Therefore, we propose that sirtuins might be a promising therapeutic target for both TBI and associated neurodegenerative diseases. In this paper, we review the neuroprotective effects of sirtuins on TBI as well as related neurodegeneration and discuss the therapeutic potential of sirtuin modulators.
Collapse
Affiliation(s)
- Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Sun
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Luo
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Chen Y, Zhang LS, Ren JL, Zhang YR, Wu N, Jia MZ, Yu YR, Ning ZP, Tang CS, Qi YF. Intermedin 1-53 attenuates aging-associated vascular calcification in rats by upregulating sirtuin 1. Aging (Albany NY) 2020; 12:5651-5674. [PMID: 32229709 PMCID: PMC7185112 DOI: 10.18632/aging.102934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/27/2020] [Indexed: 02/01/2023]
Abstract
Vascular calcification is a common phenomenon in older adults. Intermedin (IMD) is a cardiovascular bioactive peptide inhibiting vascular calcification. In this study, we aimed to investigate whether IMD1-53 attenuates aging-associated vascular calcification. Vascular calcification was induced by vitamin D3 plus nicotine (VDN) in young and old rats. The calcification in aortas was more severe in old rats treated with VDN than young control rats, and IMD expression was lower. Exogenous administration of IMD1-53 significantly inhibited the calcium deposition in aortas and the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) in VDN-treated old rats. Moreover, levels of aging-related p16, p21 and β-galactosidase were all greatly decreased by IMD1-53. These results were further confirmed in rat and human VSMCs in vitro. In addition, IMD-deficient mouse VSMCs showed senescence features coinciding with osteogenic transition as compared with wild-type mouse VSMCs. Mechanistically, IMD1-53 significantly increased the expression of the anti-aging factor sirtuin 1 (sirt1); the inhibitory effects of IMD1-53 on calcification and senescence were blocked by sirt1 knockdown. Furthermore, preincubation with inhibitors of PI3K, AMPK or PKA efficiently blunted the upregulatory effect of IMD1-53 on sirt1. Consequently, IMD1-53 could attenuate aging-associated vascular calcification by upregulating sirt1 via activating PI3K/Akt, AMPK and cAMP/PKA signaling.
Collapse
Affiliation(s)
- Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Ning Wu
- Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Zhong-Ping Ning
- Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Chao-Shu Tang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| |
Collapse
|
35
|
Pineda-Ramírez N, Alquisiras-Burgos I, Ortiz-Plata A, Ruiz-Tachiquín ME, Espinoza-Rojo M, Aguilera P. Resveratrol Activates Neuronal Autophagy Through AMPK in the Ischemic Brain. Mol Neurobiol 2019; 57:1055-1069. [PMID: 31667715 DOI: 10.1007/s12035-019-01803-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
During cerebral ischemia, oxygen and glucose levels decrease, producing many consequences such as the generation of reactive oxygen species, tissue injury, and the general metabolism collapse. Resveratrol triggers signaling dependent on the protein kinase activated by adenosine monophosphate (AMPK), the sensor of cellular energy metabolism that regulates autophagy, eliminates damaged mitochondria, and increases energy sources. In the present study, we investigated the participation of AMPK activation in the protective effect of resveratrol on cerebral ischemia and excitotoxicity. We found that resveratrol increased the levels of phosphorylated AMPK in the cerebral cortex of rats subjected to middle cerebral artery occlusion (MCAO) and in primary cultured neurons exposed to glutamate-induced excitotoxicity. Resveratrol (1.8 mg/Kg; i. v.; administered at the beginning of reperfusion) decreased the infarct area and increased survival of rats subjected to MCAO. In neuronal cultures, resveratrol treatment (40 μM, after excitotoxicity) reduced the production of superoxide anion, prevented the overload of intracellular Ca+2 associated to mitochondrial failure, reduced the release of the lactate dehydrogenase enzyme, and reduced death. It also promoted mitophagy (increased Beclin 1 level, favored the recruitment of LC3-II, reduced LAMP1, and reduced mitochondrial matrix protein HSP60 levels). In both models, inhibition of AMPK activation with Compound C obstructed the effect of resveratrol, showing that its protective effect depends, partially, on the activation of the AMPK/autophagy pathway.
