1
|
Akhtar W, Muazzam Khan M, Kumar S, Ahmad U, Husen A, Avirmed S. Pathophysiology of cerebral ischemia-reperfusion injury: An overview of oxidative stress and plant-based therapeutic approaches. Brain Res 2025; 1847:149308. [PMID: 39491664 DOI: 10.1016/j.brainres.2024.149308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Stroke is a debilitating neurological disorder that causes substantial morbidity and mortality on a global scale. Ischemic stroke, the most common type, occurs when the brain's blood supply is interrupted. Oxidative stress is a key factor in stroke pathology, contributing to inflammation and neuronal cell death. As a result, there is increasing interest in the potential of plant extracts, which have been used in traditional medicine for centuries and are generally considered safe, to serve as alternative or complementary treatments for stroke. The plant extracts can target multiple pathological processes, including oxidative stress, offering neuroprotective effects. The development of highly efficient, low-toxicity, and cost-effective natural products is crucial for enhancing stroke treatment options. In this review, we examine 60 plant extracts that have been focused on the studies published from year 2000 to 2024 along with the studies' experimental models, dosages, and results. The plant extracts hold promise in modulating cerebral ischemia-reperfusion injury through counteraction of relevant pathophysiologic processes such as oxidative stress.
Collapse
Affiliation(s)
- Wasim Akhtar
- Hygia Institute of Pharmacy, Lucknow 226013, Uttar Pradesh, India
| | - Mohd Muazzam Khan
- Faculty of Pharmacy, Integral University, Lucknow 226020, Uttar Pradesh, India.
| | - Sanjay Kumar
- Hygia Institute of Pharmacy, Lucknow 226013, Uttar Pradesh, India
| | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow 226020, Uttar Pradesh, India
| | - Ali Husen
- Hygia Institute of Pharmacy, Lucknow 226013, Uttar Pradesh, India
| | | |
Collapse
|
2
|
Gurivelli P, Katta S. Unraveling Grewia bilamellata Gagnep. Role in cerebral ischemia: Comprehensive in vivo and in silico studies. In Silico Pharmacol 2024; 12:62. [PMID: 39035100 PMCID: PMC11254896 DOI: 10.1007/s40203-024-00237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
The present study investigated the neuroprotective properties of whole plants of Grewia bilamellata Gagnep. extract (GBEE) against cerebral ischemia by harnessing both In vivo studies in a rat model and In silico studies focusing on nitric oxide synthase (NOS) inhibition. High-resolution liquid chromatography‒mass spectrometry (HR LC‒MS) analysis identified 32 phytochemicals in the GBEE, 15 of which adhered to Lipinski's rule of five. These compounds exhibited diverse physicochemical properties and high binding affinity to NOS, with cleomiscosin D showing the greatest potential. In vivo, GBEE had significant neuroprotective effects on bilateral common carotid artery occlusion/reperfusion (BCCAO/R) in rats, especially at doses of 200 mg/kg and 400 mg/kg body weight. GBEE treatment improved brain function, as evidenced by EEG normalization, substantial reductions in cerebral infarction size, mitigated neuronal loss, and the restoration of regular histological arrangement in the CA1 hippocampal area of the brain. Furthermore, GBEE enhanced antioxidant defenses by augmenting the activity of catalase (CAT) and superoxide dismutase (SOD), reducing malondialdehyde (MDA) levels, and restoring reduced glutathione (GSH) levels. These effects were accompanied by a decrease in nitric oxide (NO) levels, indicative of attenuated oxidative and nitrosative stress. Collectively, our findings suggest that GBEE is a promising natural therapeutic agent that may prevent or alleviate ischemic brain injury through a multifaceted mechanism involving NOS inhibition and attenuation of the oxidative stress response. This study highlights the therapeutic potential of GBEE and warrants further research into its mechanism of action and possible clinical applications.
