1
|
de Melo PS, Gianlorenco AC, Marduy A, Kim CK, Choi H, Song JJ, Fregni F. A Mechanistic Analysis of the Neural Modulation of the Inflammatory System Through Vagus Nerve Stimulation: A Systematic Review and Meta-analysis. Neuromodulation 2025; 28:43-53. [PMID: 38795094 DOI: 10.1016/j.neurom.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 05/27/2024]
Abstract
OBJECTIVE We aimed to conduct a systematic review and meta-analysis assessing the antiinflammatory effects of various VNS methods while exploring multiple antiinflammatory pathways. MATERIALS AND METHODS We included clinical trials that used electrical stimulation of the vagus nerve and assessed inflammatory markers up to October 2022. We excluded studies lacking control groups, those with combined interventions, or abstracts without full text. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and the Cochrane Handbook for Systematic Reviews. For each inflammatory marker, a random-effects meta-analysis using the inverse variance method was performed. Methods used include transcutaneous auricular VNS (taVNS), transcutaneous cervical VNS (tcVNS), invasive cervical VNS (iVNS), and electroacupuncture VNS (eaVNS). Main reported outcomes included tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1ß, C-reactive protein (CRP), and IL-10. Risk of bias was evaluated using the Cochrane Collaboration Tool (RoB 2.0). RESULTS This review included 15 studies, involving 597 patients. No statistically significant general VNS effect was observed on TNF-α, IL-6, and IL-1ß. However, CRP, IL-10, and interferon (IFN)-γ were significantly modulated by VNS across all methods. Subgroup analysis revealed specific stimulation techniques producing significant results, such as taVNS effects in IL-1ß and IL-10, and iVNS in IL-6, whereas tcVNS and eaVNS did not convey significant pooled results individually. Cumulative exposure to VNS, higher risk of bias, study design, and pulse width were identified as effect size predictors in our meta-regression models. CONCLUSIONS Pooling all VNS techniques indicated the ability of VNS to modulate inflammatory markers such as CRP, IL-10, and IFN-γ. Individually, methods such as taVNS were effective in modulating IL-1ß and IL-10, whereas iVNS modulated IL-6. However, different VNS techniques should be separately analyzed in larger, homogeneous, and powerful studies to achieve a clearer and more consistent understanding of the effect of each VNS method on the inflammatory system.
Collapse
Affiliation(s)
- Paulo S de Melo
- Medicine, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil; Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna C Gianlorenco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Medicine, União Metropolitana de Ensino e Cultura (UNIME), Salvador, Bahia, Brazil
| | - Chi K Kim
- Department of Neurology, Korea University Guro Hospital, Seoul, South Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, South Korea; Neurive Co, Ltd, Gimhae, South Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, South Korea; Neurive Co, Ltd, Gimhae, South Korea
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Maestri R, Pinna GD, Robbi E, Cogliati C, Bartoli A, Gambino G, Rengo G, Montano N, La Rovere MT. Impact of optimized transcutaneous auricular vagus nerve stimulation on cardiac autonomic profile in healthy subjects and heart failure patients. Physiol Meas 2024; 45:075007. [PMID: 39016202 DOI: 10.1088/1361-6579/ad5ef6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Objective.To determine the optimal frequency and site of stimulation for transcutaneous vagus nerve stimulation (tVNS) to induce acute changes in the autonomic profile (heart rate (HR), heart rate variability (HRV)) in healthy subjects (HS) and patients with heart failure (HF).Approach.We designed three single-blind, randomized, cross-over studies: (1) to compare the acute effect of left tVNS at 25 Hz and 10 Hz (n= 29, age 60 ± 7 years), (2) to compare the acute effect of left and right tVNS at the best frequency identified in study 1 (n= 28 age 61 ± 7 years), and (3) to compare the acute effect of the identified optimal stimulation protocol with sham stimulation in HS and HF patients (n= 30, age 59 ± 5 years, andn= 32, age 63 ± 7 years, respectively).Main results.In study 1, left tragus stimulation at 25 Hz was more effective than stimulation at 10 Hz in decreasing HR (-1.0 ± 1.2 bpm,p< 0.001 and -0.5 ± 1.6 bpm, respectively) and inducing vagal effects (significant increase in RMSSD, and HF power). In study 2, the HR reduction was greater with left than right tragus stimulation (-0.9 ± 1.5 bpm,p< 0.01 and -0.3 ± 1.4 bpm, respectively). In study 3 in HS, left tVNS at 25 Hz significantly reduced HR, whereas sham stimulation did not (-1.1 ± 1.2 bpm,p< 0.01 and -0.2 ± 2.9 bpm, respectively). In HF patients, both active and sham stimulation produced negligible effects.Significance.Left tVNS at 25 Hz is effective in acute modulation of cardiovascular autonomic control (HR, HRV) in HS but not in HF patients (NCT05789147).
