1
|
Santos P, Silva AP, Reis PNB. The Effect of Carbon Nanofibers on the Mechanical Performance of Epoxy-Based Composites: A Review. Polymers (Basel) 2024; 16:2152. [PMID: 39125179 PMCID: PMC11314623 DOI: 10.3390/polym16152152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
This review is a fundamental tool for researchers and engineers involved in the design and optimization of fiber-reinforced composite materials. The aim is to provide a comprehensive analysis of the mechanical performance of composites with epoxy matrices reinforced with carbon nanofibers (CNFs). The review includes studies investigating the static mechanical response through three-point bending (3PB) tests, tensile tests, and viscoelastic behavior tests. In addition, the properties of the composites' resistance to interlaminar shear strength (ILSS), mode I and mode II interlaminar fracture toughness (ILFT), and low-velocity impact (LVI) are analyzed. The incorporation of small amounts of CNFs, mostly between 0.25 and 1% by weight was shown to have a notable impact on the static and viscoelastic properties of the composites, leading to greater resistance to time-dependent deformation and better resistance to creep. ILSS and ILFT modes I and II of fiber-reinforced composites are critical parameters in assessing structural integrity through interfacial bonding and were positively affected by the introduction of CNFs. The response of composites to LVI demonstrates the potential of CNFs to increase impact strength by reducing the energy absorbed and the size of the damage introduced. Epoxy matrices reinforced with CNFs showed an average increase in stiffness of 15% and 20% for bending and tensile, respectively. The laminates, on the other hand, showed an increase in bending stiffness of 20% and 15% for tensile and modulus, respectively. In the case of ILSS and ILFT modes I and II, the addition of CNFs promoted average increases in the order of 50%, 100%, and 50%, respectively.
Collapse
Affiliation(s)
- Paulo Santos
- C-MAST—Centre for Mechanical and Aerospace Science and Technologies, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - Abílio P. Silva
- C-MAST—Centre for Mechanical and Aerospace Science and Technologies, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - Paulo N. B. Reis
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| |
Collapse
|
2
|
Chen YR, Thanh DTH, Tran QTP, Liu BL, Srinophakun P, Chiu CY, Chen KH, Chang YK. The Utilization of Chicken Egg White Waste-Modified Nanofiber Membrane for Anionic Dye Removal in Batch and Flow Systems: Comprehensive Investigations into Equilibrium, Kinetics, and Breakthrough Curve. MEMBRANES 2024; 14:128. [PMID: 38921495 PMCID: PMC11205732 DOI: 10.3390/membranes14060128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
This study investigated the use of chicken egg white (CEW) waste immobilized on weak acidic nanofiber membranes for removing the anionic acid orange 7 (AO7) dye in batch and continuous flow modes. Different experiments were conducted to evaluate the effectiveness of CEW-modified nanofiber membranes for AO7 removal, focusing on CEW immobilization conditions, adsorption kinetics, and thermodynamics. The CEW-modified nanofiber membrane (namely NM-COOH-CEW) exhibited a maximum AO7 adsorption capacity of 589.11 mg/g within approximately 30 min. The Freundlich isotherm model best represented the equilibrium adsorption data, while the adsorption kinetics followed a pseudo-second-order rate model. Breakthrough curve analysis using the Thomas model and the bed depth service time (BDST) model showed that the BDST model accurately described the curve, with an error percentage under 5%. To investigate AO7 elution efficiency, different concentrations of organic solvents or salts were tested as eluents. The NM-COOH-CEW nanofiber membrane exhibited promising performance as an effective adsorbent for removing AO7 dye from contaminated water.