Collapse
Affiliation(s)
- Poornima Gurivelli
- Pharmacognosy and Phytochemistry Division, Gitam School of Pharmacy, Gitam University, Visakhapatnam, 530 045 Andhra Pradesh India
| | - Sunitha Katta
- Pharmacognosy and Phytochemistry Division, Gitam School of Pharmacy, Gitam University, Visakhapatnam, 530 045 Andhra Pradesh India
| |
Collapse
|
3
|
Singh V, Shri R, Sood P, Singh M, Singh TG, Singh R, Kumar A, Ahmad SF. 5,7-dihydroxy-3',4',5'-trimethoxyflavone mitigates lead induced neurotoxicity in rats via its chelating, antioxidant, anti-inflammatory and monoaminergic properties. Food Chem Toxicol 2024; 189:114747. [PMID: 38768937 DOI: 10.1016/j.fct.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Chronic exposure to lead (Pb) induces neurodegenerative changes in animals and humans. Drugs with strong antioxidant properties are effective against Pb-mediated neurotoxicity. In a prior study, we identified 5,7-dihydroxy-3',4',5'-trimethoxyflavone (TMF) from Ocimum basilicum L. leaves as a potent antioxidant and neuroprotective compound. This research explores TMF's neuroprotective effects against Pb-induced brain toxicity in rats to establish it as a therapeutic agent. Rats received lead acetate (100 mg/kg, orally, once daily) for 30 days to induce brain injury, followed by TMF treatment (5 and 10 mg/kg, oral, once daily) 30 min later. Cognitive and motor functions were assessed using Morris Water Maze and horizontal bar tests. Lead, monoamine oxidase (MAO) A and B enzymes, reduced glutathione (GSH), thiobarbituric acid reactive species (TBARS), Tumor necrosis factor-alpha (TNF-α), and IL-6 levels were measured in the hippocampus and cerebellum. Pb exposure impaired cognitive and motor functions, increased Pb, TBARS, TNF-α, and IL-6 levels, and compromised MAO A & B and GSH levels. TMF reversed Pb-induced memory and motor deficits and normalized biochemical anomalies. TMF's neuroprotective effects against lead involve chelating, antioxidant, anti-inflammatory, and monoaminergic properties, suggesting its potential as a treatment for metal-induced brain injury.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India.
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| | - Parul Sood
- Chitkara School of Pharmacy, Chitkara University, Solan, Himachal Pradesh, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Sood P, Singh V, Shri R. Morus Alba Fruit Extract and its Fractions Ameliorate Streptozotocin Induced Cognitive Deficit in Mice via Modulating Oxidative and Cholinergic Systems. Neurochem Res 2024; 49:52-65. [PMID: 37597050 DOI: 10.1007/s11064-023-04009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
Increased oxidative stress and acetylcholinesterase (AChE) activity are key pathological characters contributing to the memory disorders. Thus, drugs targeting both oxidative stress and AChE are being explored for the management of cognitive dysfunction. Morus alba fruits (commonly consumed for its high nutritious value) are known to have antioxidant and AChE inhibitory effects. However, the role of Morus alba fruits in the management of memory disorders has not reported yet. This investigation was conducted to assess the antioxidant and AChE inhibitory potential of Morus alba fruit extracts in-vitro and to identify the components responsible for such effects. Further, the obtained bioactive component was studied for possible memory improvement effects against streptozotocin (STZ) induced dementia. To isolate the bioactive component in-vitro DPPH and AChE assays guided fractionation was performed. Memory functions in mice were determined using Morris Water Maze test while brain biochemical parameters were measured to understand the mechanism of action. In-vitro assays revealed strong AChE and DPPH inhibitory potential of methanol extract (ME), therefore, it was further fractionated. Among various fractions obtained, ethyl-acetate fraction (EAF) was found to possess marked AChE and DPPH inhibitory activities. On subsequent fractionation of EAF, bioactivity of obtained sub-fractions was found to be inferior to EAF. Further, both ME and EAF improved STZ (intracerebroventricular) induced cognitive dysfunction in animals by restoring endogenous antioxidant status (superoxide dismutase and reduced glutathione) and reducing thiobarbituric acid reactive species and nitric oxide levels along with brain AChE and myeloperoxidase activity. TLC densitometric studies showed appreciable levels of phenolic acids and quercetin in both EAF and ME. It can be concluded that Morus alba fruit extract has the ability to modulate cholinergic and oxidative system due to presence of phenolic and flavonoid compounds and hence, could aid in the management of memory disorders.
Collapse
Affiliation(s)
- Parul Sood
- Chitkara School of Pharmacy, Chitkara University, Solan, Himachal Pradesh, India
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India.
