1
|
Arras P, Zimmermann J, Lipinski B, Valldorf B, Evers A, Elter D, Krah S, Doerner A, Guarnera E, Siegmund V, Kolmar H, Pekar L, Zielonka S. Bovine ultralong CDR-H3 derived knob paratopes elicit potent TNF-α neutralization and enable the generation of novel adalimumab-based antibody architectures with augmented features. Biol Chem 2024; 405:461-470. [PMID: 38373142 DOI: 10.1515/hsz-2023-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
In this work we have generated cattle-derived chimeric ultralong CDR-H3 antibodies targeting tumor necrosis factor α (TNF-α) via immunization and yeast surface display. We identified one particular ultralong CDR-H3 paratope that potently neutralized TNF-α. Interestingly, grafting of the knob architecture onto a peripheral loop of the CH3 domain of the Fc part of an IgG1 resulted in the generation of a TNF-α neutralizing Fc (Fcknob) that did not show any potency loss compared with the parental chimeric IgG format. Eventually, grafting this knob onto the CH3 region of adalimumab enabled the engineering of a novel TNF-α targeting antibody architecture displaying augmented TNF-α inhibition.
Collapse
Affiliation(s)
- Paul Arras
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
- Biomolecular Immunotherapy, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
- Targeted mRNA Delivery, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Jasmin Zimmermann
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Britta Lipinski
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
- Biomolecular Immunotherapy, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Bernhard Valldorf
- Targeted mRNA Delivery, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Andreas Evers
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Desislava Elter
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Simon Krah
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Enrico Guarnera
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Vanessa Siegmund
- Early Protein Supply & Characterization, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Harald Kolmar
- Applied Biochemistry, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Lukas Pekar
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
- Biomolecular Immunotherapy, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| |
Collapse
|
2
|
Petersen BM, Kirby MB, Chrispens KM, Irvin OM, Strawn IK, Haas CM, Walker AM, Baumer ZT, Ulmer SA, Ayala E, Rhodes ER, Guthmiller JJ, Steiner PJ, Whitehead TA. An integrated technology for quantitative wide mutational scanning of human antibody Fab libraries. Nat Commun 2024; 15:3974. [PMID: 38730230 PMCID: PMC11087541 DOI: 10.1038/s41467-024-48072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of nine different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.
Collapse
Affiliation(s)
- Brian M Petersen
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Monica B Kirby
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Karson M Chrispens
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Olivia M Irvin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Isabell K Strawn
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Cyrus M Haas
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Alexis M Walker
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Zachary T Baumer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Sophia A Ulmer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Edgardo Ayala
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily R Rhodes
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Jenna J Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Steiner
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
3
|
Petersen BM, Kirby MB, Chrispens KM, Irvin OM, Strawn IK, Haas CM, Walker AM, Baumer ZT, Ulmer SA, Ayala E, Rhodes ER, Guthmiller JJ, Steiner PJ, Whitehead TA. An integrated technology for quantitative wide mutational scanning of human antibody Fab libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575852. [PMID: 38293170 PMCID: PMC10827193 DOI: 10.1101/2024.01.16.575852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of ten different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.
Collapse
Affiliation(s)
- Brian M. Petersen
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Monica B. Kirby
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Karson M. Chrispens
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Olivia M. Irvin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Isabell K. Strawn
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Cyrus M. Haas
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Alexis M. Walker
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Zachary T. Baumer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Sophia A. Ulmer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Edgardo Ayala
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Emily R. Rhodes
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Jenna J. Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Paul J. Steiner
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Timothy A. Whitehead
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| |
Collapse
|
4
|
Schoenfeld K, Harwardt J, Habermann J, Elter A, Kolmar H. Conditional activation of an anti-IgM antibody-drug conjugate for precise B cell lymphoma targeting. Front Immunol 2023; 14:1258700. [PMID: 37841262 PMCID: PMC10569071 DOI: 10.3389/fimmu.2023.1258700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Cancerous B cells are almost indistinguishable from their non-malignant counterparts regarding their surface antigen expression. Accordingly, the challenge to be faced consists in elimination of the malignant B cell population while maintaining a functional adaptive immune system. Here, we present an IgM-specific antibody-drug conjugate masked by fusion of the epitope-bearing IgM constant domain. Antibody masking impaired interaction with soluble pentameric as well as cell surface-expressed IgM molecules rendering the antibody cytotoxically inactive. Binding capacity of the anti-IgM antibody drug conjugate was restored upon conditional protease-mediated demasking which consequently enabled target-dependent antibody internalization and subsequent induction of apoptosis in malignant B cells. This easily adaptable approach potentially provides a novel mechanism of clonal B cell lymphoma eradication to the arsenal available for non-Hodgkin's lymphoma treatment.
