1
|
Sharma P, Sharma B, Kharkwal H, Ghildiyal S, Patil VM. Selective inhibition of T-type calcium channel preserves ischemic pre-conditioning mediated neuroprotection during cerebral ischemia reperfusion injury in diabetic mice. Metab Brain Dis 2024; 40:33. [PMID: 39570531 DOI: 10.1007/s11011-024-01470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/11/2024] [Indexed: 11/22/2024]
Abstract
Ischemic preconditioning (IPC) provides ischemic tolerance and neuroprotection during cerebral ischemia reperfusion (CI/R) injury. Diabetes abolishes the beneficial effects of conditioning phenomenon during CI/R. The study investigates the role of T-type calcium ion channel in IPC mediated protection during diabetes mellitus. The study employed Swiss Albino mice. Animals were divided into 3 normoglycaemic groups (Sham, CI/R, and IPC) and 4 hyperglycaemic groups (Sham, CI/R, IPC, and ML218 + IPC). CI/R injury was induced in Swiss Albino mice by occlusion of common carotid arteries followed by reperfusion. IPC was given prior to CI/R injury and diabetes was induced using streptozotocin (STZ). Animals were assessed for learning, memory, motor coordination, neurological function, cerebral infarction, edema, and histopathological alterations. Biochemical assessments were performed for calcium binding proteins (Calmodulin (CaM), calcium/calmodulin-dependent protein kinase II (CaMKII), and S100B), oxidative stress (4-hydroxy-2-nonenal (4-HNE)), glutathione (GSH), inflammation (nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), tumor necrosis factor (TNF-α), interleukin (IL-10)), inducible nitric oxide synthase (iNOS) levels, and acetylcholinesterase activity (AChE) in brain supernatants. NF-kB, iNOS, and S100B serum levels were also assessed. CI/R animals (normoglycemic and hyperglycaemic) showed impairment in learning, memory, motor coordination, and neurological function along with increase in cerebral infarction, edema, and histopathological alterations. Furthermore, increase in brain calcium-binding proteins, oxidative stress, inflammation, and AChE along with serum NF-kB, iNOS, and S100B levels were recorded in CI/R animals. IPC ameliorated CI/R induced behavioral, biochemical, and histopathological impairment, however no beneficial effects were observed in IPC (diabetic) mice. Administration of ML218 (10 mg/kg; i.p.), a selective T-type calcium channel re-established the IPC mediated neuroprotection in CI/R diabetic animals. In conclusion, IPC-mediated neuroprotection was abolished in diabetic mice. T-type calcium ion channel antagonism plays an important role in the IPC-mediated neuroprotection during hyperglycaemia.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, 122003, India.
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Shivani Ghildiyal
- Department of DravyaGuna, All India Institute of Ayurveda, An autonomous organization under Ministry of Ayush, Government of India, Sarita Vihar, New Delhi, India
| | - Vaishali M Patil
- Charak School of Pharmacy, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| |
Collapse
|
2
|
Sharma P, Sharma B, Ghildiyal S, Kharkwal H. ML218 modulates calcium binding protein, oxidative stress, and inflammation during ischemia-reperfusion brain injury in mice. Eur J Pharmacol 2024; 982:176919. [PMID: 39179092 DOI: 10.1016/j.ejphar.2024.176919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Cerebral ischemia disrupts calcium homeostasis in the brain causing excitotoxicity, oxidative stress, inflammation, and neuronal cell apoptosis. During ischemic conditions, T-type calcium channel channels contribute to increase in intracellular calcium ions in both neurons and glial cells therefore, the current study hypothesizes the antagonism of these channels using ML218, a novel specific T-Type inhibitor in experimental model of cerebral ischemia-reperfusion (CI/R) brain injury. CI/R injury was induced in Swiss Albino mice by occlusion of common carotid arteries followed by reperfusion. Animals were assessed for learning and memory (MWM), motor coordination (Rota rod), neurological function (neurological deficit score), cerebral infarction, edema, and histopathological alterations. Biochemical assessments were made for calcium binding proteins (Calmodulin- CaM, calcium/calmodulin-dependent protein kinase II-CaMKII, S100B), oxidative stress (4-hydroxy 2-nonenal-4-HNE, glutathione-GSH, inflammation (nuclear factor kappa-light-chain-enhancer of activated B-p65-NF-kB, tumor necrosis factor-TNF-α, interleukin-IL-10) inducible nitric oxide synthase (iNOS) levels, and acetylcholinesterase activity (AChE) in brain supernatants. Furthermore, serum levels of NF-kB, iNOS, and S100B were also assessed. CI/R animals showed impairment in learning, memory, motor coordination, and neurological function along with increase in cerebral infarction, edema, and histopathological alterations. Furthermore, increase in brain calcium binding proteins, oxidative stress, inflammation, and AChE activity along with serum NF-kB, iNOS, and S100B levels were recorded in CI/R animals. Administration of ML218 (5 mg/kg and 10 mg/kg; i.p.) was observed to recuperate CI/R induced impairments in behavioral, biochemical, and histopathological analysis. Hence, it may be concluded that ML218 mediates neuroprotection during CI/R via decreasing brain and serum calcium binding proteins, inflammation, iNOS, and oxidative stress markers.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| | - Shivani Ghildiyal