Collapse
Affiliation(s)
- Roberto Maestri
- Department of Biomedical Engineering, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| | - Gian Domenico Pinna
- Department of Biomedical Engineering, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| | - Elena Robbi
- Department of Cardiology, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| | - Chiara Cogliati
- Department of Biomedical and Clinical Sciences, University of Milan and Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Arianna Bartoli
- Department of Biomedical and Clinical Sciences, University of Milan and Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Giuseppina Gambino
- Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
- Istituti Clinici Scientifici ICS Maugeri, Telese Terme Institute, -IRCCS, Telese, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Maria Teresa La Rovere
- Department of Cardiology, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| |
Collapse
|
3
|
Gillan R, Bachtel G, Webber K, Ezzair Y, Myers NE, Bishayee A. Osteopathic manipulative treatment for chronic inflammatory diseases. J Evid Based Med 2024; 17:172-186. [PMID: 38488211 DOI: 10.1111/jebm.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/25/2024] [Indexed: 04/02/2024]
Abstract
Chronic inflammatory diseases (CIDs) are debilitating and potentially lethal illnesses that affect a large proportion of the global population. Osteopathic manipulative treatment (OMT) is a manual therapy technique developed and performed by osteopathic physicians that facilitates the body's innate healing processes. Therefore, OMT may prove a beneficial anti-inflammatory modality useful in the management and treatment of CIDs. This work aims to objectively evaluate the therapeutic benefits of OMT in patients with various CIDs. In this review, a structured literature search was performed. The included studies involving asthma, chronic obstructive pulmonary disease, irritable bowel syndrome, ankylosing spondylitis, and peripheral arterial disease were selected for this work. Various OMT modalities, including lymphatic, still, counterstain, and muscle energy techniques, were utilized. Control treatments included sham techniques, routine care, or no treatment. OMT utilization led to variable patient outcomes in individuals with pathologies linked to CID.
Collapse
Affiliation(s)
- Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Yasmine Ezzair
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Nicole E Myers
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
4
|
Kania A, Roufail J, Prokop J, Stauss HM. A framework for the interpretation of heart rate variability applied to transcutaneous auricular vagus nerve stimulation and osteopathic manipulation. Physiol Rep 2024; 12:e15981. [PMID: 38508860 PMCID: PMC10954510 DOI: 10.14814/phy2.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Reports on autonomic responses to transcutaneous auricular vagus nerve stimulation (taVNS) and osteopathic manipulative techniques have been equivocal, partly due to inconsistent interpretation of heart rate variability (HRV). We developed a mechanistic framework for the interpretation of HRV based on a model of sinus node automaticity that considers autonomic effects on Phase 3 repolarization and Phase 4 depolarization of the sinoatrial action potential. The model was applied to HRV parameters calculated from ECG recordings (healthy adult humans, both genders) before (30 min), during (15 min), and after (30 min) a time control intervention (rest, n = 23), taVNS (10 Hz, 300 μs, 1-2 mA, cymba concha, left ear, n = 12), or occipitoatlantal decompression (OA-D, n = 14). The experimental protocol was repeated on 3 consecutive days. The model simulation revealed that low frequency (LF) HRV best predicts sympathetic tone when calculated from heart rate time series, while high frequency (HF) HRV best predicts parasympathetic tone when calculated from heart period time series. Applying our model to the HRV responses to taVNS and OA-D, revealed that taVNS increases cardiac parasympathetic tone, while OA-D elicits a mild decrease in cardiac sympathetic tone.