Collapse
Affiliation(s)
- Yun-Rou Chen
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (Y.-R.C.); (D.T.H.T.); (C.-Y.C.)
| | - Dinh Thi Hong Thanh
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (Y.-R.C.); (D.T.H.T.); (C.-Y.C.)
| | - Quynh Thi Phuong Tran
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City 70880, Vietnam;
| | - Bing-Lan Liu
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan;
| | - Penjit Srinophakun
- Department of Chemical Engineering, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand;
| | - Chen-Yaw Chiu
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (Y.-R.C.); (D.T.H.T.); (C.-Y.C.)
| | - Kuei-Hsiang Chen
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (Y.-R.C.); (D.T.H.T.); (C.-Y.C.)
| | - Yu-Kaung Chang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli Dist., Taoyuan City 320315, Taiwan
| |
Collapse
|
3
|
Carneiro KDS, Franchi LP, Rocha TL. Carbon nanotubes and nanofibers seen as emerging threat to fish: Historical review and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169483. [PMID: 38151128 DOI: 10.1016/j.scitotenv.2023.169483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/25/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
Since the discovery of the third allotropic carbon form, carbon-based one-dimensional nanomaterials (1D-CNMs) became an attractive and new technology with different applications that range from electronics to biomedical and environmental technologies. Despite their broad application, data on environmental risks remain limited. Fish are widely used in ecotoxicological studies and biomonitoring programs. Thus, the aim of the current study was to summarize and critically analyze the literature focused on investigating the bioaccumulation and ecotoxicological impacts of 1D-CNMs (carbon nanotubes and nanofibers) on different fish species. In total, 93 articles were summarized and analyzed by taking into consideration the following aspects: bioaccumulation, trophic transfer, genotoxicity, mutagenicity, organ-specific toxicity, oxidative stress, neurotoxicity and behavioral changes. Results have evidenced that the analyzed studies were mainly carried out with multi-walled carbon nanotubes, which were followed by single-walled nanotubes and nanofibers. Zebrafish (Danio rerio) was the main fish species used as model system. CNMs' ecotoxicity in fish depends on their physicochemical features, functionalization, experimental design (e.g. exposure time, concentration, exposure type), as well as on fish species and developmental stage. CNMs' action mechanism and toxicity in fish are associated with oxidative stress, genotoxicity, hepatotoxicity and cardiotoxicity. Overall, fish are a suitable model system to assess the ecotoxicity of, and the environmental risk posed by, CNMs.
Collapse
Affiliation(s)
- Karla da Silva Carneiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Leonardo Pereira Franchi
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
4
|
Srivastava A, Azad UP. Nanobioengineered surface comprising carbon based materials for advanced biosensing and biomedical application. Int J Biol Macromol 2023; 253:126802. [PMID: 37690641 DOI: 10.1016/j.ijbiomac.2023.126802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Carbon-based nanomaterials (CNMs) are at the cutting edge of materials science. Due to their distinctive architectures, substantial surface area, favourable biocompatibility, and reactivity to internal and/or external chemico-physical stimuli, carbon-based nanomaterials are becoming more and more significant in a wide range of applications. Numerous research has been conducted and still is going on to investigate the potential uses of carbon-based hybrid materials for diverse applications such as biosensing, bioimaging, smart drug delivery with the potential for theranostic or combinatorial therapies etc. This review is mainly focused on the classifications and synthesis of various types of CNMs and their electroanalytical application for development of efficient and ultra-sensitive electrochemical biosensors for the point of care diagnosis of fatal and severe diseases at their very initial stage. This review is mainly focused on the classification, synthesis and application of carbon-based material for biosensing applications. The integration of various types of CNMs with nanomaterials, enzymes, redox mediators and biomarkers have been used discussed in development of smart biosensing platform. We have also made an effort to discuss the future prospects for these CNMs in the biosensing area as well as the most recent advancements and applications which will be quite useful for the researchers working across the globe working specially in biosensors field.