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
5
|
Sharma P, Singh M, Singh V, Singh TG, Singh T, Ahmad SF. Recent Development of Novel Aminoethyl-Substituted Chalcones as Potential Drug Candidates for the Treatment of Alzheimer's Disease. Molecules 2023; 28:6579. [PMID: 37764355 PMCID: PMC10534526 DOI: 10.3390/molecules28186579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
No drug on the market, as a single entity, participates in different pathways involved in the pathology of Alzheimer's disease. The current study is aimed at the exploration of multifunctional chalcone derivatives which can act on multiple targets involved in Alzheimer's disease. A series of novel aminoethyl-substituted chalcones have been developed using in silico approaches (scaffold morphing, molecular docking, and ADME) and reported synthetic methods. The synthesized analogs were characterized and evaluated biologically using different in vitro assays against AChE, AGEs, and radical formation. Among all compounds, compound PS-10 was found to have potent AChE inhibitory activity (IC50 = 15.3 nM), even more than the standard drug (IC50 = 15.68 nM). Further, the in vivo evaluation of PS-10 against STZ-induced dementia in rats showed memory improvement (Morris Water Maze test) in rats. Also, PS-10 inhibited STZ-induced brain AChE activity and oxidative stress, further strengthening the observed in vitro effects. Further, the molecular dynamic simulation studies displayed the stability of the PS-10 and AChE complex. The novel aminoethyl-substituted chalcones might be considered potential multifunctional anti-Alzheimer's molecules.
Collapse
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India (T.G.S.)
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India (T.G.S.)
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India (T.G.S.)
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A & M Health Science Center, College Station, TX 77807, USA;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
6
|
Wang PC, Wang SX, Yan XL, He YY, Wang MC, Zheng HZ, Shi XG, Tan YH, Wang LS. Combination of paeoniflorin and calycosin-7-glucoside alleviates ischaemic stroke injury via the PI3K/AKT signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1469-1477. [PMID: 35938509 PMCID: PMC9361763 DOI: 10.1080/13880209.2022.2102656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Paeoniflorin (PF) and calycosin-7-glucoside (CG, Paeonia lactiflora Pall. extract) have demonstrated protective effects in ischaemic stroke. OBJECTIVE To investigate the synergistic effects of PF + CG on ischaemia/reperfusion injury in vivo and in vitro. MATERIALS AND METHODS Male Sprague-Dawley rats were subjected to the middle cerebral artery occlusion/reperfusion (MCAO/R). After MCAO/R for 24 h, rats were randomly subdivided into 5 groups: sham, model (MCAO/R), study treatment (PF + CG, 40 + 20 mg/kg), LY294002 (20 mg/kg), and study treatment + LY294002. Males were given via intragastric administration; the duration of the in vivo experiment was 8 days. Neurologic deficits, cerebral infarction, brain edoema, and protein levels were assessed in vivo. Hippocampal neurons (HT22) were refreshed with glucose-free DMEM and placed in an anaerobic chamber for 8 h. Subsequently, HT22 cells were reoxygenated in a 37 °C incubator with 5% CO2 for 6 h. SOD, MDA, ROS, LDH and protein levels were measured in vitro. RESULTS PF + CG significantly reduced neurobehavioral outcomes (21%), cerebral infarct volume (44%), brain edoema (1.6%) compared with the MCAO/R group. Moreover, PF + CG increased p-PI3K/PI3K (4.69%, 7.4%), p-AKT/AKT (6.25%, 60.6%) and Bcl-2/BAX (33%, 49%) expression in vivo and in vitro, and reduced GSK-3β (10.5%, 9.6%) expression. In vitro, PF + CG suppressed apoptosis in HT22 cells and decreased ROS and MDA levels (20%, 50%, respectively). CONCLUSIONS PF + CG showed a synergistic protective effect against ischaemic brain injury, potentially being a future treatment for ischaemic stroke.