Collapse
Affiliation(s)
- Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jan Habermann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Adrian Elter
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
5
|
Sun Y, Zhang Y, Yu H, Saint Fleur A, Yu D, Yang Z, Feng H. A fine-tuned yeast surface-display/secretion platform enables the rapid discovery of neutralizing antibodies against Clostridioides difficile toxins. Microb Cell Fact 2023; 22:194. [PMID: 37749574 PMCID: PMC10519002 DOI: 10.1186/s12934-023-02200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Neutralizing antibody plays a key role in protecting hosts from invasive pathogens and their virulent components. Current high-throughput assays for antibody screening are based on binding activities. However, those antibodies with high affinity may not have neutralizing activities. Subsequent functionality assays are necessary to identify neutralizing antibodies from binders with high affinity to their target antigens, which is laborious and time-consuming. Therefore, a versatile platform that can rapidly identify antibodies with both high binding affinity and neutralizing activity is desired to curb future pandemics like COVID-19. RESULTS In this proof-of-concept study, we adapted Saccharomyces cerevisiae to either display human antibodies on the yeast surface or secrete soluble antibodies into the cultivation supernatant under a controllable 'switch' through different carbon source induced promoters. Initially, an engineered chimeric-bispecific Fab antibody, derived from humanized nanobodies against both Clostridioides difficile toxin A and B (TcdA and TcdB), was successfully expressed either on the yeast cell surface or in the culture medium with intact bioactivity, suggesting the applicability of our system in antibody display and secretion. Next, a combinatorial Fab library was constructed from B cells isolated from a convalescent patient with a high serological neutralizing titer against TcdB. Following three rounds of magnetic bead enrichment and one round of flow cytometry sorting, antibodies against TcdB were enriched efficiently. We then sorted out single binders with high binding affinity and induced them to express soluble antibodies in culture medium. The neutralizing activity of culture supernatant was analyzed using cell-based assay immediately. This way, we rapidly identified two unique neutralizers (out of seven binders) that can neutralize the cytotoxicity of TcdB. CONCLUSION The antibody screening platform described here simplifies the neutralizing antibody discovery procedure and will be an attractive alternative for screening functional antibodies against infectious diseases.
Collapse
Affiliation(s)
- Ying Sun
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA.
- Department of Pathogen Biology, School of Basic Medical Sciences, China Medical University, Shenyang, 110122, China.
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - Hua Yu
- Fzata, Inc, Halethorpe, MD, 21227, USA
| | - Ashley Saint Fleur
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - Di Yu
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | | | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA.
- Fzata, Inc, Halethorpe, MD, 21227, USA.
| |
Collapse
|
6
|
Harwardt J, Carrara SC, Bogen JP, Schoenfeld K, Grzeschik J, Hock B, Kolmar H. Generation of a symmetrical trispecific NK cell engager based on a two-in-one antibody. Front Immunol 2023; 14:1170042. [PMID: 37081888 PMCID: PMC10110854 DOI: 10.3389/fimmu.2023.1170042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
To construct a trispecific IgG-like antibody at least three different binding moieties need to be combined, which results in a complex architecture and challenging production of these molecules. Here we report for the first time the construction of trispecific natural killer cell engagers based on a previously reported two-in-one antibody combined with a novel anti-CD16a common light chain module identified by yeast surface display (YSD) screening of chicken-derived immune libraries. The resulting antibodies simultaneously target epidermal growth factor receptor (EGFR), programmed death-ligand 1 (PD-L1) and CD16a with two Fab fragments, resulting in specific cellular binding properties on EGFR/PD-L1 double positive tumor cells and a potent ADCC effect. This study paves the way for further development of multispecific therapeutic antibodies derived from avian immunization with desired target combinations, valencies, molecular symmetries and architectures.
