1
|
Bishnoi S, Sharma S, Agrawal H. Exploration of the Potential Application of Banana Peel for Its Effective Valorization: A Review. Indian J Microbiol 2023; 63:398-409. [PMID: 38031613 PMCID: PMC10681972 DOI: 10.1007/s12088-023-01100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/22/2023] [Indexed: 12/01/2023] Open
Abstract
The production of banana peel by the food-processing industry is substantial and the disposal of this waste material has become a matter of concern. However, recent studies have demonstrated that banana peel is a rich source of biologically active compounds that can be transformed into valuable products. This review aims to explore the potential of converting banana peel into valuable products and provides a comprehensive analysis of the physical and chemical composition of banana peel. Additionally, the utilization of banana peel as a substrate to produce animal feed, bio fertilizer, dietary fibers, renewable energy, industrial enzymes, and nanomaterials has been extensively studied. According to the researches that has been done so far, it is clear that banana peel has a broad range of applications and its effective utilization through biorefinery strategies can maximize its economic benefits. Based on previous studies, A plan for feasibility of a banana peel biorefinery has been put up which suggest its potential as a valuable source of renewable energy and high-value products. The utilization of banana peel through biorefinery strategies can provide a sustainable solution for waste management and contribute to the development of a circular economy.
Collapse
Affiliation(s)
- Shreya Bishnoi
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar, Punjab India
| | - Shweta Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar, Punjab India
| | - Himani Agrawal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| |
Collapse
|
2
|
Pua EH, Mohd Faizal AN, Lawal S, Zaini MAA. Two-stage adsorber design for malachite green and methylene blue removal using adsorbents derived from banana peel. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2023. [DOI: 10.1515/ijcre-2022-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
This work was aimed at evaluating the adsorptive characteristics and two-stage adsorber design of banana peel adsorbents for malachite green and methylene blue removal. The adsorbents were characterized for specific surface, functional groups, and morphology. Activated carbon and hydrochar activated carbon exhibit similar textural and surface properties, but different capacities of malachite green and methylene blue. The latter with surface area of 877 m2/g endows a greater malachite green removal at 582 mg/g, while the former with surface area of 897 m2/g displays a higher methylene blue capacity of 503 mg/g. The Langmuir model was employed in a two-stage adsorber design. The second stage of adsorber is necessary to accomplish the adsorption process with high performance and minimum dosage of activated carbon.
Collapse
Affiliation(s)
- Eng Hock Pua
- Department of Chemical Engineering, Faculty of Chemical & Energy Engineering , Universiti Teknologi Malaysia , 81310 UTM Johor Bahru , Johor , Malaysia
| | - Azrul Nurfaiz Mohd Faizal
- Department of Chemical Engineering, Faculty of Chemical & Energy Engineering , Universiti Teknologi Malaysia , 81310 UTM Johor Bahru , Johor , Malaysia
| | - Sirajo Lawal
- Centre of Lipids Engineering & Applied Research (CLEAR) , Ibnu-Sina Institute for Scientific & Industrial Research (ISI-SIR), Universiti Teknologi Malaysia , 81310 UTM Johor Bahru , Johor , Malaysia
| | - Muhammad Abbas Ahmad Zaini
- Centre of Lipids Engineering & Applied Research (CLEAR) , Ibnu-Sina Institute for Scientific & Industrial Research (ISI-SIR), Universiti Teknologi Malaysia , 81310 UTM Johor Bahru , Johor , Malaysia
| |
Collapse
|
3
|
Rigid Polyurethane Biofoams Filled with Chemically Compatible Fruit Peels. Polymers (Basel) 2022; 14:polym14214526. [PMID: 36365520 PMCID: PMC9654621 DOI: 10.3390/polym14214526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022] Open
Abstract
Banana and bergamot peels are underutilized byproducts of the essential oil and juice-processing industry. This study was designed for the development of rigid polyurethane foam (RPUF) composites using polysaccharide-rich fruit peels as fillers. These fillers were characterized for chemical properties using wet analyses. Additionally, the influences of the filler type and filler content on morphological, thermal, mechanical, hygroscopic, and colorimetric properties of the RPUF were investigated. The main results indicated that, in a comparison with the neat RPUF, the insertion of up to 15% of fillers yielded similar water uptake, apparent density, compressive strength, and color properties, as well as increases up to 115% in thermal stability and up to 80% in cell size.