Collapse
Affiliation(s)
- Peng-Cheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Sheng-Xin Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xiang-Li Yan
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Ying-Ying He
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Min-Chun Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Hao-Zhen Zheng
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xu-Guang Shi
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yong-Heng Tan
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Li-Sheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
- CONTACT Li-Sheng Wang College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, 232 Outer Circle Road East, Panyu District, Guangdong, Guangzhou510006, China
| |
Collapse
|
7
|
Singh V, Kaur K, Kaur S, Shri R, Singh TG, Singh M. Trimethoxyflavones from Ocimum basilicum L. leaves improve long term memory in mice by modulating multiple pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115438. [PMID: 35671863 DOI: 10.1016/j.jep.2022.115438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally, Ocimum basilicum L. leaves (OB) are recommended for various brain disorders. AIM OF THE STUDY Scientific evidence highlights the cognition improvement capacity of Ocimum basilicum L. leave extract (OBE), however, the compound(s) responsible for this effect and the associated mechanism was not reported. The present study was, thus, designed to isolate and identify the compound responsible for memory improvement effects of OB and to delineate the associated mechanism of action. MATERIALS AND METHODS In-vitro acetylcholinesterase (AChE) inhibitory (Ellman method) and antioxidant (DPPH scavenging) assays guided fractionation was employed to isolate the bioactive compounds from OBE. The isolated compounds were characterised using spectroscopic techniques (FTIR, NMR and MS). In-silico and in-vivo [mouse model of scopolamine (SCOP) induced amnesia] investigations were used to substantiate the memory improvement effects of isolated compounds and to understand their mechanism of action. RESULTS AChE and DPPH assays guided fractionation of OBE lead to isolation of two pure compounds namely, 5,7-dihydroxy-3',4',5'-trimethoxyflavone (S1) and 3-hydroxy-3',4',5'-trimethoxyflavone (S2). Both S1 and S2 mitigated the cognitive impairment due to SCOP in mice by reducing brain AChE activity, TBARS, TNF-α, IL-1β, IL-6 and caspase-3 concentrations and elevating reduced glutathione and IL-10 levels; together with amelioration of brain hippocampus histopathological aberration (H and E staining). Moreover, the molecular docking of S1 and S2 at the active pockets of AChE and caspase-3 has shown good interactions with vital amino acid residues. CONCLUSIONS Our findings show that trimethoxy flavones are responsible for the memory improvement effect of OBE due to their anticholinergic, antioxidant, anti-inflammatory and anti-apoptotic properties. These maybe developed as valuable alternatives for management of cognitive disorders.
Collapse
Affiliation(s)
- Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Kiranpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| | - Sanimardeep Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| | | | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
8
|
Basit A, Ahmad S, Khan KUR, Naeem A, Usman M, Ahmed I, Shahzad MN. Chemical profiling of Justicia vahlii Roth. (Acanthaceae) using UPLC-QTOF-MS and GC-MS analysis and evaluation of acute oral toxicity, antineuropathic and antioxidant activities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114942. [PMID: 34968664 DOI: 10.1016/j.jep.2021.114942] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia vahlii Roth. (Acanthaceae), also called as kodasoori and bhekkar is an annual therophyte erect or decumbent herb used traditionally in toothache, skin diseases (itching, topical inflammation) and for the treatment of various respiratory disorders. AIM OF THE STUDY The current study aimed at exploring pain cessation potential of J. vahlii Roth. via murine model of neuropathic pain and its phytochemical, toxicological and antioxidant profiles. MATERIALS AND METHODS The hydro-alcoholic extract of J. vahlii (HAEJv) prepared by maceration technique was subjected to preliminary phytochemical screening, total bioactive content determination, UPLC-QTOF-MS and GC-MS analysis. Toxicity assessment was carried out by using brine shrimp lethality assay and acute oral toxicity test. Murine model of neuropathic pain was applied to assess the antineuropathic potential of the species. Furthermore effect of the extract on catalase, superoxide oxide dismutase (SOD), Glutathione (GSH), interleukin-1beta (IL-1β) and total necrosis factor-alpha (TNF-α) was also studied. In vitro antioxidant profile was explored by using four methods; 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis(3-ethylbenothiazoline)-6-sulfonic acid (ABTS), CUPric reducing antioxidant capacity (CUPRAC) and Ferric reducing antioxidant power (FRAP) assay. RESULTS The phytochemical screening revealed the presence of phenols, flavonoids, coumarins, alkaloids and lignans as the major classes of secondary metabolites. The extract was found rich in total phenolics content (TPC) and total flavonoids content (TFC) with identification of total 59 bioactives in UPLC-QTOF-MS and 40 compounds in GC-MS analysis. The extract was found nontoxic up to 4000 mg/kg (p.o.) in mice and no mortality observed in brine shrimp lethality assay. The HAEJv significantly reduced number of acetic acid induced abdominal constrictions at 100 mg/kg (p < 0.01) and 200 mg/kg (p < 0.001) and