Collapse
Affiliation(s)
- Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Biologics Technology and Development, Ferring Darmstadt Laboratory, Darmstadt, Germany
| | - Jan P. Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Biologics Technology and Development, Ferring Darmstadt Laboratory, Darmstadt, Germany
| | - Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Julius Grzeschik
- Biologics Technology and Development, Ferring Biologics Innovation Centre, Epalinges, Switzerland
| | - Björn Hock
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
- *Correspondence: Harald Kolmar,
| |
Collapse
|
7
|
Bauer C, Ciesielski E, Pekar L, Krah S, Toleikis L, Zielonka S, Sellmann C. Facile One-Step Generation of Camelid VHH and Avian scFv Libraries for Phage Display by Golden Gate Cloning. Methods Mol Biol 2023; 2681:47-60. [PMID: 37405642 DOI: 10.1007/978-1-0716-3279-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Since its development in the 1980s, the Nobel Prize-awarded phage display technology has been one of the most commonly used in vitro selection technologies for the discovery of therapeutic and diagnostic antibodies. Besides the importance of selection strategy, one key component of the successful isolation of highly specific recombinant antibodies is the construction of high-quality phage display libraries. However, previous cloning protocols relied on a tedious multistep process with subsequent cloning steps for the introduction of first heavy and then light chain variable genetic antibody fragments (VH and VL). This resulted in reduced cloning efficiency, higher frequency of missing VH or VL sequences, as well as truncated antibody fragments. With the emergence of Golden Gate Cloning (GGC) for the generation of antibody libraries, the possibility of more facile library cloning has arisen. Here, we describe a streamlined one-step GGC strategy for the generation of camelid heavy chain only variable phage display libraries as well as the simultaneous introduction of heavy chain and light chain variable regions from the chicken into a scFv phage display vector.
Collapse
Affiliation(s)
- Christina Bauer
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Elke Ciesielski
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Carolin Sellmann
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany.
| |
Collapse
|
8
|
Zielonka S, Krah S, Arras P, Lipinski B, Zimmermann J, Boje AS, Klausz K, Peipp M, Pekar L. Affinity Maturation of the Natural Ligand (B7-H6) for Natural Cytotoxicity Receptor NKp30 by Yeast Surface Display. Methods Mol Biol 2023; 2681:231-248. [PMID: 37405651 DOI: 10.1007/978-1-0716-3279-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
In recent years, the development of bispecific antibodies (bsAbs) has experienced tremendous progress for disease treatment, and consequently, a plethora of bsAbs is currently scrutinized in clinical trials. Besides antibody scaffolds, multifunctional molecules referred to as immunoligands have been developed. These molecules typically harbor a natural ligand entity for the engagement of a specific receptor, while binding to the additional antigen is facilitated by an antibody-derived paratope. Immunoligands can be exploited to conditionally activate immune cells, e.g., natural killer (NK) cells, in the presence of tumor cells, ultimately causing target-dependent tumor cell lysis. However, many ligands naturally show only moderate affinities toward their cognate receptor, potentially hampering killing capacities of immunoligands. Herein, we provide protocols for yeast surface display-based affinity maturation of B7-H6, the natural ligand of NK cell-activating receptor NKp30.
