1
|
Daoud R, Cacciari R, De Vico L. Multiconfigurational Excitonic Couplings in Homo- and Heterodimer Stacks of Azobenzene-Derived Dyes. J Phys Chem A 2024; 128:9398-9411. [PMID: 39432887 PMCID: PMC11534007 DOI: 10.1021/acs.jpca.4c05237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024]
Abstract
Molecular excitons play a major role within dye aggregates and hold significant potential for (opto)electronic and photovoltaic applications. Numerous studies have documented alterations in the spectral properties of dye homoaggregates, but only limited work has been reported for heteroaggregates. In this article, dimeric dye stacks were constructed from azobenzene-like dyes with identical or distinct structures, and their excitonic features were computationally investigated. Our results show that strong exciton coupling is not limited to identical chromophores, as often assumed, based on a recently made available Frenkel Exciton Hamiltonian and multiconfigurational plus second-order perturbation theory energetics methodology. Heteroaggregate stacks were found to exhibit different absorption features from the corresponding interacting monomers, indicating considerable coupling interactions between units. We analyzed how such coupling may vary according to various aspects, such as the relative positions of the interacting monomers or the differences in their energetics. Such qualitative and semiquantitative analyses allow the evaluation of the excitonic behavior of these dye aggregates to encourage further efforts toward a deeper understanding of the excitonic properties of tailored dye heteroaggregate systems.
Collapse
Affiliation(s)
- Razan
E. Daoud
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università degli Studi
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | | | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università degli Studi
di Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
2
|
Ghosal S, Bag S, Rao SR, Bhowmik S. Exposure to polyethylene microplastics exacerbate inflammatory bowel disease tightly associated with intestinal gut microflora. RSC Adv 2024; 14:25130-25148. [PMID: 39139248 PMCID: PMC11320195 DOI: 10.1039/d4ra04544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Polyethylene microplastics (PE MPs) have sparked widespread concern about their possible health implications because of their abundance, pervasiveness in the environment and in our daily life. Multiple investigations have shown that a high dosage of PE MPs may adversely impact gastrointestinal health. In tandem with the rising prevalence of Inflammatory bowel disease (IBD) in recent decades, global plastic manufacturing has risen to more than 300 million tons per year, resulting in a build-up of plastic by-products such as PE MPs in our surroundings. We have explored current advancements in the effect PE MPs on IBD in this review. Furthermore, we compared and summarized the detrimental roles of PE MPs in gut microbiota of different organisms viz., earthworms, super worm's larvae, yellow mealworms, brine shrimp, spring tails, tilapia, gilt-head bream, crucian carp, zebrafish, juvenile yellow perch, European sea bass, c57BL/6 mice and human. According to this review, PE MPs played a significant role in decreasing the diversity of gut microbiota of above-mentioned species which leads to the development of IBD and causes severe intestinal inflammation. Finally, we pinpoint significant scientific gaps, such as the movement of such hazardous PE MPs and the accompanying microbial ecosystems and propose prospective research directions.
Collapse
Affiliation(s)
- Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta 92, A. P. C. Road Kolkata - 700009 India
| | - S R Rao
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
| | - Sudipta Bhowmik
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta 92, A. P. C. Road Kolkata - 700009 India
| |
Collapse
|
3
|
Aleotti F, Petropoulos V, Van Overeem H, Pettini M, Mancinelli M, Pecorari D, Maiuri M, Medri R, Mazzanti A, Preda F, Perri A, Polli D, Conti I, Cerullo G, Garavelli M. Engineering Azobenzene Derivatives to Control the Photoisomerization Process. J Phys Chem A 2023; 127:10435-10449. [PMID: 38051114 PMCID: PMC10726365 DOI: 10.1021/acs.jpca.3c06108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
In this work, we show how the structural features of photoactive azobenzene derivatives can influence the photoexcited state behavior and the yield of the trans/cis photoisomerization process. By combining high-resolution transient absorption experiments in the vis-NIR region and quantum chemistry calculations (TDDFT and RASPT2), we address the origin of the transient signals of three poly-substituted push-pull azobenzenes with an increasing strength of the intramolecular interactions stabilizing the planar trans isomer (absence of intramolecular H-bonds, methyl, and traditional H-bond, respectively, for 4-diethyl-4'-nitroazobenzene, Disperse Blue 366, and Disperse Blue 165) and a commercial red dye showing keto-enol tautomerism involving the azo group (Sudan Red G). Our results indicate that the intramolecular H-bonds can act as a "molecular lock" stabilizing the trans isomer and increasing the energy barrier along the photoreactive CNNC torsion coordinate, thus preventing photoisomerization in the Disperse Blue dyes. In contrast, the involvement of the azo group in keto-enol tautomerism can be employed as a strategy to change the nature of the lower excited state and remove the nonproductive symmetric CNN/NNC bending pathway typical of the azo group, thus favoring the productive torsional motion. Taken together, our results can provide guidelines for the structural design of azobenzene-based photoswitches with a tunable excited state behavior.