Collapse
|
4
|
Bagabaldo PAA, Atienza LM, Castillo-Israel KAT, Estacio MAC, Gaban PJV, Maniwang JRC, Gapasin RP, Estribillo AGM, Cena-Navarro RB. ‘Saba’ banana (Musa acuminata x balbisiana BBB Group) peel pectin supplementation improves biomarkers of obesity and associated blood lipid disorders in obese hypercholesterolemic mice. Curr Res Food Sci 2022; 5:251-260. [PMID: 35146442 PMCID: PMC8801348 DOI: 10.1016/j.crfs.2022.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 10/27/2022] Open
|
5
|
Birania S, Kumar S, Kumar N, Attkan AK, Panghal A, Rohilla P, Kumar R. Advances in development of biodegradable food packaging material from agricultural and
agro‐industry
waste. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering & Technology (Hisar Centre), Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Nitin Kumar
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Anil Panghal
- AICRP on Post Harvest Engineering & Technology (Hisar Centre), Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Priyanka Rohilla
- Centre of Food Science and Technology, College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Ravi Kumar
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| |
Collapse
|
6
|
Pereira MAF, Cesca K, Poletto P, de Oliveira D. New perspectives for banana peel polysaccharides and their conversion to oligosaccharides. Food Res Int 2021; 149:110706. [PMID: 34600698 DOI: 10.1016/j.foodres.2021.110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Banana peel is a source of polysaccharides: pectin, hemicellulose and cellulose. Recent studies have shown that these carbohydrate fractions can be converted into oligomers, which have applications in food, feed and pharmaceuticals, claiming important technical, functional and biological activities. Potential prebiotic activity of pectin and cellulose oligosaccharides obtained from banana peel was already reported. Based on technologies developed for fractionation and extraction of polysaccharides, such as pectin, hemicellulose and cellulose, banana peel can be explored to obtain functional oligosaccharides.
Collapse
Affiliation(s)
- Maria Angélica F Pereira
- Department of Chemical and Food Engineering, UFSC - Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Karina Cesca
- Department of Chemical and Food Engineering, UFSC - Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Patrícia Poletto
- Department of Chemical and Food Engineering, UFSC - Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil.
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, UFSC - Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil.
| |
Collapse
|
7
|
Gamal AA, Abbas HY, Abdelwahed NAM, Kashef MT, Mahmoud K, Esawy MA, Ramadan MA. Optimization strategy of Bacillus subtilis MT453867 levansucrase and evaluation of levan role in pancreatic cancer treatment. Int J Biol Macromol 2021; 182:1590-1601. [PMID: 34015407 DOI: 10.1016/j.ijbiomac.2021.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Pancreatic cancer is the fourth most lethal cancer type worldwide. Due to multiple levan applications including anticancer activities, studies related to levansucrase production are of interest. To our knowledge, levan effect on pancreatic cancer cells has not been tested previously. In this work, among eighteen bacterial honey isolates, Bacillus subtilis MT453867 showed the highest levan yield (33 g/L) and levansucrase production (8.31 U/mL). One-factor-at-a-time technique increased levansucrase activity by 60% when MgSO4 was eliminated. The addition of 60 g/L banana peels enhanced the enzyme activity (192 U/mL). Placket Burman design determined the media composition for maximum levan yield (54.8 g/L) and levansucrase production (505 U/mL). The identification of levan was confirmed by thin-layer chromatography, Fourier-Transform Infrared spectrometric analysis, 13C-nuclear-magnetic resonance, and 1H-nuclear-magnetic resonance. Both crude and dialyzed levan completely inhibited the pancreatic cancer cell line at 100 ppm with no cytotoxicity on the normal retinal cell line. The LD50 of crude levan was 4833 mg/kg body weight. Levan had strong antioxidant activity and significantly reduced the expression of CXCR4 and MCM7 genes in pancreatic cancer cells with significant DNA fragmentation. In conclusion, Bacillus subtilis MT453867 levan is a promising adjunct to pancreatic-anticancer agents with both anti-cancer and chemoprotective effects.