Collapse
Affiliation(s)
- Stefan Zielonka
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Paul Arras
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Britta Lipinski
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jasmin Zimmermann
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ammelie Svea Boje
- Stem Cell Transplantation and Immunotherapy, Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Stem Cell Transplantation and Immunotherapy, Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Peipp
- Stem Cell Transplantation and Immunotherapy, Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany.
| |
Collapse
|
9
|
Szent-Gyorgyi C, Perkins LA, Schmidt BF, Liu Z, Bruchez MP, van de Weerd R. Bottom-Up Design: A Modular Golden Gate Assembly Platform of Yeast Plasmids for Simultaneous Secretion and Surface Display of Distinct FAP Fusion Proteins. ACS Synth Biol 2022; 11:3681-3698. [PMID: 36260923 DOI: 10.1021/acssynbio.2c00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A need in synthetic biology is the ability to precisely and efficiently make flexible fully designed vectors that addresses challenging cloning strategies of single plasmids that rely on combinatorial co-expression of a multitude of target and bait fusion reporters useful in projects like library screens. For these strategies, the regulatory elements and functional components need to correspond perfectly to project specific sequence elements that facilitate easy exchange of these elements. This requires systematic implementation and building on recent improvements in Golden Gate (GG) that ensures high cloning efficiency for such complex vectors. Currently, this is not addressed in the variety of molecular GG cloning techniques in synthetic biology. Here, we present the bottom-up design and plasmid synthesis to prepare 10 kb functional yeast secrete and display plasmids that uses an optimized version of GG in combination with fluorogen-activating protein reporter technology. This allowed us to demonstrate nanobody/target protein interactions in a single cell, as detected by cell surface retention of secreted target proteins by cognate nanobodies. This validates the GG constructional approach and suggests a new approach for discovering protein interactions. Our GG assembly platform paves the way for vector-based library screening and can be used for other recombinant GG platforms.
Collapse
Affiliation(s)
- Christopher Szent-Gyorgyi
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lydia A Perkins
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Brigitte F Schmidt
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhen Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel P Bruchez
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert van de Weerd
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Fiebig D, Bogen JP, Carrara SC, Deweid L, Zielonka S, Grzeschik J, Hock B, Kolmar H. Streamlining the Transition From Yeast Surface Display of Antibody Fragment Immune Libraries to the Production as IgG Format in Mammalian Cells. Front Bioeng Biotechnol 2022; 10:794389. [PMID: 35620472 PMCID: PMC9127228 DOI: 10.3389/fbioe.2022.794389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/20/2022] [Indexed: 01/18/2023] Open
Abstract
Yeast-surface display (YSD) is commonly applied to screen Fab immune or naïve libraries for binders of predefined target molecules. However, reformatting of isolated variants represents a time-intensive bottleneck. Herein, we present a novel approach to facilitate a lean transition from antibody screening using YSD Fab libraries to the production of full-length IgG antibodies in Expi293-F cells. In this study, utilizing Golden Gate Cloning (GGC) and a bidirectional promoter system, an exemplary Fab-displaying YSD library was generated based on immunised transgene rats. After subsequent screening for antigen-specific antibody candidates by fluorescence-activated cell sorting (FACS), the Fab-encoding genes were subcloned into a bidirectional mammalian expression vector, exhibiting CH2-CH3 encoding genes, in a GGC-mediated, PCR-free manner. This novel, straightforward and time-saving workflow allows the VH/VL pairing to be preserved. This study resulted in antibody variants exhibiting suitable biophysical properties and covered a broad VH diversity after two rounds of FACS screening, as revealed by NGS analysis. Ultimately, we demonstrate that the implication of such a gene transfer system streamlines antibody hit discovery efforts, allowing the faster characterisation of antibodies against a plethora of targets that may lead to new therapeutic agents.
Collapse
Affiliation(s)
- David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Björn Hock
- Ferring Biologics Innovation Centre, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
11
|
Harwardt J, Bogen JP, Carrara SC, Ulitzka M, Grzeschik J, Hock B, Kolmar H. A Generic Strategy to Generate Bifunctional Two-in-One Antibodies by Chicken Immunization. Front Immunol 2022; 13:888838. [PMID: 35479092 PMCID: PMC9036444 DOI: 10.3389/fimmu.2022.888838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 12/21/2022] Open
Abstract
Various formats of bispecific antibodies exist, among them Two-in-One antibodies in which each Fab arm can bind to two different antigens. Their IgG-like architecture accounts for low immunogenicity and also circumvents laborious engineering and purification steps to facilitate correct chain pairing. Here we report for the first time the identification of a Two‐in‐One antibody by yeast surface display (YSD) screening of chicken-derived immune libraries. The resulting antibody simultaneously targets the epidermal growth factor receptor (EGFR) and programmed death‐ligand 1 (PD-L1) at the same Fv fragment with two non-overlapping paratopes. The dual action Fab is capable of inhibiting EGFR signaling by binding to dimerization domain II as well as blocking the PD-1/PD-L1 interaction. Furthermore, the Two-in-One antibody demonstrates specific cellular binding properties on EGFR/PD-L1 double positive tumor cells. The presented strategy relies solely on screening of combinational immune-libraries and obviates the need for any additional CDR engineering as described in previous reports. Therefore, this study paves the way for further development of therapeutic antibodies derived from avian immunization with novel and tailor-made binding properties.