increased paw withdrawal threshold p < 0.05 at 100 mg/kg and p < 0.001 at 200 mg/kg, and an increase in tail withdrawal latency time p < 0.001 at 200 mg/kg was observed. The extract significantly increased levels of catalase, SOD and GSH while decreased IL-1β and TNF-α levels in sciatic nerve tissue of mice. HAEJv showed highest antioxidant activity through CUPRAC method 121.32 ± 1.22 mg trolox equivalent per gram of dry extract (mg TE/g DE) followed by DPPH 81.334 ± 4.35 mg TE/g DE, FRAP 69.89 ± 3.05 mg TE/g DE and ABTS 38.17 ± 2.12 mg TE/g DE. CONCLUSION The current study back the traditional use of J. vahlii in pain cessation through antioxidant based antineuropathic pain activity and revealed the extract non-toxic with number of functional phytoconstituents and warrants further research on isolation of the compounds and sub-acute toxicity studies.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Muhammad Usman
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Imtiaz Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
9
|
Alam A, Al Arif Jahan A, Bari MS, Khandokar L, Mahmud MH, Junaid M, Chowdhury MS, Khan MF, Seidel V, Haque MA. Allium vegetables: Traditional uses, phytoconstituents, and beneficial effects in inflammation and cancer. Crit Rev Food Sci Nutr 2022; 63:6580-6614. [PMID: 35170391 DOI: 10.1080/10408398.2022.2036094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The genus Allium comprises of at least 918 species; the majority grown for dietary and medicinal purposes. This review describes the traditional uses, phytoconstituents, anti-inflammatory and anticancer activity, and safety profile of six main species, namely Allium sativum L. (garlic), Allium cepa L. (onions), Allium ampeloprasum L. (leek), Allium fistulosum L. (scallion), Allium schoenoprasum L. (chives) and Allium tuberosum Rottler (garlic chives). These species contain at least 260 phytoconstituents; mainly volatile compounds-including 63 organosulfur molecules-, saponins, flavonoids, anthocyanins, phenolic compounds, amino acids, organic acids, fatty acids, steroids, vitamins and nucleosides. They have prominent in vitro anti-inflammatory activity, and in vivo replications of such results have been achieved for all except for A. schoenoprasum. They also exert cytotoxicity against different cancer cell lines. Several anticancer phytoconstituents have been characterized from all except for A. fistulosum. Organosulfur constituents, saponins and flavonoid glycosides have demonstrated anti-inflammatory and anticancer activity. Extensive work has been conducted mainly on the anti-inflammatory and anticancer activity of A. sativum and A. cepa. The presence of anti-inflammatory and anticancer constituents in these two species suggests that similar bioactive constituents could be found in other species. This provides future avenues for identifying new Allium-derived anti-inflammatory and anticancer agents.
Collapse
Affiliation(s)
- Ashraful Alam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Abdullah Al Arif Jahan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md Sazzadul Bari
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Md Hasan Mahmud
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Muhammed Junaid
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | | | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| |
Collapse
|
10
|
León-Moreno LC, Castañeda-Arellano R, Aguilar-García IG, Desentis-Desentis MF, Torres-Anguiano E, Gutiérrez-Almeida CE, Najar-Acosta LJ, Mendizabal-Ruiz G, Ascencio-Piña CR, Dueñas-Jiménez JM, Rivas-Carrillo JD, Dueñas-Jiménez SH. Kinematic Changes in a Mouse Model of Penetrating Hippocampal Injury and Their Recovery After Intranasal Administration of Endometrial Mesenchymal Stem Cell-Derived Extracellular Vesicles. Front Cell Neurosci 2020; 14:579162. [PMID: 33192324 PMCID: PMC7533596 DOI: 10.3389/fncel.2020.579162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
Locomotion speed changes appear following hippocampal injury. We used a hippocampal penetrating brain injury mouse model to analyze other kinematic changes. We found a significant decrease in locomotion speed in both open-field and tunnel walk tests. We described a new quantitative method that allows us to analyze and compare the displacement curves between mice steps. In the tunnel walk, we marked mice with indelible ink on the knee, ankle, and metatarsus of the left and right hindlimbs to evaluate both in every step. Animals with hippocampal damage exhibit slower locomotion speed in both hindlimbs. In contrast, in the cortical injured group, we observed significant speed decrease only in the right hindlimb. We found changes in the displacement patterns after hippocampal injury. Mesenchymal stem cell-derived extracellular vesicles had been used for the treatment of several diseases in animal models. Here, we evaluated the effects of intranasal administration of endometrial mesenchymal stem cell-derived extracellular vesicles on the outcome after the hippocampal injury. We report the presence of vascular endothelial growth factor, granulocyte–macrophage colony-stimulating factor, and interleukin 6 in these vesicles. We observed locomotion speed and displacement pattern preservation in mice after vesicle treatment. These mice had lower pyknotic cells percentage and a smaller damaged area in comparison with the nontreated group, probably due to angiogenesis, wound repair, and inflammation decrease. Our results build up on the evidence of the hippocampal role in walk control and suggest that the extracellular vesicles could confer neuroprotection to the damaged hippocampus.