Collapse
Affiliation(s)
- Amira A Gamal
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt
| | - Heba Y Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City
| | - Nayera A M Abdelwahed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University
| | - Khaled Mahmoud
- Pharmacognosy Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt.
| | - Mohammed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University
| |
Collapse
|
8
|
Redondo-Gómez C, Rodríguez Quesada M, Vallejo Astúa S, Murillo Zamora JP, Lopretti M, Vega-Baudrit JR. Biorefinery of Biomass of Agro-Industrial Banana Waste to Obtain High-Value Biopolymers. Molecules 2020; 25:E3829. [PMID: 32842473 PMCID: PMC7504234 DOI: 10.3390/molecules25173829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/25/2022] Open
Abstract
On a worldwide scale, food demand is increasing as a consequence of global population growth. This makes companies push their food supply chains' limits with a consequent increase in generation of large amounts of untreated waste that are considered of no value to them. Biorefinery technologies offer a suitable alternative for obtaining high-value products by using unconventional raw materials, such as agro-industrial waste. Currently, most biorefineries aim to take advantage of specific residues (by either chemical, biotechnological, or physical treatments) provided by agro-industry in order to develop high-value products for either in-house use or for sale purposes. This article reviews the currently explored possibilities to apply biorefinery-known processes to banana agro-industrial waste in order to generate high-value products out of this residual biomass source. Firstly, the Central and Latin American context regarding biomass and banana residues is presented, followed by advantages of using banana residues as raw materials for the production of distinct biofuels, nanocellulose fibers, different bioplastics, and other high-value products Lastly, additional uses of banana biomass residues are presented, including energy generation and water treatment.
Collapse
Affiliation(s)
- Carlos Redondo-Gómez
- National Laboratory of Nanotechnology LANOTEC, 1174-1200 Pavas, San José, Costa Rica;
| | - Maricruz Rodríguez Quesada
- School of Chemistry, National University of Costa Rica (UNA), 86-3000 Heredia, Costa Rica; (M.R.Q.); (S.V.A.); (J.P.M.Z.)
| | - Silvia Vallejo Astúa
- School of Chemistry, National University of Costa Rica (UNA), 86-3000 Heredia, Costa Rica; (M.R.Q.); (S.V.A.); (J.P.M.Z.)
| | - José Pablo Murillo Zamora
- School of Chemistry, National University of Costa Rica (UNA), 86-3000 Heredia, Costa Rica; (M.R.Q.); (S.V.A.); (J.P.M.Z.)
| | - Mary Lopretti
- Laboratorio de Técnicas Nucleares Aplicadas a Bioquímica y Biotecnología, Centro de Investigaciones Nucleares-Facultad de Ciencias, UDELAR University, cp1140 Montevideo, Uruguay;
| | - José Roberto Vega-Baudrit
- National Laboratory of Nanotechnology LANOTEC, 1174-1200 Pavas, San José, Costa Rica;
- School of Chemistry, National University of Costa Rica (UNA), 86-3000 Heredia, Costa Rica; (M.R.Q.); (S.V.A.); (J.P.M.Z.)
| |
Collapse
|
9
|
Joglekar SN, Pathak PD, Mandavgane SA, Kulkarni BD. Process of fruit peel waste biorefinery: a case study of citrus waste biorefinery, its environmental impacts and recommendations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34713-34722. [PMID: 30645745 DOI: 10.1007/s11356-019-04196-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 01/08/2019] [Indexed: 05/21/2023]
Abstract
Fruit peels are a rich source of cellulose, hemicellulose, phenolic compounds, and terpenic compounds. Thus, they have the potential to be a novel renewable, sustainable, and low-cost raw material (source) for the production of several value-added products based on framework and concepts such as waste hierarchy that includes biofertilizers, dietary fiber, animal feed, industrial enzymes, substrate for the bioactive compounds production, synthesis of nanomaterials, and clean energy (from residual biomass). With a view of evaluating the environmental burden of biorefinery, a life cycle assessment (LCA) is performed for a representative citrus waste (CW) biorefinery. The functional unit used for LCA was set as 2500 kg of CW processed. The overall GWP was observed to be 937.3 kg CO2 equivalent per 2500 kg of CW processed. On further analysis of the environmental impact, it was found that different steps contributed significantly, as shown by the various environmental indicator values. Alternative advanced process intensification technologies like microwave and ultrasound-assisted steps replacing the conventional steps when implemented show considerable reduction in environmental indicator values. The variations in the contribution to environmental indicators should be considered during the design and process selection of biorefineries.