- Department of DravyaGuna, All India Institute of Ayurveda, An autonomous organization under Ministry of Ayush, Government of India, Sarita Vihar, New Delhi, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University Uttar Pradesh, India
| |
Collapse
|
3
|
Dou B, Zhu Y, Sun M, Wang L, Tang Y, Tian S, Wang F. Mechanisms of Flavonoids and Their Derivatives in Endothelial Dysfunction Induced by Oxidative Stress in Diabetes. Molecules 2024; 29:3265. [PMID: 39064844 PMCID: PMC11279171 DOI: 10.3390/molecules29143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic complications pose a significant threat to life and have a negative impact on quality of life in individuals with diabetes. Among the various factors contributing to the development of these complications, endothelial dysfunction plays a key role. The main mechanism underlying endothelial dysfunction in diabetes is oxidative stress, which adversely affects the production and availability of nitric oxide (NO). Flavonoids, a group of phenolic compounds found in vegetables, fruits, and fungi, exhibit strong antioxidant and anti-inflammatory properties. Several studies have provided evidence to suggest that flavonoids have a protective effect on diabetic complications. This review focuses on the imbalance between reactive oxygen species and the antioxidant system, as well as the changes in endothelial factors in diabetes. Furthermore, we summarize the protective mechanisms of flavonoids and their derivatives on endothelial dysfunction in diabetes by alleviating oxidative stress and modulating other signaling pathways. Although several studies underline the positive influence of flavonoids and their derivatives on endothelial dysfunction induced by oxidative stress in diabetes, numerous aspects still require clarification, such as optimal consumption levels, bioavailability, and side effects. Consequently, further investigations are necessary to enhance our understanding of the therapeutic potential of flavonoids and their derivatives in the treatment of diabetic complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Furong Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| |
Collapse
|
4
|
Makhdoomi S, Fadaiie A, Mohammadi M, Ranjbar A, Haddadi R. Quercetin's Restorative Properties in Male Mice with 3-Nitropropionic Acid-induced Huntington-like Symptoms: Molecular Docking, Behavioral, and Biochemical Assessment. Cell Biochem Biophys 2024; 82:1489-1502. [PMID: 38760648 DOI: 10.1007/s12013-024-01302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
The neurotoxicity of 3-Nitropropionic acid (3-NP) is well known. Herein, the prophylactic versus therapeutic effects of quercetin (QCT) were investigated against 3-NP-induced behavioral anomalies and oxidative neural damage. Thirty male mice were assigned into five groups; the negative control group, the QCT group (25 mg/kg/day, p.o. for 21 days), the 3-NP group (17 days), the prophylactic group (QCT administration for 14 consecutive days, and then 3-NP was administrated), the therapeutic group (3-NP was administrated and then QCT for 21 days). At the end of the animal treatment, behavioral studies were assessed. Subsequently, the brain sample tissues were assessed for oxidative stress-related parameters and histological evaluation. Moreover, the potential interaction between 3-NP and tumor necrosis factor-alpha (TNF-α) was evaluated by using a molecular docking study. 3-NP markedly led to neurotoxicity which was indicated by behavioral deficits (motor behavior, depression-like behavior, memory dysfunction, and passive avoidance) and oxidative damage. Blind and targeted molecular docking results showed good interaction between 3-NP and TNF-α. However, the prophylactic effects of QCT were superior to the therapeutic effects for attenuating 3-NP-induced neurobehavioral and oxidative neural changes in experimental mice, which histological changes of the brain's striatum region approved our findings. Taken together, the antioxidant activity of QCT remarkably could attenuate 3-NP-induced neurobehavioral deficits and mitochondrial dysfunctions in mice.