Collapse
Affiliation(s)
- Lilia Carolina León-Moreno
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico.,Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara, Mexico
| | - Rolando Castañeda-Arellano
- Laboratory of Tissue Engineering and Transplant, Department of Physiology, cGMP Cell Processing Facility, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Irene Guadalupe Aguilar-García
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | | | - Elizabeth Torres-Anguiano
- Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara, Mexico
| | - Coral Estefanía Gutiérrez-Almeida
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Luis Jesús Najar-Acosta
- Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara, Mexico
| | - Gerardo Mendizabal-Ruiz
- Department of Computer Sciences, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara, Mexico
| | - César Rodolfo Ascencio-Piña
- Department of Computer Sciences, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara, Mexico
| | - Judith Marcela Dueñas-Jiménez
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Jorge David Rivas-Carrillo
- Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara, Mexico
| | - Sergio Horacio Dueñas-Jiménez
- Laboratory of Neurophysiology, Department of Neuroscience, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
11
|
Kim B, Lee TK, Park CW, Kim DW, Ahn JH, Sim H, Lee JC, Yang GE, Kim JD, Shin MC, Cho JH, Ryoo S, Kim YM, Won MH, Park JH. Pycnogenol ® Supplementation Attenuates Memory Deficits and Protects Hippocampal CA1 Pyramidal Neurons via Antioxidative Role in a Gerbil Model of Transient Forebrain Ischemia. Nutrients 2020; 12:E2477. [PMID: 32824513 PMCID: PMC7468866 DOI: 10.3390/nu12082477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Pycnogenol® (an extract of the bark of French maritime pine tree) is used for dietary supplement and known to have excellent antioxidative efficacy. However, there are few reports on neuroprotective effect of Pycnogenol® supplementation and its mechanisms against ischemic injury following transient forebrain ischemia (TFI) in gerbils. Now, we examined neuroprotective effect and its mechanisms of Pycnogenol® in the gerbils with 5-min TFI, which evokes a significant death (loss) of pyramidal cells located in the cornu ammonis (CA1) region of gerbil hippocampus from 4-5 days post-TFI. Gerbils were pretreated with 30, 40, and 50 mg/kg of Pycnogenol® once a day for 7 days before TFI surgery. Treatment with 50 mg/kg, not 30 or 40 mg/kg, of Pycnogenol® potently protected learning and memory, as well as CA1 pyramidal cells, from ischemic injury. Treatment with 50 mg/kg Pycnogenol® significantly enhanced immunoreactivity of antioxidant enzymes (superoxide dismutases and catalase) in the pyramidal cells before and after TFI induction. Furthermore, the treatment significantly reduced the generation of superoxide anion, ribonucleic acid oxidation and lipid peroxidation in the pyramidal cells. Moreover, interestingly, its neuroprotective effect was abolished by administration of sodium azide (a potent inhibitor of SODs and catalase activities). Taken together, current results clearly indicate that Pycnogenol® supplementation can prevent neurons from ischemic stroke through its potent antioxidative role.
Collapse
Affiliation(s)
- Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea;
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Korea;
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea;
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Korea;
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Sungwoo Ryoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Moo-Ho Won
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Korea
| |
Collapse
|
12
|
León-Moreno LC, Castañeda-Arellano R, Rivas-Carrillo JD, Dueñas-Jiménez SH. Challenges and Improvements of Developing an Ischemia Mouse Model Through Bilateral Common Carotid Artery Occlusion. J Stroke Cerebrovasc Dis 2020; 29:104773. [PMID: 32199775 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104773] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 02/17/2020] [Indexed: 01/01/2023] Open
Abstract
Brain ischemia is one of the principal causes of death and disability worldwide in which prevention or an effective treatment does not exist. In order to develop successful treatments, an adequate and useful ischemia model is essential. Transient global cerebral ischemia is one of the most interesting pathological conditions in stroke studies because of the observed degeneration of forebrain and delayed neuronal cell death in selective vulnerable regions such as hippocampus. Transient occlusion of both common carotid arteries is the most convenient model to induce tGCI. Although there are effective rat and gerbil models using this method, the induction of a reproducible and reliable injury after global ischemia in mouse has presented higher variations, mainly because of its size and the necessary monitoring skills in order to accomplish homogeneous and reproducible results. Further, great variability among cerebral vasculature and susceptibility of the different strains and sub-strains is observed. In recent years, some modifications have been made to the model in order to normalize the heterogenic effects. Analysis of posterior communicating artery patency has been proposed as an exclusion parameter due to the direct relationship reported with the reduction of cerebral blood flow. Another method used to significantly reduce blood flow is the induction of hypotension with isoflurane. Each protocol produces distinct injury outcomes. Further improvements are needed to attain a general, simpler, reproducible and globally accepted model that allows comparisons between research groups, progress in understanding ischemia and the consequent development of therapeutic alternatives for ischemic injury.