Collapse
Affiliation(s)
- Adrienne Kania
- Department of Clinical MedicineBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Jumana Roufail
- Department of Clinical MedicineBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Joseph Prokop
- Department of Clinical MedicineBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Harald M. Stauss
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| |
Collapse
|
5
|
Basra M, Patel H, Stern-Harbutte A, Lee D, Gregg RK, Waters HB, Potter AK. A Narrative Review on the Viability of Osteopathic Manipulative Medicine in Treating Irritable Bowel Syndrome With Constipation (IBS-C). Cureus 2024; 16:e54180. [PMID: 38496183 PMCID: PMC10941805 DOI: 10.7759/cureus.54180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by chronic abdominal pain and alterations in bowel habits, with global prevalence. The etiology of the disease is likely multifactorial; however, autonomic nervous system (ANS) dysfunction and immune-mediated inflammation may contribute the most to the hallmark symptoms of abdominal pain and altered motility of the gut. Current pharmacological therapies operate to modulate intestinal transit, alter the composition of the gut flora and control pain. Non-pharmacological approaches include dietary changes, increased physical activity, or fecal microbiota transplants. None of these therapies can modulate ANS dysfunction or impact the underlying inflammation that is likely perpetuating the symptoms of IBS. Osteopathic Manipulative Medicine (OMM) is a clinical approach focused on physical manipulation of the body's soft tissues to correct somatic dysfunctions. OMM can directly target the pathophysiology of IBS through many approaches such as ANS modulation and lymphatic techniques to modify the inflammatory mechanisms within the body. Particular OMM techniques of use are lymphatic manipulation, myofascial release, sympathetic ganglia treatment, sacral rocking, counterstrain, and viscerosomatic treatment. The aim of this study is to identify OMM treatments that can be used to potentially reduce the inflammation and ANS dysfunction associated with IBS symptoms, thereby providing a new non-pharmacological targeted approach for treating the disease.
Collapse
Affiliation(s)
- Mahi Basra
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Hemangi Patel
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Alison Stern-Harbutte
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - David Lee
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Randal K Gregg
- Research, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Holly B Waters
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Anna K Potter
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| |
Collapse
|
6
|
Agarwal V, Kaushik AS, Chaudhary R, Rehman M, Srivastava S, Mishra V. Transcutaneous vagus nerve stimulation ameliorates cardiac abnormalities in chronically stressed rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:281-303. [PMID: 37421431 DOI: 10.1007/s00210-023-02611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Chronically stressed patients often have low vagal tone and increased levels of proinflammatory cytokines, which increase their risk for developing cardiac dysfunction. Transcutaneous vagus nerve stimulation (taVNS) is a way to activate the parasympathetic system, which has the ability to reduce inflammation and antagonize excessive sympathetic responses. However, the effectiveness of taVNS in treating cardiac dysfunction caused by chronic unpredictable stress (CUS) has not been studied. To investigate this, we first validated a rat model of CUS, in which the rats were exposed to random stressors daily for 8 weeks. Post CUS, the rats were treated with taVNS (1.0 ms, 6 V, 6 Hz, for 40 min × 2 weeks, alternatively) and their cardiac function and cholinergic flow were evaluated. Furthermore, serum cardiac troponin I (cTnI), cardiac caspase-3, inducible nitric oxide synthase (iNOS), and transforming growth factor (TGF)-β1 expression in rats were also assessed. The chronically stressed rats showed depressed behavior with increased levels of serum corticosterone and proinflammatory cytokines. Electrocardiogram (ECG) and heart rate variability (HRV) studies revealed elevated heart rate, diminished vagal tone, and altered sinus rhythm in CUS rats. Furthermore, the CUS rats demonstrated cardiac hypertrophy and fibrosis with increased caspase-3, iNOS, and TGF-β expression in their myocardium and increased levels of serum cTnI. Interestingly, alternate taVNS therapy for 2 weeks, post CUS, helped alleviate these cardiac abnormalities. These suggest that taVNS could be a useful adjunctive and non-pharmacological approach for managing CUS induced cardiac dysfunction.
Collapse
Affiliation(s)
- Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India.