Collapse
Affiliation(s)
- Flavia Aleotti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Vasilis Petropoulos
- Dipartimento
di Fisica - Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Hannah Van Overeem
- van’t
Hoff Institute for Molecular Sciences, Universiteit
van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Michele Pettini
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Michele Mancinelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Daniel Pecorari
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Margherita Maiuri
- Dipartimento
di Fisica - Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Riccardo Medri
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Andrea Mazzanti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Fabrizio Preda
- NIREOS
s.r.l, Via Giovanni Durando
39, 20158 Milan, Italy
| | - Antonio Perri
- NIREOS
s.r.l, Via Giovanni Durando
39, 20158 Milan, Italy
| | - Dario Polli
- Dipartimento
di Fisica - Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
- CNR - Institute
for Photonics and Nanotechnologies (IFN), Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Irene Conti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giulio Cerullo
- Dipartimento
di Fisica - Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
- CNR - Institute
for Photonics and Nanotechnologies (IFN), Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
4
|
Lee J, Kim D, Park M, Ryu J, Park H, Kim T, Kim D, Ju SY, Kim J. Spatiotemporally Controllable Electrical Stimulator via Independent Photobending and Upconversion Photoluminescence Using Two Different Wavelengths of Near-Infrared/Visible Light as Dual Stimuli. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46311-46321. [PMID: 37690085 DOI: 10.1021/acsami.3c08807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Multistimuli responsive materials are advantageous in that they can enhance the desired response or bypass unwanted reactions. Light is one of the most attractive stimuli since it allows remote spatiotemporal control and multiplexing of properties (e.g., wavelength, intensity, irradiation time, pulsed/continuous wave) for application on multiphotoresponsive materials. However, the operating wavelength for such photoresponsive systems often includes an ultraviolet (UV) range that limits its use in the biomedical field. Herein, we investigate near-infrared (NIR)/visible (Vis) light-responsive nanocomposite films composed of rare earth element (i.e., Yb, Er)-doped NaYF4 nanoparticles (NPs) embedded in azobenzene-incorporated poly(dimethylsiloxane) (AzoPDMS), silk fibroin, and silver nanowire (AgNW) layers. Photobending (PB) of the nanocomposite film is induced by a Vis light of 400-700 nm, while upconversion photoluminescence (UCPL) of embedded NPs is activated by an NIR light of 980 nm. The excitation wavelength of photoluminescence (PL) is shifted to the NIR (λ = 980 nm) range via photon upconversion in rare earth element-doped NPs. Independent operation of PB and UCPL enables both on-demand electrical switching and real-time location monitoring for spatiotemporally controlled electrical pulse stimulation. As a result, the dual-photoresponsive nanocomposite film can be utilized as a remotely controllable electrical stimulator and location indicator via different wavelengths of light.
