1
|
Pitchayatanakorn P, Suwan E, Kongsaeree PT. Characterization of BrGH3A, a bovine rumen-derived glycoside hydrolase family 3 β-glucosidase with a permuted domain arrangement. PLoS One 2024; 19:e0305817. [PMID: 38980877 PMCID: PMC11233000 DOI: 10.1371/journal.pone.0305817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
The bovine rumen contains a large consortium of residential microbes that release a variety of digestive enzymes for feed degradation. However, the utilization of these microbial enzymes is still limited because these rumen microorganisms are mostly anaerobes and are thus unculturable. Therefore, we applied a sequence-based metagenomic approach to identify a novel 2,445-bp glycoside hydrolase family 3 β-glucosidase gene known as BrGH3A from the metagenome of bovine ruminal fluid. BrGH3A β-glucosidase is a 92-kDa polypeptide composed of 814 amino acid residues. Unlike most glycoside hydrolases in the same family, BrGH3A exhibited a permuted domain arrangement consisting of an (α/β)6 sandwich domain, a fibronectin type III domain and a (β/α)8 barrel domain. BrGH3A exhibited greater catalytic efficiency toward laminaribiose than cellobiose. We proposed that BrGH3A is an exo-acting β-glucosidase from Spirochaetales bacteria that is possibly involved in the intracellular degradation of β-1,3-/1,4-mixed linkage glucans that are present in grass cell walls. BrGH3A exhibits rich diversity in rumen hydrolytic enzymes and may represent a member of a new clan with a permuted domain topology within the large family.
Collapse
Affiliation(s)
| | - Eukote Suwan
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
2
|
Yang W, Su Y, Wang R, Zhang H, Jing H, Meng J, Zhang G, Huang L, Guo L, Wang J, Gao W. Microbial production and applications of β-glucosidase-A review. Int J Biol Macromol 2024; 256:127915. [PMID: 37939774 DOI: 10.1016/j.ijbiomac.2023.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
β-Glucosidase exists in all areas of living organisms, and microbial β-glucosidase has become the main source of its production because of its unique physicochemical properties and the advantages of high-yield production by fermentation. With the rise of the green circular economy, the production of enzymes through the fermentation of waste as the substrate has become a popular trend. Lignocellulosic biomass is an easily accessible and sustainable feedstock that exists in nature, and the production of biofuels from lignocellulosic biomass requires the involvement of β-glucosidase. This review proposes ways to improve β-glucosidase yield and catalytic efficiency. Optimization of growth conditions and purification strategies of enzymes can increase enzyme yield, and enzyme immobilization, genetic engineering, protein engineering, and whole-cell catalysis provide solutions to enhance the catalytic efficiency and activity of β-glucosidase. Besides, the diversified industrial applications, challenges and prospects of β-glucosidase are also described.
Collapse
Affiliation(s)
- Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Hongyan Jing
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guoqi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs.
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Ludfiani DD, Asmara W, Arianti FD. Enzyme characterization of lactic acid bacteria isolated from duck excreta. Vet World 2024; 17:143-149. [PMID: 38406367 PMCID: PMC10884574 DOI: 10.14202/vetworld.2024.143-149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim The production of lignocellulosic biomass waste in the agricultural sector of Indonesia is quite high annually. Utilization of lignocellulosic biomass waste through fermentation technology can be used as feed and biofuel. Fermentation technology requires the involvement of micro-organisms such as bacteria (lactic acid bacteria or LAB). LABs can be isolated from various sources, such as duck excreta. However, there have not been many reports of LAB from duck excreta. The present study aimed to characterize LAB enzymes isolated from duck excreta and obtain LAB enzymes with superior fermentation properties. Materials and Methods A total of 11 LAB cultures obtained from duck excreta in Yogyakarta, Indonesia, were tested. Enzyme characterization of each LAB was performed using the API ZYM kit (BioMérieux, Marcy-I'Etoile, France). The bacterial cell suspension was dropped onto the API ZYM™ cupule using a pipette and incubated for 4 h at 37°C. After incubation, ZYM A and ZYM B were dripped onto the API ZYM cupule, and color changes were observed for approximately 10 s under a strong light source. Results Esterase activity was moderate for all LABs. The activity of α-chymotrypsin, β-glucuronidase, α-fucosidase, and α-mannosidase was not observed in a total of 10 LAB. The phosphohydrolase and amino peptidase enzyme activity of seven LABs was strong. Only six LAB samples showed protease activity. The glycosyl hydrolase (GH) activity was observed in a total of 8 LAB, while the activity of 2 LAB was strong (Lactococcus lactis subsp. lactis K5 and Lactobacillus brevis M4A). Conclusion A total of 2 LABs have superior properties. L. lactis subsp. lactis K5 and L. brevis M4A have a high potential to be used in fermentation. They have the potential for further research, such as their effectiveness in fermentation, lignocellulose hydrolysis, feed additives, molecular characterization to detect specific enzymes, and their specific activities.