Collapse
Affiliation(s)
- Narayana Pineda-Ramírez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, 14269, México
| | - Iván Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, 14269, México
| | - Alma Ortiz-Plata
- Laboratorio de Neuropatología Experimental, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, 14269, México
| | - Martha-Eugenia Ruiz-Tachiquín
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, 06720, México
| | - Mónica Espinoza-Rojo
- Laboratorio de Biología Molecular y Genómica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, 39087, México
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, 14269, México.
| |
Collapse
|
36
|
Resveratrol Inhibits MMP3 and MMP9 Expression and Secretion by Suppressing TLR4/NF- κB/STAT3 Activation in Ox-LDL-Treated HUVECs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9013169. [PMID: 31583048 PMCID: PMC6754947 DOI: 10.1155/2019/9013169] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
Aim Resveratrol is a natural plant polyphenol. The present study investigated the effects of resveratrol on the Toll-like receptor 4- (TLR4-) mediated expression and secretion of matrix metalloproteinases (MMPs) in oxidized low-density lipoprotein- (ox-LDL-) treated human umbilical vein endothelial cells (HUVECs). Methods Protein expression was analyzed by immunoblotting. The secretion of MMPs was measured by an enzyme-linked immunosorbent assay. The animal experiments were performed with and without resveratrol treatment in high-fat chow-fed mice. Results Resveratrol inhibited the expression of TLR4, MMP3, and MMP9 in ox-LDL- and lipopolysaccharide- (LPS-) treated HUVECs. Resveratrol reduced the secretion of MMP3 and MMP9 that was induced by ox-LDL and LPS. The TLR4 inhibitor CLI-095 similarly suppressed the expression and secretion of MMP3 and MMP9 in ox-LDL- and LPS-treated HUVECs. Resveratrol attenuated the phosphorylation of the transcription factors nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) that was induced by ox-LDL and LPS. Resveratrol recovered Sirt1 expression. In the animal experiments, resveratrol decreased TLR4 expression in the aorta, MMP9 levels in plasma, and vascular structural changes in high-fat chow-fed mice, with no significant effect on plasma MMP3 levels. Conclusion Resveratrol inhibited the TLR4-mediated expression and secretion of MMP3 and MMP9 in ox-LDL-treated HUVECs. The mechanism of action of resveratrol may be associated with the suppression of NF-κB and STAT3 phosphorylation and restoration of Sirt1 expression. Resveratrol exerts protective effects against vascular structural changes in high-fat chow-fed mice.
Collapse
|
37
|
Limanaqi F, Biagioni F, Busceti CL, Ryskalin L, Polzella M, Frati A, Fornai F. Phytochemicals Bridging Autophagy Induction and Alpha-Synuclein Degradation in Parkinsonism. Int J Mol Sci 2019; 20:ijms20133274. [PMID: 31277285 PMCID: PMC6651086 DOI: 10.3390/ijms20133274] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Among nutraceuticals, phytochemical-rich compounds represent a source of naturally-derived bioactive principles, which are extensively studied for potential beneficial effects in a variety of disorders ranging from cardiovascular and metabolic diseases to cancer and neurodegeneration. In the brain, phytochemicals produce a number of biological effects such as modulation of neurotransmitter activity, growth factor induction, antioxidant and anti-inflammatory activity, stem cell modulation/neurogenesis, regulation of mitochondrial homeostasis, and counteracting protein aggregation through modulation of protein-folding chaperones and the cell clearing systems autophagy and proteasome. In particular, the ability of phytochemicals in restoring proteostasis through autophagy induction took center stage in recent research on neurodegenerative disorders such as Parkinson’s disease (PD). Indeed, autophagy dysfunctions and α-syn aggregation represent two interdependent downstream biochemical events, which concur in the parkinsonian brain, and which are targeted by phytochemicals administration. Therefore, in the present review we discuss evidence about the autophagy-based neuroprotective effects of specific phytochemical-rich plants in experimental parkinsonism, with a special focus on their ability to counteract alpha-synuclein aggregation and toxicity. Although further studies are needed to confirm the autophagy-based effects of some phytochemicals in parkinsonism, the evidence discussed here suggests that rescuing autophagy through natural compounds may play a role in preserving dopamine (DA) neuron integrity by counteracting the aggregation, toxicity, and prion-like spreading of α-syn, which remains a hallmark of PD.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy
| | | | | | - Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy
| | - Maico Polzella
- Aliveda Laboratories, Crespina Lorenzana, 56042 Pisa (PI), Italy
| | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy.