Collapse
Affiliation(s)
- Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jan P. Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Biologics Innovation Centre, Biologics Technology and Development, Epalinges, Switzerland
| | - Björn Hock
- Ferring Biologics Innovation Centre, Biologics Technology and Development, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthtic Biology, Technical University of Darmstadt, Darmstadt, Germany
- *Correspondence: Harald Kolmar,
| |
Collapse
|
12
|
Klewinghaus D, Pekar L, Arras P, Krah S, Valldorf B, Kolmar H, Zielonka S. Grabbing the Bull by Both Horns: Bovine Ultralong CDR-H3 Paratopes Enable Engineering of 'Almost Natural' Common Light Chain Bispecific Antibodies Suitable For Effector Cell Redirection. Front Immunol 2022; 12:801368. [PMID: 35087526 PMCID: PMC8787767 DOI: 10.3389/fimmu.2021.801368] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
A subset of antibodies found in cattle comprises ultralong CDR-H3 regions of up to 70 amino acids. Interestingly, this type of immunoglobulin usually pairs with the single germline VL gene, V30 that is typically very conserved in sequence. In this work, we have engineered ultralong CDR-H3 common light chain bispecific antibodies targeting Epidermal Growth Factor Receptor (EGFR) on tumor cells as well as Natural Cytotoxicity Receptor NKp30 on Natural Killer (NK) cells. Antigen-specific common light chain antibodies were isolated by yeast surface display by means of pairing CDR-H3 diversities following immunization with a single V30 light chain. After selection, EGFR-targeting paratopes as well as NKp30-specific binders were combined into common light chain bispecific antibodies by exploiting the strand-exchange engineered domain (SEED) technology for heavy chain heterodimerization. Biochemical characterization of resulting bispecifics revealed highly specific binding to the respective antigens as well as simultaneous binding to both targets. Most importantly, engineered cattle-derived bispecific common light chain molecules elicited potent NK cell redirection and consequently tumor cell lysis of EGFR-overexpressing cells as well as robust release of proinflammatory cytokine interferon-γ. Taken together, this data is giving clear evidence that bovine bispecific ultralong CDR-H3 common light chain antibodies are versatile for biotechnological applications.
Collapse
Affiliation(s)
- Daniel Klewinghaus
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Paul Arras
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
13
|
Quiros-Roldan E, Amadasi S, Zanella I, Degli Antoni M, Storti S, Tiecco G, Castelli F. Monoclonal Antibodies against SARS-CoV-2: Current Scenario and Future Perspectives. Pharmaceuticals (Basel) 2021; 14:1272. [PMID: 34959672 PMCID: PMC8707981 DOI: 10.3390/ph14121272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
Monoclonal antibodies (mAbs) have been known since the 1970s. However, their therapeutic potential in the medical field has recently emerged, with the advancement of manufacturing techniques. Initially exploited mainly in the oncology field, mAbs have become increasingly relevant in Infectious Diseases. Numerous mAbs have been developed against SARS-CoV 2 and have proven their effectiveness, especially in the management of the mild-to-moderate disease. In this review, we describe the monoclonal antibodies currently authorized for the treatment of the coronavirus disease 19 (COVID-19) and offer an insight into the clinical trials that led to their approval. We discuss the mechanisms of action and methods of administration as well as the prophylactic and therapeutic labelled indications (both in outpatient and hospital settings). Furthermore, we address the critical issues regarding mAbs, focusing on their effectiveness against the variants of concern (VoC) and their role now that a large part of the population has been vaccinated. The purpose is to offer the clinician an up-to-date overview of a therapeutic tool that could prove decisive in treating patients at high risk of progression to severe disease.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.A.); (M.D.A.); (S.S.); (G.T.); (F.C.)