| |
Collapse
|
7
|
Soltani D, Azizi B, Sima S, Tavakoli K, Hosseini Mohammadi NS, Vahabie AH, Akbarzadeh-Sherbaf K, Vasheghani-Farahani A. A systematic review of the effects of transcutaneous auricular vagus nerve stimulation on baroreflex sensitivity and heart rate variability in healthy subjects. Clin Auton Res 2023; 33:165-189. [PMID: 37119426 DOI: 10.1007/s10286-023-00938-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/27/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE This systematic review aimed to evaluate the effect of transcutaneous auricular vagus nerve stimulation on heart rate variability and baroreflex sensitivity in healthy populations. METHOD PubMed, Scopus, the Cochrane Library, Embase, and Web of Science were systematically searched for controlled trials that examined the effects of transcutaneous auricular vagus nerve stimulation on heart rate variability parameters and baroreflex sensitivity in apparently healthy individuals. Two independent researchers screened the search results, extracted the data, and evaluated the quality of the included studies. RESULTS From 2458 screened studies, 21 were included. Compared with baseline measures or the comparison group, significant changes in the standard deviation of NN intervals, the root mean square of successive RR intervals, the proportion of consecutive RR intervals that differ by more than 50 ms, high-frequency power, low-frequency to high-frequency ratio, and low-frequency power were found in 86%, 75%, 69%, 47%, 36%, and 25% of the studies evaluating the effects of transcutaneous auricular vagus nerve stimulation on these indices, respectively. Baroreflex sensitivity was evaluated in six studies, of which a significant change was detected in only one. Some studies have shown that the worse the basic autonomic function, the better the response to transcutaneous auricular vagus nerve stimulation. CONCLUSION The results were mixed, which may be mainly attributable to the heterogeneity of the study designs and stimulation delivery dosages. Thus, future studies with comparable designs are required to determine the optimal stimulation parameters and clarify the significance of autonomic indices as a reliable marker of neuromodulation responsiveness.
Collapse
Affiliation(s)
- Danesh Soltani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Sima
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Kiarash Tavakoli
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Sadat Hosseini Mohammadi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Hossein Vahabie
- Control and Intelligent Processing Center of Excellence (CIPCE), Cognitive Systems Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Kaveh Akbarzadeh-Sherbaf
- Department of Computer Engineering and Information Technology, Imam Reza International University, Mashhad, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Muacevic A, Adler JR, Khatib M, Knafo J, Karas M, Krupa K, Rivera B, Macia A, Madhu B, McMillan M, Burtch J, Quinonez J, Albert T, Khanna D. Osteopathic Manipulative Treatment and the Management of Headaches: A Scoping Review. Cureus 2022; 14:e27830. [PMID: 36110479 PMCID: PMC9462953 DOI: 10.7759/cureus.27830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023] Open
Abstract
Headaches have been studied and treated since nearly 7,000 BC because of their significant global impact. Current headache treatment modalities are various and have a wide variety of targets, but medications are the most common. Since conventional medical treatments have several side effects, alternative remedies such as osteopathic manipulative treatment (OMT) should be considered. OMT can assist in the management of various health conditions, such as low back pain, neck pain, and headaches. The purpose of this scoping review is to evaluate recent findings regarding the efficacy of OMT modalities in the management of headaches such as tension-type headaches (TTH) and migraines. This study was designed as a scoping review to gather evidence on the efficacy of OMT modalities in the management of headaches. Following PRISMA guidelines, four databases were used to search for articles published between 2010 and 2022 that reported the use of OMT and manual therapy for TTH and migraines. Databases used include Embase, PubMed, Medline, and Web of Science. The following keywords were used: treatment, therapy, Headache, migraine, craniosacral, muscle energy, myofascial release, trigger point, osteopathic, and manipulation. The initial search yielded 473 unique articles after removing duplicates. After screening based on the inclusion and exclusion criteria, and after further analysis, 15 articles were selected. Data reports of OMT and manual therapy efficacy and/or effectiveness in treating TTH and migraine were analyzed. Articles included were randomized control studies (13 of 15, 86.6%), one pilot study (one of 15, 6.7%), and one case series (one of 15, 6.7%), which were divided into TTH (nine of 15, 60%) and Migraine Headaches (six of 15, 40%). All articles reported significant headache improvement in at least one measurement. Of all treatments analyzed, single technique interventions (seven of 15, 47%) and multiple technique interventions (eight of 15, 53%) were identified. Among the techniques used, Myofascial Release was the most common (nine of 15, 60%). The articles presented provide evidence of the significant benefits of manual therapy. Because of the limitations of traditional medicine, OMT can be used either as an alternative or adjuvant therapy for headaches. Evidence suggests the positive impact it can provide on headache management, but the number of randomized control trials and population samples should be increased to support its recommendation. This demonstrates how different osteopathic techniques can provide therapeutic effects on TTH, MH, and potentially other types of headaches. A preference for myofascial release was observed, which can be due to the fast relief from the physiologic effect on tissue movement. This review study demonstrates the benefits OMT has on decreasing headache frequency, intensity, and duration in TTH and migraines. OMT has shown to be beneficial, especially for patients seeking alternative non-pharmaceutical and non-invasive treatments. Further studies are needed to evaluate the effects of different OMT techniques, and different combinations of treatments, on other types of headaches.