- I.R.C.C.S Neuromed, Via Atinense, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
38
|
Yan WJ, Wang DB, Ren DQ, Wang LK, Hu ZY, Ma YB, Huang JW, Ding SL. AMPKα1 overexpression improves postoperative cognitive dysfunction in aged rats through AMPK-Sirt1 and autophagy signaling. J Cell Biochem 2019; 120:11633-11641. [PMID: 30775803 DOI: 10.1002/jcb.28443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication in elderly patients who undergo surgery involving anesthesia. Its underlying mechanisms remain unclear. Autophagy plays an important role in the damage and repair of the nervous system and is associated with the development of POCD. Using a rat model, adenosine monophosphate-activated protein kinase α1 (AMPKα1), an important autophagy regulator, was found to be significantly downregulated in rats with POCD that was induced by sevoflurane anesthesia or by appendectomy. Overexpression of AMPKα1-ameliorated POCD, as indicated by decreased escape latencies and increased target quadrant swimming times, swimming distances, and platform crossing times during Morris water maze tests. AMPKα1 overexpression activated autophagy signals by increasing the expression of light chain 3 II (LC3-II) and Beclin1 and decreasing the expression of p62 in the hippocampus of rats with POCD. Moreover, blocking autophagy by 3-methyladenine partly attenuated AMPKα1-mediated POCD improvement. Furthermore, overexpression of AMPKα1 could upregulate the expression of p-AMPK and Sirt1 in the hippocampus of rats with POCD. Intriguingly, inhibiting AMPK signals via Compound C effectively attenuated AMPKα1-mediated POCD improvement, concomitant with the downregulation of p-AMPK, Sirt1, LC3-II, and Beclin1 and the upregulation of p62. We thus concluded that overexpression of AMPKα1 can improve POCD via the AMPK-Sirt1 and autophagy signaling pathway.
Collapse
Affiliation(s)
- Wen-Jun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Da-Bin Wang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Dong-Qing Ren
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ling-Kai Wang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Zhong-Yuan Hu
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ya-Bing Ma
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Jin-Wen Huang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Shao-Li Ding
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
39
|
Jin X, Liu MY, Zhang DF, Zhong X, Du K, Qian P, Gao H, Wei MJ. Natural products as a potential modulator of microglial polarization in neurodegenerative diseases. Pharmacol Res 2019; 145:104253. [PMID: 31059788 DOI: 10.1016/j.phrs.2019.104253] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive loss of structure and function of neurons most common in elderly population, mainly including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Neuroinflammation caused by microglia as the resident macrophages of the central nervous system (CNS) plays a contributory role in the onset and progression of NDs. Activated microglia, as in macrophages, to be heterogeneous, can polarize into M1 (pro-inflammatory) and M2 (anti-inflammatory) functional phenotypes. The former elaborate pro-inflammatory mediators promoting neuroinflammation and neuronal damage. In contrast, the latter generate anti-inflammatory mediators and neurotrophins that inhibit neuroinflammation and promote neuronal healing. Consistently, the regulation of microglial polarization from M1 to M2 phenotype appears as an outstanding therapeutic and preventive approach for NDs treatment. Although non-steroidal anti-inflammatory drugs (NSAIDs) currently used to alleviate M1 microglia-associated neuroinflammation responsible for the development of NDs, these drugs have different degrees of adverse effects and limited efficacy. As the advantages of novel structure, multi-target, high efficiency and low toxicity, natural products as the modulators of microglial polarization have attracted considerable concerns in the therapeutic areas of NDs. In this review, we mainly summarized the therapeutic potential of natural products and their various molecular mechanisms for NDs treatment through modulating microglial polarization. The aim of the current review is expected to be useful to develop innovative modulators of microglial polarization from natural products for the amelioration and treatment of NDs.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ping Qian
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China.
| |
Collapse
|