Collapse
Affiliation(s)
| | - Rolando Castañeda-Arellano
- Department of Biomedical Sciences, University Center of Tonala, University de Guadalajara, Jalisco Mexico
| | - Jorge David Rivas-Carrillo
- Department of Physiology, Laboratory of Tissue Engineering and Transplant and cGMP Cell Processing Facility, Health Sciences Center, University de Guadalajara, Jalisco, Mexico
| | - Sergio Horacio Dueñas-Jiménez
- Department of Neuroscience, Laboratory of Neurophysiology, Health Sciences Center, University of Guadalajara, Guadalajara, C.P. 44340 Jalisco, México.
| |
Collapse
|
13
|
Chumboatong W, Khamchai S, Tocharus C, Govitrapong P, Tocharus J. Agomelatine protects against permanent cerebral ischaemia via the Nrf2-HO-1 pathway. Eur J Pharmacol 2020; 874:173028. [PMID: 32084418 DOI: 10.1016/j.ejphar.2020.173028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Stroke is a major cause of death and permanent disability worldwide. It has been reported that 85% of stroke patients undergo an ischaemic stroke. The standard treatment is currently recanalization. However, only 5% of patients have access to this treatment. Therefore, new strategies for permanent ischaemic stroke treatment need to be investigated. Agomelatine is a melatonergic agonist that acts on MT1/2 receptors and is an antagonist of 5-HT2c receptors, and melatonergic has pleiotropic effects, such as antioxidation or anti-inflammation effects. In this study, we focused on the effect of agomelatine on permanent cerebral ischaemia in a rat model. Male Wistar rats were randomly divided into the following four groups (n = 6/group): sham operating group, permanent ischaemic model group, permanent ischaemic model plus agomelatine (40 mg/kg, i.p) group and permanent ischaemic model plus melatonin (10 mg/kg, i.p) group. Twenty-four h after ischaemic onset, we investigated the neurological deficits and infarct volume using neurological deficit scores, 2,3,5-triphenyltetrazolium chloride (TTC) and transmission electron microscopy (Kochanski et al.). Moreover, we analysed Nrf2-HO-1 protein expression by Western blot. The results showed that agomelatine and melatonin decreased neuronal injury and promoted the Nrf2-HO-1 signalling pathway. These findings suggest that agomelatine and melatonin exert beneficial effects on permanent cerebral ischaemia.
Collapse
Affiliation(s)
- Wijitra Chumboatong
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Satchakorn Khamchai
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
14
|
Acute remote ischemic preconditioning alleviates free radical injury and inflammatory response in cerebral ischemia/reperfusion rats. Exp Ther Med 2019; 18:1953-1960. [PMID: 31410157 PMCID: PMC6676222 DOI: 10.3892/etm.2019.7797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022] Open
Abstract
Remote ischemic preconditioning (IPreC) is an effective strategy to defend against cerebral ischemia/reperfusion (IR) injury; however, its mechanisms remain to be elucidated. The aim of the present study was to investigate the effect of IPreC on brain tissue following cerebral ischemia, as well as the underlying mechanisms. Adult male Sprague-Dawley rats were treated with IPreC for 72 h prior to the induction of transient cerebral ischemia and reperfusion. The results demonstrated that IPreC reduced the area of cerebral infarction in the IR rats by 2,3,5-triphenyl-tetrazolium chloride staining. In addition, cell apoptosis was markedly suppressed by IPreC with an increased expression of B-cell lymphoma 2 (Bcl-2)/Bcl-2-associatd X protein using Terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assay and western blot analysis. IR induced a decrease in the level of superoxide dismutase, and IPreC significantly suppressed increased levels of malondialdehyde, lactate dehydrogenase and nitric oxide. The expression of CD11b and CD18 was markedly inhibited by IpreC unsing flow cytometry. Furthermore, IPreC markedly decreased the release of pro-inflammatory factors interleukin (IL)-6 and IL-1β, and enhanced the level of anti-inflammatory factors (IL-10 and IL-1 receptor antagonist) by ELISA assay. Finally, IPreC reduced the levels of transforming growth factor-β-activated kinase 1, phosphorylated-P65/P65, and tumor necrosis factor-α, indicating that the nuclear factor-κB pathway was involved in IPreC-mediated protection against cerebral ischemia. Taken together, the results suggested that IPreC decreased ischemic brain injury through alleviating free radical injury and the inflammatory response in cerebral IR rats.