Collapse
Affiliation(s)
- Saurabh N Joglekar
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, South Ambazari road, Nagpur, Maharashtra, 440 010, India
| | - Pranav D Pathak
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, South Ambazari road, Nagpur, Maharashtra, 440 010, India
- MIT-School of Bioengineering Sciences & Research, Pune, India
| | - Sachin A Mandavgane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, South Ambazari road, Nagpur, Maharashtra, 440 010, India.
| | | |
Collapse
|
10
|
Pathak G, Rajkumari K, Rokhum SL. Wealth from waste: M. acuminata peel waste-derived magnetic nanoparticles as a solid catalyst for the Henry reaction. NANOSCALE ADVANCES 2019; 1:1013-1020. [PMID: 36133185 PMCID: PMC9473269 DOI: 10.1039/c8na00321a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 06/12/2023]
Abstract
Biosynthesis of nanoparticles by exploiting different plant materials has become a matter of great interest in recent years and is considered as a green technology as it does not involve any harmful and toxic chemicals in the synthetic procedure. In this paper, we report a novel one-pot M. acuminata peel ash extract mediated bio-synthesis of basic iron oxide nanoparticles (MAPAE@Fe3O4). The nanoparticles were fully characterized by different analytical techniques such as XRF, IR, XRD, XPS, SEM, TEM, VSM and TGA. The synthesized nanoparticles exhibited high basicity due to the presence of metal oxides, primarily basic K2O in the outer layer of Fe3O4 surfaces, and showed good catalytic activity for the synthesis of β-nitroalcohol via the Henry reaction at room temperature under solvent-free conditions. The catalyst was separated from the reaction medium by simply applying an external bar magnet making the process economical and less labor intensive. Furthermore, the catalyst can be reused up to the 4th cycle without much loss of its activity.
Collapse
Affiliation(s)
- Gunindra Pathak
- Department of Chemistry, National Institute of Technology, Silchar Silchar-788010 Assam India +91 3842-224797 +91 3842 242915
| | - Kalyani Rajkumari
- Department of Chemistry, National Institute of Technology, Silchar Silchar-788010 Assam India +91 3842-224797 +91 3842 242915
| | - Samuel Lalthazuala Rokhum
- Department of Chemistry, National Institute of Technology, Silchar Silchar-788010 Assam India +91 3842-224797 +91 3842 242915
| |
Collapse
|
11
|
Martínez-Ruano JA, Caballero-Galván AS, Restrepo-Serna DL, Cardona CA. Techno-economic and environmental assessment of biogas production from banana peel (Musa paradisiaca) in a biorefinery concept. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35971-35980. [PMID: 29626328 DOI: 10.1007/s11356-018-1848-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Two scenarios for the biogas production using Banana Peel as raw material were evaluated. The first scenario involves the stand-alone production of biogas and the second scenario includes the biogas production together with other products under biorefinery concept. In both scenarios, the influence of the production scale on the process economy was assessed and feasibility limits were defined. For this purpose, the mass and energy balances were established using the software Aspen Plus along with kinetic models reported in the literature. The economic and environmental analysis of the process was performed considering Colombian economic conditions. As a result, it was found that different process scales showed great potential for biogas production. Thus, plants with greater capacity have a greater economic benefit than those with lower capacity. However, this benefit leads to high-energy consumption and greater environmental impact.
Collapse
Affiliation(s)
- Jimmy Anderson Martínez-Ruano
- Instituto de Biotecnología y Agroindustria, Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, Colombia
| | - Ashley Sthefanía Caballero-Galván
- Instituto de Biotecnología y Agroindustria, Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, Colombia
| | - Daissy Lorena Restrepo-Serna
- Instituto de Biotecnología y Agroindustria, Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, Colombia
| | - Carlos Ariel Cardona
- Instituto de Biotecnología y Agroindustria, Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Manizales, Colombia.
| |
Collapse
|
12
|
Abstract
Dietary fiber plays an important role in human health. The modification and application of dietary fiber in foods is reviewed with respect to definition and classification and methods for measurement, extraction, and modification of dietary fiber. The supplementation of dietary fiber for flour, meat, and dairy products is also reviewed. Finally, the benefits and risks of increasing consumption of dietary fiber are discussed.
Collapse
|