Collapse
Affiliation(s)
- Dini Dwi Ludfiani
- Research Center for Sustainable Production Systems and Life Cycle Assessment, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Widya Asmara
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Forita Dyah Arianti
- Research Center for Sustainable Production Systems and Life Cycle Assessment, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| |
Collapse
|
4
|
Kaenying W, Tagami T, Suwan E, Pitsanuwong C, Chomngam S, Okuyama M, Kongsaeree P, Kimura A, Kongsaeree PT. Structural and mutational analysis of glycoside hydrolase family 1 Br2 β-glucosidase derived from bovine rumen metagenome. Heliyon 2023; 9:e21923. [PMID: 38034805 PMCID: PMC10685196 DOI: 10.1016/j.heliyon.2023.e21923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Ruminant animals rely on the activities of β-glucosidases from residential microbes to convert feed fibers into glucose for further metabolic uses. In this report, we determined the structures of Br2, which is a glycoside hydrolase family 1 β-glucosidase from the bovine rumen metagenome. Br2 folds into a classical (β/α)8-TIM barrel domain but displays unique structural features at loop β5→α5 and α-helix 5, resulting in different positive subsites from those of other GH1 enzymes. Br2 exhibited the highest specificity toward laminaritriose, suggesting its involvement in β-glucan hydrolysis in digested feed. We then substituted the residues at subsites +1 and + 2 of Br2 with those of Halothermothrix orenii β-glucosidase. The C170E and C221T mutations provided favorable interactions with glucooligosaccharide substrates at subsite +2, while the A219N mutation probably improved the substrate preference for cellobiose and gentiobiose relative to laminaribiose at subsite +1. The N407Y mutation increased the affinity toward cellooligosaccharides. These results give further insights into the molecular determinants responsible for substrate specificity in GH1 β-glucosidases and may provide a basis for future enzyme engineering applications.
Collapse
Affiliation(s)
- Wilaiwan Kaenying
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Eukote Suwan
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Chariwat Pitsanuwong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok 10300, Thailand
| | - Sinchai Chomngam
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Palangpon Kongsaeree
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | |
Collapse
|
5
|
Lima RAT, De Oliveira G, Souza AA, Lopes FAC, Santana RH, Istvan P, Quirino BF, Barbosa J, De Freitas S, Garay AV, Krüger RH. Functional and structural characterization of a novel GH3 β-glucosidase from the gut metagenome of the Brazilian Cerrado termite Syntermes wheeleri. Int J Biol Macromol 2020; 165:822-834. [PMID: 33011259 DOI: 10.1016/j.ijbiomac.2020.09.236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022]
Abstract
In this study, a GH3 family β-glucosidase (Bgl7226) from metagenomic sequences of the Syntermes wheeleri gut, a Brazilian Cerrado termite, was expressed, purified and characterized. The enzyme showed two optimum pHs (pH 7 and pH 10), and a maximum optimum temperature of about 40 °C using 4-Nitrophenyl β-D-glucopyranoside (pNPG) as substrate. Bgl7226 showed higher enzymatic activity at basic pH, but higher affinity (Km) at neutral pH. However, at neutral pH the Bgl7226 enzyme showed higher catalytic efficiency (kcat/Km) for pNPG substrate. Predictive analysis about the enzyme structure-function relationship by sequence alignment suggested the presence of multi-domains and conserved catalytic sites. Circular dichroism results showed that the secondary structure composition of the enzyme is pH-dependent. Small conformational changes occurred close to the optimum temperature of 40 o C, and seem important for the highest activity of Bgl7226 observed at pH 7 and 10. In addition, the small transition in the unfolding curves close to 40 o C is typical of intermediates associated with proteins structured in several domains. Bgl7226 has significant β-glucosidase activity which could be attractive for biotechnological applications, such as plant roots detoxification; specifically, our group is interested in cassava roots (Manihot esculenta) detoxification.
Collapse
Affiliation(s)
| | - Gideane De Oliveira
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Amanda Araújo Souza
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | | | - Renata Henrique Santana
- Instituto Federal de Brasília, Planaltina Campus, Brasília, DF 70910-900, Brazil; Genomic Sciences and Biotechnology, Universidade Católica de Brasília, Brasília, DF 70790-160, Brazil
| | - Paula Istvan
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil; Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben- Gurion University of the Negev, Department of Environmental Hydrology & Microbiology, Israel
| | - Betania Ferraz Quirino
- Embrapa Agroenergy, Parque Estação Biológica (PqEB), PqEB s/n°, Brasília, DF 70770-901, Brazil
| | - João Barbosa
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Sonia De Freitas
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Aisel Valle Garay
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Ricardo Henrique Krüger
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
6
|
In silico Approach to Elucidate Factors Associated with GH1 β-Glucosidase Thermostability. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|