Collapse
|
9
|
Kozorosky EM, Lee CH, Lee JG, Nunez Martinez V, Padayachee LE, Stauss HM. Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin. Physiol Rep 2022; 10:e15253. [PMID: 35441808 PMCID: PMC9020171 DOI: 10.14814/phy2.15253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/15/2023] Open
Abstract
Vagus nerve stimulation (VNS) facilitates weight loss in animals and patients treated with VNS for depression or epilepsy. Likewise, chronic transcutaneous auricular VNS (taVNS) reduces weight gain and improves glucose tolerance in Zucker diabetic fatty rats. If these metabolic effects of taVNS observed in rats translate to humans is unknown. Therefore, the hypothesis of this study was that acute application of taVNS affects glucotropic and orexigenic hormones which could potentially facilitate weight loss and improve glucose tolerance if taVNS were applied chronically. In two single-blinded randomized cross-over protocols, blood glucose levels, plasma concentrations of insulin, C-peptide, glucagon, leptin, and ghrelin, together with heart rate variability and baroreceptor-heart rate reflex sensitivity were determined before and after taVNS (left ear, 10 Hz, 300 µs, 2.0-2.5 mA, 30 min) or sham-taVNS (electrode attached to ear with the stimulator turned off). In a first protocol, subjects (n = 16) were fasted throughout the protocol and in a second protocol, subjects (n = 10) received a high-calorie beverage (220 kCal) after the first blood sample, just before initiation of taVNS or sham-taVNS. No significant effects of taVNS on heart rate variability and baroreceptor-heart rate reflex sensitivity and only minor effects on glucotropic hormones were observed. However, in the second protocol taVNS significantly lowered postprandial plasma ghrelin levels (taVNS: -115.5 ± 28.3 pg/ml vs. sham-taVNS: -51.2 ± 30.6 pg/ml, p < 0.05). This finding provides a rationale for follow-up studies testing the hypothesis that chronic application of taVNS may reduce food intake through inhibition of ghrelin and, therefore, may indirectly improve glucose tolerance through weight loss.
Collapse
Affiliation(s)
| | - Cristina H. Lee
- Burrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Jessica G. Lee
- Burrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | | | | | | |
Collapse
|
10
|
Veiz E, Kieslich SK, Czesnik D, Herrmann-Lingen C, Meyer T, Staab J. Increased Concentrations of Circulating Interleukins following Non-Invasive Vagus Nerve Stimulation: Results from a Randomized, Sham-Controlled, Crossover Study in Healthy Subjects. Neuroimmunomodulation 2022; 29:450-459. [PMID: 35576915 DOI: 10.1159/000524646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The vagus nerve constitutes the main component of the parasympathetic nervous system and plays an important role in the regulation of neuro-immune responses. Invasive stimulation of the vagus nerve produces anti-inflammatory effects; however, data on humoral immune responses of transcutaneous vagus nerve stimulation (tVNS) are rare. Therefore, the present study investigated changes in serum cytokine concentrations of interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor α (TNFα) following a short-term, non-invasive stimulation of the vagus nerve. METHODS Whole blood samples were collected before and after a short-lived application of active tVNS at the inner tragus as well as sham stimulation of the earlobe. Cytokine serum concentrations were determined in two healthy cohorts of younger (n = 20) and older participants (n = 19). Differences between active and sham conditions were analyzed using linear mixed models and post hoc F tests after applying Yeo-Johnson power transformations. This trial was part of a larger study registered on ClinicalTrials.gov (NCT05007743). RESULTS In the young cohort, IL-6 and IL-1β concentrations were significantly increased after active stimulation, whereas they were slightly decreased after sham stimulation (IL-6: p = 0.012; IL-1β: p = 0.012). Likewise, in the older cohort, IL-1β and IL-8 concentrations were significantly elevated after active stimulation and reduced after sham application (IL-8: p = 0.007; IL-1β: p = 0.001). In contrast, circulating TNFα concentrations did not change significantly in either group. CONCLUSION Our results show that active tVNS led to an immediate increase in the serum concentrations of certain pro-inflammatory cytokines such as IL-1β, IL-6, and/or IL-8 in two independent cohorts of healthy study participants.