Collapse
Affiliation(s)
- Jiyeon Lee
- School of Integrated Technology, College of Computing, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Dongjun Kim
- School of Integrated Technology, College of Computing, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Minsuk Park
- Department of Chemistry, College of Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jaehyeok Ryu
- School of Integrated Technology, College of Computing, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Hyunbin Park
- Integrative Biotechnology and Translational Medicine, Graduate School, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Taehee Kim
- Department of Chemistry, College of Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dongho Kim
- Department of Chemistry, College of Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang-Yong Ju
- Department of Chemistry, College of Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwon Kim
- School of Integrated Technology, College of Computing, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Integrative Biotechnology and Translational Medicine, Graduate School, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| |
Collapse
|
5
|
Kommidi SSR, Smith BD. Supramolecular Complexation of Azobenzene Dyes by Cucurbit[7]uril. J Org Chem 2023; 88:8431-8440. [PMID: 37256736 PMCID: PMC10843849 DOI: 10.1021/acs.joc.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This report describes cucurbit[7]uril (CB7) complexation of azobenzene dyes that have a 4-(N,N'-dimethylamino) or 4-amino substituent. Absorption and NMR data show that CB7 encapsulates the protonated form of the azobenzene and that the complexed dye exists as its azonium tautomer with a trans azo conformation and substantial quinoid resonance character. Because CB7 complexation stabilizes the dye conjugate acid, there is an upward shift in its pKa, and in one specific case, the pKa of the protonated azobenzene is increased from 3.09 to 4.47. Molecular modeling indicates that the CB7/azobenzene complex is stabilized by three major noncovalent factors: (i) ion-dipole interactions between the partially cationic 4-(N,N'-dimethylamino) or 4-amino group on the encapsulated protonated azobenzene and the electronegative carbonyl oxygens on CB7, (ii) inclusion of the upper aryl ring of the azobenzene within the hydrophobic CB7 cavity, and (iii) a hydrogen bond between the proton on the azo nitrogen and CB7 carbonyls. CB7 complexation enhances azobenzene stability and increases azobenzene hydrophilicity; thus, it is a promising way to improve azobenzene performance as a pigment or prodrug. In addition, the striking yellow/pink color change that accompanies CB7 complexation can be exploited to create azobenzene dye displacement assays with naked eye detection.
Collapse
Affiliation(s)
- Sai Shradha Reddy Kommidi
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
6
|
Silanteva IA, Komolkin AV, Mamontova VV, Gabrusenok PV, Vorontsov-Velyaminov PN, Santer S, Kasyanenko NA. Cis-Isomers of Photosensitive Cationic Azobenzene Surfactants in DNA Solutions at Different NaCl Concentrations: Experiment and Modeling. J Phys Chem B 2021; 125:11197-11207. [PMID: 34586822 DOI: 10.1021/acs.jpcb.1c07864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA interaction with cis-isomers of photosensitive azobenzene-containing surfactants was studied by both experimental methods and computer simulation. It was shown that before the organization of micelles, such surfactants in the cis-conformation form associates of only a single type with a disordered orientation of molecules. In contrast, for trans-isomers, there exist two types of associates with head-to-head or head-to-tail orientations of molecules in dependence on salt concentration in a solution. The comparison of cis- and trans-isomer binding to DNA and the influence of salt concentration on the formation of their complexes with DNA were studied. It was shown that cis-isomers interact with phosphate groups of DNA and that their molecules were also located along the minor groove of DNA.
Collapse
Affiliation(s)
- Irina A Silanteva
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Andrei V Komolkin
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Veronika V Mamontova
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Pavel V Gabrusenok
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Pavel N Vorontsov-Velyaminov
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Svetlana Santer
- Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Nina A Kasyanenko
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| |
Collapse
|
7
|
Aleotti F, Nenov A, Salvigni L, Bonfanti M, El-Tahawy MM, Giunchi A, Gentile M, Spallacci C, Ventimiglia A, Cirillo G, Montali L, Scurti S, Garavelli M, Conti I. Spectral Tuning and Photoisomerization Efficiency in Push-Pull Azobenzenes: Designing Principles. J Phys Chem A 2020; 124:9513-9523. [PMID: 33170012 PMCID: PMC8015210 DOI: 10.1021/acs.jpca.0c08672] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
This
work demonstrates how push–pull substitution can induce spectral tuning toward the
visible range and improve the photoisomerization efficiency of azobenzene-based
photoswitches, making them good candidates for technological and biological
applications. The red-shifted bright ππ* state (S2) behaves like the lower and more productive dark nπ*
(S1) state because less potential energy along the planar
bending mode is available to reach higher energy unproductive nπ*/S0 crossing regions, which are responsible for the lower quantum
yield of the parent compound. The stabilization of the bright ππ*
state and the consequent increase in isomerization efficiency may
be regulated via the strength of push–pull substituents. Finally, the torsional
mechanism is recognized here as the unique productive route because
structures with bending values attributable to the inversion mechanism
were never detected, out of the 280 ππ* time-dependent
density functional theory (RASPT2-validated) dynamics simulations.