Collapse
Affiliation(s)
- Sajjad Makhdoomi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Fadaiie
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medicinal Plant and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
6
|
Can B, Sanlier N. Alzheimer, Parkinson, dementia, and phytochemicals: insight review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38189347 DOI: 10.1080/10408398.2023.2299340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alzheimer's, Parkinson's, and dementia are the leading neurodegenerative diseases that threaten the world with the aging population. Although the pathophysiology of each disease is unique, the steps to be taken to prevent diseases are similar. One of the changes that a person can make alone is to gain the habit of an antioxidant-rich diet. Phytochemicals known for their antioxidant properties have been reported to prevent neurodegenerative diseases in various studies. Phytochemicals with similar chemical structures are grouped. Accordingly, there are two main groups of phytochemicals, flavonoid and non-flavonoid. Various in vitro and in vivo studies on phytochemicals have proven neuroprotective effects by increasing cognitive function with their anti-inflammatory and antioxidant mechanisms. The purpose of this review is to summarize the in vitro and in vivo studies on phytochemicals with neuroprotective effects and to provide insight.
Collapse
Affiliation(s)
- Basak Can
- Nutrition and Dietetics, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
7
|
Chang SR, Liu JG, Li H, Liu MX, Shi DD, Zhou LJ. Pharmaceutical and pharmacological studies of Shen Ma Yi Zhi granule for prevention of vascular dementia: A review. Front Neurosci 2022; 16:1044572. [PMID: 36507350 PMCID: PMC9731835 DOI: 10.3389/fnins.2022.1044572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background: With dementia significantly increasing hospitalization and disability rates, worldwide aging of the population presents major challenges to public health. The majority of cases of cognitive dysfunction among the elderly, however, are characterized by an identifiable, preventable and treatable vascular component. As such, increased study of preventative methods in the context of dementia is warranted. Traditional Chinese medicine compounds have been reported to be neuroprotective and improve cognitive function via a variety of mechanisms. Shen Ma Yi Zhi granule (SMYZG) is one such collection of compounds that has been proven clinically effective. Pharmacological mechanisms of action, pharmacokinetics and clinical applications of SMYZG have been previously studied using a variety of vascular dementia animal models. SMYZG activates and regulates four main signaling pathways relevant to vascular dementia including the AMPK/PPARα/PGC-1α/UCP2, Nrf2/HO-1, HIF-1/VEGF/Notch, and VEGF/Flk-1/p8 MAPK pathways. Furthermore, SMYZG influences anti-inflammatory and anti-oxidant stress responses, reverses demyelination of brain white matter and vascular endothelium, regulates pericyte function and normalizes mitochondrial metabolism. Neuroprotective effects of SMYZG, as well as those promoting regeneration of vascular endothelium, have also been reported in studies of rat models of vascular dementia. Future research concerning SMYG is warranted for development of vascular dementia preventative management strategies.