Collapse
Affiliation(s)
- Elisabeth Veiz
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
- Department of Neurology, University Medical Centre, Göttingen, Germany
| | - Susann-Kristin Kieslich
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
| | - Dirk Czesnik
- Department of Neurology, University Medical Centre, Göttingen, Germany
| | - Christoph Herrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany,
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany,
| | - Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Dalgleish AS, Kania AM, Stauss HM, Jelen AZ. Occipitoatlantal decompression and noninvasive vagus nerve stimulation slow conduction velocity through the atrioventricular node in healthy participants. J Osteopath Med 2021; 121:349-359. [PMID: 33694346 DOI: 10.1515/jom-2020-0213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/10/2020] [Indexed: 11/15/2022]
Abstract
CONTEXT Management of atrial fibrillation includes either rhythm control that aims at establishing a sinus rhythm or rate control that aims at lowering the ventricular rate, usually with atrioventricular nodal blocking agents. Another potential strategy for ventricular rate control is to induce a negative dromotropic effect by augmenting cardiac vagal activity, which might be possible through noninvasive and nonpharmacologic techniques. Thus, the hypothesis of this study was that occipitoatlantal decompression (OA-D) and transcutaneous auricular vagus nerve stimulation (taVNS) not only increase cardiac parasympathetic tone as assessed by heart rate variability (HRV), but also slow atrioventricular conduction, assessed by the PQ-interval of the electrocardiogram (EKG) in generally healthy study participants without atrial fibrillation. OBJECTIVES To test whether OA-D and/or transcutaneous taVNS, which have been demonstrated to increase cardiac parasympathetic nervous system activity, would also elicit a negative dromotropic effect and prolong atrioventricular conduction. METHODS EKGs were recorded in 28 healthy volunteers on three consecutive days during a 30 min baseline recording, a 15 min intervention, and a 30 min recovery period. Participants were randomly assigned to one of three experimental groups that differed in the 15 min intervention. The first group received OA-D for 5 min, followed by 10 min of rest. The second group received 15 min of taVNS. The intervention in the third group that served as a time control group (CTR) consisted of 15 min of rest. The RR- and PQ-intervals were extracted from the EKGs and then used to assess HRV and AV-conduction, respectively. RESULTS The OA-D group had nine participants (32.1%), the taVNS group had 10 participants (35.7%), and the CTR group had nine participants (32.1%). The root mean square of successive differences between normal heartbeats (RMSSD), an HRV measure of cardiac parasympathetic modulation, tended to be higher during the recovery period than during the baseline recording in the OA-D group (mean ± standard error of the mean [SEM], 54.6 ± 15.5 vs. 49.8 ± 15.8 ms; p<0.10) and increased significantly in the taVNS group (mean ± SEM, 28.8 ± 5.7 vs. 24.7 ± 4.8 ms; p<0.05), but not in the control group (mean ± SEM, 31.4 ± 4.2 vs. 28.5 ± 3.8 ms; p=0.31). This increase in RMSSD was accompanied by a lengthening of the PQ-interval in the OA-D (mean ± SEM, 170.5 ± 9.6 vs. 166.8 ± 9.7 ms; p<0.05) and taVNS (mean ± SEM, 166.6 ± 6.0 vs. 162.1 ± 5.6 ms; p<0.05) groups, but not in the control group (mean ± SEM, 164.3 ± 9.2 vs. 163.1 ± 9.1 ms; p=0.31). The PQ-intervals during the baseline recordings did not differ on the three study days in any of the three groups, suggesting that the negative dromotropic effect of OA-D and taVNS did not last into the following day. CONCLUSIONS The lengthening of the PQ-interval in the OA-D and taVNS groups was accompanied by an increase in RMSSD. This implies that the negative dromotropic effects of OA-D and taVNS are mediated through an increase in cardiac parasympathetic tone. Whether these findings suggest their utility in controlling ventricular rates during persistent atrial fibrillation remains to be determined.
Collapse
Affiliation(s)
- Ariana S Dalgleish
- Department of Clinical Medicine, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Adrienne M Kania
- Department of Clinical Medicine, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Harald M Stauss
- Departments of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Adrianna Z Jelen
- Department of Clinical Medicine, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| |
Collapse
|