| | - Silvia Amadasi
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.A.); (M.D.A.); (S.S.); (G.T.); (F.C.)
| | - Isabella Zanella
- Clinical Chemistry Laboratory, Diagnostic Department, Department of Molecular and Translational Medicine, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy;
| | - Melania Degli Antoni
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.A.); (M.D.A.); (S.S.); (G.T.); (F.C.)
| | - Samuele Storti
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.A.); (M.D.A.); (S.S.); (G.T.); (F.C.)
| | - Giorgio Tiecco
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.A.); (M.D.A.); (S.S.); (G.T.); (F.C.)
| | - Francesco Castelli
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.A.); (M.D.A.); (S.S.); (G.T.); (F.C.)
| |
Collapse
|
14
|
Pekar L, Klewinghaus D, Arras P, Carrara SC, Harwardt J, Krah S, Yanakieva D, Toleikis L, Smider VV, Kolmar H, Zielonka S. Milking the Cow: Cattle-Derived Chimeric Ultralong CDR-H3 Antibodies and Their Engineered CDR-H3-Only Knobbody Counterparts Targeting Epidermal Growth Factor Receptor Elicit Potent NK Cell-Mediated Cytotoxicity. Front Immunol 2021; 12:742418. [PMID: 34759924 PMCID: PMC8573386 DOI: 10.3389/fimmu.2021.742418] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 01/11/2023] Open
Abstract
In this work, we have generated epidermal growth factor receptor (EGFR)-specific cattle-derived ultralong CDR-H3 antibodies by combining cattle immunization with yeast surface display. After immunization, ultralong CDR-H3 regions were specifically amplified and grafted onto an IGHV1-7 scaffold by homologous recombination to facilitate Fab display. Antigen-specific clones were readily obtained by fluorescence-activated cell sorting (FACS) and reformatted as chimeric antibodies. Binning experiments revealed epitope targeting of domains I, II, and IV of EGFR with none of the generated binders competing with Cetuximab, Matuzumab, or EGF for binding to EGFR. Cattle-derived chimeric antibodies were potent in inducing antibody-dependent cell-mediated cytotoxicity (ADCC) against EGFR-overexpressing tumor cells with potencies (EC50 killing) in the picomolar range. Moreover, most of the antibodies were able to significantly inhibit EGFR-mediated downstream signaling. Furthermore, we demonstrate that a minor fraction of CDR-H3 knobs derived from generated antibodies was capable of independently functioning as a paratope facilitating EGFR binding when grafted onto the Fc part of human IgG1. Besides slightly to moderately diminished capacities, these engineered Knobbodies largely retained main properties of their parental antibodies such as cellular binding and triggering of ADCC. Hence, Knobbodies might emerge as promising tools for biotechnological applications upon further optimization.
Collapse
Affiliation(s)
- Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Daniel Klewinghaus
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Paul Arras
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Desislava Yanakieva
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Vaughn V. Smider
- The Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
15
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
16
|
Bogen JP, Carrara SC, Fiebig D, Grzeschik J, Hock B, Kolmar H. Expeditious Generation of Biparatopic Common Light Chain Antibodies via Chicken Immunization and Yeast Display Screening. Front Immunol 2020; 11:606878. [PMID: 33424853 PMCID: PMC7786285 DOI: 10.3389/fimmu.2020.606878] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Bispecific (BsAb) and biparatopic (BpAb) antibodies emerged as promising formats for therapeutic biologics exhibiting tailor-made functional properties. Over recent years, chicken-derived antibodies have gained traction for diagnostic and therapeutic applications due to their broad epitope coverage and convenience of library generation. Here we report the first generation of a biparatopic common light chain (cLC) chicken-derived antibody by an epitope binning-based screening approach using yeast surface display. The resulting monospecific antibodies target conformational epitopes on domain II or III of the epidermal growth factor receptor (EGFR) with lower double- or single-digit nanomolar affinities, respectively. Furthermore, the domain III targeting variant was shown to interfere with epidermal growth factor (EGF) binding. Utilizing the Knob-into-Hole technology (KiH), a biparatopic antibody with subnanomolar affinity was generated that facilitates clustering of soluble and cell-bound EGFR and displayed enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) compared to the parental antibodies. This strategy for generating cLC-based biparatopic antibodies from immunized chickens may pave the way for their further development in therapeutic settings.