Collapse
Affiliation(s)
- Su-rui Chang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-gang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China,*Correspondence: Jian-gang Liu,
| | - Hao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Geriatrics of China Academy of Chinese Medical Sciences, Beijing, China,Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Hao Li,
| | - Mei-xia Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Geriatrics of China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan-dan Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Geriatrics of China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-juan Zhou
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Geriatrics of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Neurobehavioral and neurobiochemical effect of atomoxetine and N-acetylcysteine in streptozotocin diabetes induced endothelial dysfunction and related dementia. Physiol Behav 2022; 249:113767. [PMID: 35245527 DOI: 10.1016/j.physbeh.2022.113767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022]
Abstract
Metabolic conditions like diabetes, is a major risk factor for the development of dementia of vascular origin. This study investigates the efficacy of atomoxetine (ATX) and N-acetylcysteine (NAC) in streptozotocin (STZ) diabetes induced vascular endothelium dysfunction and related dementia. Single dose STZ (50 mg/kg i.p) was administered to Albino Wistar rats (male, 200-250 g) by dissolving in citrate buffer. Morris water maze (MWM) and attentional set shifting tests (ASST) were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains' oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-α, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE and histopathological changes were also assessed. Atomoxetine - ATX (2 mg kg-1/ 4 mg kg-1) and N-acetylcysteine- NAC (250 mg kg-1/ 500 mg kg-1) were used alone as well as in combination, as the treatment drugs. Donepezil (0.5 mg kg-1) was used as a positive control. STZ administered rats showed increase in serum glucose levels and decrease in body weight. Rats administered with STZ also showed reduction in learning, memory, reversal learning, executive functioning, impairment in endothelial function, increase in brains' oxidative stress, inflammation, AChE activity and histopathological changes. Administration of ATX and NAC in two different doses as well as in combination, significantly attenuated the STZ induced diabetes induced impairments in the behavioral, endothelial, biochemical parameters and histopathological changes. Co-treatment of ATX and NAC was better in comparison to the doses when given alone. Hence, STZ administration caused diabetes induced dementia of vascular origin which was attenuated by the administration of ATX and NAC. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced dementia of vascular origin conditions.
Collapse
|
9
|
Thromboxane A2 synthase inhibition ameliorates endothelial dysfunction, memory deficits, oxidative stress and neuroinflammation in rat model of streptozotocin diabetes induced dementia. Physiol Behav 2021; 241:113592. [PMID: 34534530 DOI: 10.1016/j.physbeh.2021.113592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022]
Abstract
RATIONALE Vascular dementia (VaD) is the second leading cause of dementia worldwide. It is very important to find the possible pharmacological agents which may be useful in management and therapy of VaD. OBJECTIVES The present study investigates the effect of ozagrel, a selective thromboxane A2 (TXA2) synthase inhibitor, in a rat model of VaD. METHODS Single intraperitoneal injection of streptozotocin [STZ, (50 mg/kg)] was administered to Wistar rats to induced diabetes-associated vascular endothelial dysfunction and memory impairment. Morris water maze (MWM) test was employed to assess learning and memory. Endothelial dysfunction was assessed in the isolated aorta by observing endothelial-dependent vasorelaxation and levels of serum nitrite. Various biochemical and histopathological estimations were also performed. RESULTS STZ treatment produced endothelial dysfunction, impairment of learning and memory, reduction in body weight and serum nitrite/nitrate, and increase in serum glucose, brain oxidative stress (increased brain thiobarbituric acid reactive species and decreased reduced glutathione levels), brain acetylcholinesterase activity and brain myeloperoxidase activity. Further a significant rise in brain tumor necrosis factor-α & interleukin-6 levels and brain neutrophil infiltration were also observed. Treatment of ozagrel (10 & 20 mg/kg, p. o.)/donepezil (0. 5 mg/kg, i.p., serving as standard) ameliorated STZ induced endothelial dysfunction; memory deficits; biochemical and histopathological changes. CONCLUSIONS It may be concluded that ozagrel markedly improved endothelial dysfunction; learning and memory; biochemical and histopathological alteration associated with STZ induced dementia and that TXA2 can be considered as an important therapeutic target for the management of VaD.
Collapse
|