1
|
Newman DK, Newman PJ. Antigen-specific immunotherapy for platelet alloimmune disorders. Hum Immunol 2024; 85:111172. [PMID: 39520801 DOI: 10.1016/j.humimm.2024.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Fetal/Neonatal Alloimmune Thrombocytopenia (FNAIT) is a significant hematologic disorder arising from maternal immune responses to fetal platelet alloantigens, predominantly Human Platelet Antigen (HPA)-1a. This review first describes the pathogenesis of FNAIT, highlighting the roles of HPA-specific antibodies, particularly HPA-1a, in causing severe thrombocytopenia and intracranial hemorrhage in affected neonates. Current management strategies, including intravenous immunoglobulin and investigational therapies like Nipocalimab, are evaluated for their efficacy and limitations. The review also discusses promising antigen-specific therapies, such as effector-silent monoclonal antibodies and innovative approaches targeting alloantibody-producing B cells. Additionally, the potential of Chimeric Autoantibody Receptor (CAAR) T cell therapy for selective elimination of pathogenic B cells is examined. The necessity for a prophylactic strategy similar to RhD immunoprophylaxis in preventing FNAIT is emphasized, along with the importance of identifying at-risk pregnancies. The development of renewable monoclonal antibodies and suitable animal models are critical steps toward effective prevention and treatment of this disorder.
Collapse
Affiliation(s)
- Debra K Newman
- Versiti Blood Research Institute, Milwaukee, WI, United States; Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Peter J Newman
- Versiti Blood Research Institute, Milwaukee, WI, United States; Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
2
|
Meier RT, Porcelijn L, Hofstede-van Egmond S, Caram-Deelder C, Coutinho JM, Henskens YMC, Kruip MJHA, Stroobants AK, Zwaginga JJ, van der Schoot CE, de Haas M, Kapur R. Antibodies against Platelet Glycoproteins in Clinically Suspected VITT Patients. Antibodies (Basel) 2024; 13:35. [PMID: 38804303 PMCID: PMC11130846 DOI: 10.3390/antib13020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare but severe complication following COVID-19 vaccination, marked by thrombocytopenia and thrombosis. Analogous to heparin-induced thrombocytopenia (HIT), VITT shares similarities in anti-platelet factor 4 (PF4) IgG-mediated platelet activation via the FcγRIIa. To investigate the involvement of platelet-antibodies in VITT, we analyzed the presence of platelet-antibodies directed against glycoproteins (GP)IIb/IIIa, GPV and GPIb/IX in the serum of 232 clinically suspected VITT patients determined based on (suspicion of) occurrence of thrombocytopenia and/or thrombosis in relation to COVID-19 vaccination. We found that 19% of clinically suspected VITT patients tested positive for anti-platelet GPs: 39%, 32% and 86% patients tested positive for GPIIb/IIIa, GPV and GPIb/IX, respectively. No HIT-like VITT patients (with thrombocytopenia and thrombosis) tested positive for platelet-antibodies. Therefore, it seems unlikely that platelet-antibodies play a role in HIT-like anti-PF4-mediated VITT. Platelet-antibodies were predominantly associated with the occurrence of thrombocytopenia. We found no association between the type of vaccination (adenoviral vector vaccine versus mRNA vaccine) or different vaccines (ChAdOx1 nCoV-19, Ad26.COV2.S, mRNA-1273, BTN162b2) and the development of platelet-antibodies. It is essential to conduct more research on the pathophysiology of VITT, to improve diagnostic approaches and identify preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Romy T. Meier
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (R.T.M.); (C.E.v.d.S.)
| | - Leendert Porcelijn
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, Sanquin, 1066 CX Amsterdam, The Netherlands; (L.P.); (S.H.-v.E.); (M.d.H.)
| | - Suzanne Hofstede-van Egmond
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, Sanquin, 1066 CX Amsterdam, The Netherlands; (L.P.); (S.H.-v.E.); (M.d.H.)
| | - Camila Caram-Deelder
- Department of Clinical Epidemiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Yvonne M. C. Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands;
| | - Marieke J. H. A. Kruip
- Department of Haematology, Erasmus MC, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - An K. Stroobants
- Department of Clinical Chemistry, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Jaap J. Zwaginga
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - C. Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (R.T.M.); (C.E.v.d.S.)
| | - Masja de Haas
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, Sanquin, 1066 CX Amsterdam, The Netherlands; (L.P.); (S.H.-v.E.); (M.d.H.)