Collapse
Affiliation(s)
- Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Björn Hock
- Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
17
|
Elter A, Bogen JP, Hinz SC, Fiebig D, Macarrón Palacios A, Grzeschik J, Hock B, Kolmar H. Humanization of Chicken-Derived scFv Using Yeast Surface Display and NGS Data Mining. Biotechnol J 2020; 16:e2000231. [PMID: 33078896 DOI: 10.1002/biot.202000231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/06/2020] [Indexed: 01/17/2023]
Abstract
Generation of high-affinity monoclonal antibodies by immunization of chickens is a valuable strategy, particularly for obtaining antibodies directed against epitopes that are conserved in mammals. A generic procedure is established for the humanization of chicken-derived antibodies. To this end, high-affinity binders of the epidermal growth factor receptor extracellular domain are isolated from immunized chickens using yeast surface display. Complementarity determining regions (CDRs) of two high-affinity binders are grafted onto a human acceptor framework. Simultaneously, Vernier zone residues, responsible for spatial CDR arrangement, are partially randomized. A yeast surface display library comprising ≈300 000 variants is screened for high-affinity binders in the scFv and Fab formats. Next-generation sequencing discloses humanized antibody variants with restored affinity and improved protein characteristics compared to the parental chicken antibodies. Furthermore, the sequencing data give new insights into the importance of antibody format, used during the humanization process. Starting from the antibody repertoire of immunized chickens, this work features an effective and fast high-throughput approach for the generation of multiple humanized antibodies with potential therapeutic relevance.
Collapse
Affiliation(s)
- Adrian Elter
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Merck Lab @ Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Merck Lab @ Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, Saint-Prex, 1162, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Merck Lab @ Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| |
Collapse
|
18
|
Bogen JP, Storka J, Yanakieva D, Fiebig D, Grzeschik J, Hock B, Kolmar H. Isolation of Common Light Chain Antibodies from Immunized Chickens Using Yeast Biopanning and Fluorescence-Activated Cell Sorting. Biotechnol J 2020; 16:e2000240. [PMID: 32914549 DOI: 10.1002/biot.202000240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/31/2020] [Indexed: 12/19/2022]
Abstract
The phylogenetic distance between chickens and humans accounts for a strong immune response and a broader epitope coverage compared to rodent immunization approaches. Here the authors report the isolation of common light chain (cLC)-based chicken monoclonal antibodies from an anti-epidermal growth factor receptor (EGFR) immune library utilizing yeast surface display in combination with yeast biopanning and fluorescence-activated cell sorting (FACS). For the selection of high-affinity antibodies, a yeast cell library presenting cLC-comprising fragment antigen binding (Fab) fragments is panned against hEGFR-overexpressing A431 cells. The resulting cell-cell-complexes are sorted by FACS resulting in gradual enrichment of EGFR-binding Fabs in three sorting rounds. The isolated antibodies share the same light chain and show high specificity for EGFR, resulting in selective binding to A431 cells with notable EC50 values. All identified antibodies show very good aggregation propensity profiles and thermostabilities. Additionally, epitope binning demonstrates that these cLC antibodies cover a broad epitope space. Isolation of antibodies from immunized chickens by yeast cell biopanning makes an addition to the repertoire of methods for antibody library screening, paving the way for the generation of cLC-based bispecific antibodies against native mammalian receptors.