Collapse
|
15
|
Nur77 promotes cerebral ischemia-reperfusion injury via activating INF2-mediated mitochondrial fragmentation. J Mol Histol 2018; 49:599-613. [PMID: 30298449 DOI: 10.1007/s10735-018-9798-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial fragmentation drastically regulates mitochondrial homeostasis in brain illness. However, the role of mitochondrial fragmentation in cerebral ischemia-reperfusion (IR) injury remains unclear. Nur77, a regulator of mitochondrial homeostasis, is associated with heart and liver IR injury, but its effects on mitochondrial function in cerebral IR injury has not been studied intensively. The aim of our study is to explore whether cerebral IR injury is modulated by Nur77 via modification of mitochondrial homeostasis. Our results indicated that Nur77 was upregulated in reperfused brain tissues. Genetic ablation of Nur77 reduced infarction area and promoted neuron survival under IR burden. Biochemical analysis demonstrated that Nur77 deletion protected mitochondrial function, attenuated mitochondrial oxidative stress, preserved mitochondrial potential, and blocked mitochondria-related cell apoptosis. In addition, we illustrated that Nur77 mediated mitochondrial damage via evoking mitochondrial fragmentation that occurred through increased mitochondrial fission and decreased fusion. Besides, our results also demonstrated that Nur77 controlled mitochondrial fragmentation via upregulating INF2 in a manner dependent on the Wnt/β-catenin pathway; inhibition of the Wnt pathway abrogated the protective effect of Nur77 deletion on reperfused-mediated neurons. Altogether, our study highlights that the pathogenesis of cerebral IR injury is associated with Nur77 activation followed by augmented mitochondrial fragmentation via an abnormal Wnt/β-catenin/INF2 pathway. Accordingly, Nur77-dependent mitochondrial fragmentation and the Wnt/β-catenin/INF2 axis may represent novel therapeutic targets to reduce cerebral IR injury.
Collapse
|
16
|
Zhang Z, Yu J. Nurr1 exacerbates cerebral ischemia-reperfusion injury via modulating YAP-INF2-mitochondrial fission pathways. Int J Biochem Cell Biol 2018; 104:149-160. [PMID: 30267803 DOI: 10.1016/j.biocel.2018.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/23/2022]
Abstract
Nurr1, a nuclear transcription factor, has been linked to ischemia-reperfusion injury (IRI) in heart and kidney via modulating mitochondrial homeostasis. However, its role in cerebral ischemia-reperfusion has not been defined. In the present study, we found that cerebral IRI significantly increased the expression of Nurr1 and genetic ablation of Nurr1 attenuated the infarction area and reduced the neuron apoptosis under brain IRI burden. Functional studies have demonstrated that Nurr1 induced neuron death via activating mitochondrial fission. Aberrant mitochondrial fission promoted mitochondrial membrane potential reduction, evoked cellular oxidative stress and activated caspase-9-dependent mitochondrial apoptotic pathway. Interestingly, Nurr1 deletion alleviated fission-mediated mitochondrial damage, sustaining mitochondrial homeostasis and favoring neuron survival. Further, we found that Nurr1 deletion modulated mitochondrial fission via preventing INF2 upregulation in a manner dependent on YAP pathways. Either pharmacological blockade of YAP pathway or overexpression of INF2 abrogated the inhibitory effect of Nurr1 deletion on mitochondrial fission, leading to neuron death via mitochondrial apoptosis. Altogether, our results report that the pathogenesis of cerebral ischemia-reperfusion injury is associated with Nurr1 upregulation followed by augmented mitochondrial fission via an abnormal YAP-INF2 pathways.
Collapse
Affiliation(s)
- Zhanwei Zhang
- Department of Neurosurgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Jianbai Yu
- Department of Neurosurgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China.
| |
Collapse
|