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (R.T.M.); (C.E.v.d.S.)
| |
Collapse
|
3
|
Weber S, Arnold JBZ, Sachs UJ, Luppa PB. Recombinantly Expressed Tagged SUrface Protein (RETSUP) assay: a new diagnostic system for the detection of antibodies to platelets. J Thromb Haemost 2024; 22:1187-1201. [PMID: 38184205 DOI: 10.1016/j.jtha.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Current assays for the detection of (allo)antibodies to platelet antigens are often laborious and widely based on the presence of well-characterized donor platelets. OBJECTIVES To develop an easy-to-perform, sensitive, and specific test for the detection of antibodies against platelet antigens, in particular, glycoprotein (GP) antigens, called "Recombinantly Expressed Tagged SUrface Protein" (RETSUP) assay, which does not require donor platelets. METHODS Twin-Strep-tagged GP complexes were recombinantly expressed in human embryonic kidney 293 cells after stable transfection. These cell lines were used as antigen sources in the RETSUP assay, combining cell-based and enzyme-linked immunosorbent assay-based assay procedures. The assay performance was tested with recombinant antibodies, anti-human platelet antigen (HPA) reference plasmas, and anti-HPA patient sera. RESULTS Human embryonic kidney 293 cell lines stably expressing either Twin-Strep-labeled GPIa/IIa, GPIIb/IIIa, GPIb/IX, or GPIb/IX/V complexes or GPV as well as the distinct HPA-1, HPA-3, and HPA-5 epitopes were successfully generated. Applying the generated GP-expressing cell lines, the developed RETSUP assay proved very sensitive and specific with recombinant antibodies targeting different GPs and human plasma/serum samples. The results of the test were not affected by the GP carrying the Twin-Strep-tag or by using freshly harvested or cryopreserved cells. CONCLUSION The RETSUP assay is an easy-to-perform, sensitive, and specific assay for the detection of plasma/serum antibodies to platelet GP, with performance comparable to or better than those of current state-of-the-art assays in antiplatelet antibody diagnostics. Owing to the recombinant nature of the target antigens, it can be easily adapted to detect antibodies in other antibody-mediated diseases.
Collapse
Affiliation(s)
- Susanne Weber
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar of the Technische Universität München, Munich, Germany.
| | - Jasmin Birgit Zuzana Arnold
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar of the Technische Universität München, Munich, Germany
| | - Ulrich Jörg Sachs
- Institute for Clinical Immunology, Transfusion Medicine, and Haemostasis, Justus Liebig University, Giessen, Germany; Department of Thrombosis and Haemostasis, Giessen University Hospital, Giessen, Germany
| | - Peter Bruno Luppa
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar of the Technische Universität München, Munich, Germany
| |
Collapse
|
4
|
Raza S, Patriquin CJ, Yee K, Gupta A, Anani W, Wong J, Ellison C, Lieberman L, Pendergrast J, Cserti-Gazdewich C. Therapeutic plasma exchange in alloimmune platelet refractoriness. Transfus Apher Sci 2023; 62:103782. [PMID: 37550092 DOI: 10.1016/j.transci.2023.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Patients with alloimmune platelet refractoriness can present complex clinical conundrums. Herein we describe a case of platelet refractoriness in the setting of combined HLA and HPA alloimmunization in a patient with acute myeloid leukemia and life-threatening bleeding. We discuss causative antibodies and compare prevailing therapeutic modalities. We highlight plasma exchange as a potentially feasible, repeatable, and personalized treatment option for patients with extensive platelet alloimmunization who require transfusion.
Collapse
Affiliation(s)
| | | | - Karen Yee
- Division of Hematology, University of Toronto, Canada; Division of Malignant Hematology and Oncology, Princess Margaret Cancer Center, Canada
| | - Akash Gupta
- Division of Hematology, University of Toronto, Canada; National Platelet Immunobiology Laboratory, Canadian Blood Services, Canada
| | - Waseem Anani
- National Platelet Immunobiology Laboratory, Canadian Blood Services, Canada
| | - Jacqueline Wong
- National Platelet Immunobiology Laboratory, Canadian Blood Services, Canada
| | | | - Lani Lieberman
- Division of Hematology, University of Toronto, Canada; Blood Transfusion Laboratory, University Health Network, Canada
| | - Jacob Pendergrast
- Division of Hematology, University of Toronto, Canada; Blood Transfusion Laboratory, University Health Network, Canada
| | - Christine Cserti-Gazdewich
- Division of Hematology, University of Toronto, Canada; Blood Transfusion Laboratory, University Health Network, Canada.