Collapse
Affiliation(s)
- Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany
| | - Juliana Storka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany
| | - Desislava Yanakieva
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, Saint-Prex, CH-1162, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, D-64287, Germany
| |
Collapse
|
19
|
Chockalingam K, Peng Z, Vuong CN, Berghman LR, Chen Z. Golden Gate assembly with a bi-directional promoter (GBid): A simple, scalable method for phage display Fab library creation. Sci Rep 2020; 10:2888. [PMID: 32076016 PMCID: PMC7031318 DOI: 10.1038/s41598-020-59745-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Fabs offer an attractive platform for monoclonal antibody discovery/engineering, but library construction can be cumbersome. We report a simple method – Golden Gate assembly with a bi-directional promoter (GBid) – for constructing phage display Fab libraries. In GBid, the constant domains of the Fabs are located in the backbone of the phagemid vector and the library insert comprises only the variable regions of the antibodies and a central bi-directional promoter. This vector design reduces the process of Fab library construction to “scFv-like” simplicity and the double promoter ensures robust expression of both constituent chains. To maximize the library size, the 3 fragments comprising the insert – two variable chains and one bi-directional promoter – are assembled via a 3-fragment overlap extension PCR and the insert is incorporated into the vector via a high-efficiency one-fragment, one-pot Golden Gate assembly. The reaction setup requires minimal preparatory work and enzyme quantities, making GBid highly scalable. Using GBid, we constructed a chimeric chicken-human Fab phage display library comprising 1010 variants targeting the multi-transmembrane protein human CD20 (hCD20). Selection/counter-selection on transfected whole cells yielded hCD20-specific antibodies in four rounds of panning. The simplicity and scalability of GBid makes it a powerful tool for the discovery/engineering of Fabs and IgGs.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA
| | - Zeyu Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA.,Biosion, Inc., Nanjing, 210061, China
| | - Christine N Vuong
- Department of Poultry Science, Texas A&M University, College Station, Texas, 77843, USA.,Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, 72703, USA
| | - Luc R Berghman
- Department of Poultry Science, Texas A&M University, College Station, Texas, 77843, USA
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
20
|
Sellmann C, Pekar L, Bauer C, Ciesielski E, Krah S, Becker S, Toleikis L, Kügler J, Frenzel A, Valldorf B, Hust M, Zielonka S. A One-Step Process for the Construction of Phage Display scFv and VHH Libraries. Mol Biotechnol 2020; 62:228-239. [DOI: 10.1007/s12033-020-00236-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Mei M, Li J, Wang S, Lee KB, Iverson BL, Zhang G, Ge X, Yi L. Prompting Fab Yeast Surface Display Efficiency by ER Retention and Molecular Chaperon Co-expression. Front Bioeng Biotechnol 2019; 7:362. [PMID: 32039168 PMCID: PMC6988814 DOI: 10.3389/fbioe.2019.00362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
For antibody discovery and engineering, yeast surface display (YSD) of antigen-binding fragments (Fabs) and coupled fluorescence activated cell sorting (FACS) provide intact paratopic conformations and quantitative analysis at the monoclonal level, and thus holding great promises for numerous applications. Using anti-TNFα mAbs Infliximab, Adalimumab, and its variants as model Fabs, this study systematically characterized complementary approaches for the optimization of Fab YSD. Results suggested that by using divergent promoter GAL1-GAL10 and endoplasmic reticulum (ER) signal peptides for co-expression of light chain and heavy chain-Aga2 fusion, assembled Fabs were functionally displayed on yeast cell surface with sigmoidal binding responses toward TNFα. Co-expression of a Hsp70 family molecular chaperone Kar2p and/or protein-disulfide isomerase (Pdi1p) significantly improved efficiency of functional display (defined as the ratio of cells displaying functional Fab over cells displaying assembled Fab). Moreover, fusing ER retention sequences (ERSs) with light chain also enhanced Fab display quality at the expense of display quantity, and the degree of improvements was correlated with the strength of ERSs and was more significant for Infliximab than Adalimumab. The feasibility of affinity maturation was further demonstrated by isolating a high affinity Fab clone from 1:103 or 1:105 spiked libraries.
Collapse
Affiliation(s)
- Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Junhong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Shengchen Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Ki Baek Lee
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States
| | - Brent L Iverson
- Department of Chemistry, University of Texas, Austin, TX, United States
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|