Collapse
Affiliation(s)
- Flavia Aleotti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Luca Salvigni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Matteo Bonfanti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Mohsen M El-Tahawy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy.,Chemistry Department, Faculty of Science, Damanhour University, 22511 Damanhour, Egypt
| | - Andrea Giunchi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Marziogiuseppe Gentile
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Claudia Spallacci
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Alessia Ventimiglia
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giuseppe Cirillo
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Lorenzo Montali
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Scurti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Irene Conti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
8
|
Imperatore C, Varriale A, Rivieccio E, Pennacchio A, Staiano M, D’Auria S, Casertano M, Altucci C, Valadan M, Singh M, Menna M, Varra M. Spectroscopic Properties of Two 5'-(4-Dimethylamino)Azobenzene Conjugated G-Quadruplex Forming Oligonucleotides. Int J Mol Sci 2020; 21:E7103. [PMID: 32993097 PMCID: PMC7582650 DOI: 10.3390/ijms21197103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
The synthesis of two 5'-end (4-dimethylamino)azobenzene conjugated G-quadruplex forming aptamers, the thrombin binding aptamer (TBA) and the HIV-1 integrase aptamer (T30695), was performed. Their structural behavior was investigated by means of UV, CD, fluorescence spectroscopy, and gel electrophoresis techniques in K+-containing buffers and water-ethanol blends. Particularly, we observed that the presence of the 5'-(4-dimethylamino)azobenzene moiety leads TBA to form multimers instead of the typical monomolecular chair-like G-quadruplex and almost hampers T30695 G-quadruplex monomers to dimerize. Fluorescence studies evidenced that both the conjugated G-quadruplexes possess unique fluorescence features when excited at wavelengths corresponding to the UV absorption of the conjugated moiety. Furthermore, a preliminary investigation of the trans-cis conversion of the dye incorporated at the 5'-end of TBA and T30695 showed that, unlike the free dye, in K+-containing water-ethanol-triethylamine blend the trans-to-cis conversion was almost undetectable by means of a standard UV spectrophotometer.
Collapse
Affiliation(s)
- Concetta Imperatore
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Antonio Varriale
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Elisa Rivieccio
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Angela Pennacchio
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Maria Staiano
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Sabato D’Auria
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Marcello Casertano
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Carlo Altucci
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Mohammadhassan Valadan
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Manjot Singh
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Marialuisa Menna
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Michela Varra
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| |
Collapse
|
9
|
Silanteva IA, Komolkin AV, Mamontova VV, Vorontsov-Velyaminov PN, Santer S, Kasyanenko NA. Some Features of Surfactant Organization in DNA Solutions at Various NaCl Concentrations. ACS OMEGA 2020; 5:18234-18243. [PMID: 32743199 PMCID: PMC7391854 DOI: 10.1021/acsomega.0c01850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 05/17/2023]
Abstract
The photosensitive azobenzene-containing surfactant C4-Azo-OC6TMAB is a promising agent for reversible DNA packaging in a solution. The simulation of the trans-isomer surfactant organization into associates in a solution with and without salt as well as its binding to DNA at different NaCl concentrations was carried out by molecular dynamics. Experimental data obtained by spectral and hydrodynamic methods were used to verify the results of simulation. It was shown that head-to-tail aggregates with close to antiparallel orientation of surfactant molecules were formed at certain NaCl and surfactant concentrations (below critical micelle concentration). Such aggregates have two positively charged ends, and therefore, they can be attracted to negatively charged DNA phosphates far located along the chain, as well as those that belong to different molecules. This contributes to the formation of intermolecular DNA-DNA contacts, and this way, the experimentally observed precipitation of DNA can be explained.
Collapse
Affiliation(s)
- Irina A. Silanteva
- Faculty
of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Andrei V. Komolkin
- Faculty
of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Veronika V. Mamontova
- Faculty
of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | | | - Svetlana Santer
- Experimental
Physics, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Nina A. Kasyanenko
- Faculty
of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| |
Collapse
|