| |
Collapse
|
5
|
Garraud O, Hamzeh-Cognasse H, Chalayer E, Duchez AC, Tardy B, Oriol P, Haddad A, Guyotat D, Cognasse F. Platelet transfusion in adults: An update. Transfus Clin Biol 2023; 30:147-165. [PMID: 36031180 DOI: 10.1016/j.tracli.2022.08.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many patients worldwide receive platelet components (PCs) through the transfusion of diverse types of blood components. PC transfusions are essential for the treatment of central thrombocytopenia of diverse causes, and such treatment is beneficial in patients at risk of severe bleeding. PC transfusions account for almost 10% of all the blood components supplied by blood services, but they are associated with about 3.25 times as many severe reactions (attributable to transfusion) than red blood cell transfusions after stringent in-process leukoreduction to less than 106 residual cells per blood component. PCs are not homogeneous, due to the considerable differences between donors. Furthermore, the modes of PC collection and preparation, the safety precautions taken to limit either the most common (allergic-type reactions and febrile non-hemolytic reactions) or the most severe (bacterial contamination, pulmonary lesions) adverse reactions, and storage and conservation methods can all result in so-called PC "storage lesions". Some storage lesions affect PC quality, with implications for patient outcome. Good transfusion practices should result in higher levels of platelet recovery and efficacy, and lower complication rates. These practices include a matching of tissue ABH antigens whenever possible, and of platelet HLA (and, to a lesser extent, HPA) antigens in immunization situations. This review provides an overview of all the available information relating to platelet transfusion, from donor and donation to bedside transfusion, and considers the impact of the measures applied to increase transfusion efficacy while improving safety and preventing transfusion inefficacy and refractoriness. It also considers alternatives to platelet component (PC) transfusion.
Collapse
Affiliation(s)
- O Garraud
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France.
| | | | - E Chalayer
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - A C Duchez
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - B Tardy
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - P Oriol
- CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - A Haddad
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Sacré-Cœur Hospital, Beirut, Lebanon; Lebanese American University, Beirut, Lebanon
| | - D Guyotat
- Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - F Cognasse
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| |
Collapse
|
6
|
Next generation sequencing of human platelet antigens for routine clinical investigations and donor screening. Transfus Med Rev 2022; 36:87-96. [DOI: 10.1016/j.tmrv.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/21/2022]
|
7
|
Molecular mechanisms of hematological and biochemical alterations in malaria: A review. Mol Biochem Parasitol 2021; 247:111446. [PMID: 34953384 DOI: 10.1016/j.molbiopara.2021.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
Abstract
Malaria is a dangerous disease that contributes to millions of hospital visits and hundreds of thousands of deaths, especially in children residing in sub-Saharan Africa. Although several interventions such as vector control, case detection, and treatment are already in place, there is no substantive reduction in the disease burden. Several studies in the past have reported the emergence of resistant strains of malaria parasites (MPs) and mosquitoes, and poor adherence and inaccessibility to effective antimalarial drugs as the major factors for this persistent menace of malaria infections. Moreover, victory against MP infections for many years has been hampered by an incomplete understanding of the complex nature of malaria pathogenesis. Very recent studies have identified different complex interactions and hematological alterations induced by malaria parasites. However, no studies have hybridized these alterations for a better understanding of Malaria pathogenesis. Hence, this review thoroughly discusses the molecular mechanisms of all reported hematological and biochemical alterations induced by MPs infections. Specifically, the mechanisms in which MP-infection induces anemia, thrombocytopenia, leukopenia, dyslipidemia, hypoglycemia, oxidative stress, and liver and kidney malfunctions were presented. The study also discussed how MPs evade the host's immune response and suggested strategies to limit evasion of the host's immune response to combat malaria and its complications.
Collapse
|
8
|
Orth M. Up-to date platelet testing. J LAB MED 2020. [DOI: 10.1515/labmed-2020-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Matthias Orth
- Department of Laboratory Medicine , Marienhospital Stuttgart , Adlerstr. 7, 70199 , Stuttgart , Germany
- Medizinische Fakultät Mannheim, Ruprecht Karls Universität , Mannheim , Germany
| |
Collapse
|