Collapse
Affiliation(s)
- Ananya Srivastava
- Department of Chemistry, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Uday Pratap Azad
- Laboratory of Nanoelectrochemistry, Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur 495 009, CG, India.
| |
Collapse
|
5
|
Ingrassia EB, Lemos ES, Escudero LB. Treatment of textile wastewater using carbon-based nanomaterials as adsorbents: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91649-91675. [PMID: 37525081 DOI: 10.1007/s11356-023-28908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Waste derived from the textile industry can contain a wide variety of pollutants of organic and inorganic natures, such as dyes (e.g., acid, basic, reactive, mordant dyes) and toxic metals (e.g., lead, chromium, cadmium). The presence of pollutants at high concentrations in textile waste makes them relevant sources of pollution in the environment. To solve this problem, various technologies have been developed for the removal of pollutants from these matrices. Thus, adsorption emerges as an efficient alternative for textile waste remediation, providing advantages as simplicity of operation, economy, possibility of using different adsorbent materials, and developing on-line systems that allow the reuse of the adsorbent during several adsorption/desorption cycles. This review will initially propose an introduction to the adsorption world, its fundamentals, and aspects related to kinetics, equilibrium, and thermodynamics. The possible mechanisms through which a pollutant can be retained on an adsorbent will be explained. The analytical techniques that offer valuable information to characterize the solid phases as well as each adsorbate/adsorbent system will be also commented. The most common synthesis techniques to obtain carbon nano-adsorbents have been also presented. In addition, the latest advances about the use of these adsorbents for the removal of pollutants from textile waste will be presented and discussed. The contributions reported in this manuscript demonstrated the use of highly efficient carbon-based nano-adsorbents for the removal of both organic and inorganic pollutants, reaching removal percentages from 65 to 100%.
Collapse
Affiliation(s)
- Estefanía Belén Ingrassia
- Laboratory of Environmental Biotechnology (BioTA), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO - CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina
| | - Eliana Soledad Lemos
- Laboratory of Environmental Biotechnology (BioTA), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO - CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina
| | - Leticia Belén Escudero
- Laboratory of Environmental Biotechnology (BioTA), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO - CONICET, Faculty of Natural and Exact Sciences, National University of Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina.
| |
Collapse
|
6
|
Smajdor J, Paczosa-Bator B, Piech R. Electrochemical Sensor Based on the Hierarchical Carbon Nanocomposite for Highly Sensitive Ciprofloxacin Determination. MEMBRANES 2023; 13:682. [PMID: 37505048 PMCID: PMC10385619 DOI: 10.3390/membranes13070682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
A new voltammetry method for the highly sensitive antibacterial drug ciprofloxacin (CIP) is presented using glassy carbon electrodes modified with hierarchical electrospun carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo-GCE). The use of a modified glassy carbon electrode in the form of hierarchical electrospun carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo) led to an LOD value as low as 6.0 µmol L-1 with a measurement sensitivity of 3.33 µA µmol L-1. The described procedure was successfully applied for CIP determination in samples with complex matrices, such as urine or plasma, and also in pharmaceutical products and antibiotic discs with satisfactory recovery values ranging between 94-104%. The proposed electrode was characterised by great stability, with the possibility of use for about 4 weeks without any significant change in the CIP peak current. The repeatability of the CIP response on the eCNF/CNT/NiCo/GC is also very good; its value measured and expressed as RSD is equal to 2.4% for a CIP concentration of 0.025 µmol L-1 (for 7 consecutive CIP voltammogram registrations). The procedure for electrode preparation is quick and simple and does not involve the use of expensive apparatus.
Collapse
Affiliation(s)
- Joanna Smajdor
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza, 30-059 Krakow, Poland
| | | | | |
Collapse
|
7
|
Arooj N, Mumtaz M, Rehman A, Ahmad I, Khan S, Shah A, ul Hassan M, Raffi M. Optimizing electromagnetic interference shielding of
carbon nanofibers
reinforced nylon 6, 6 nanocomposite films in terahertz range. J Appl Polym Sci 2023. [DOI: 10.1002/app.53790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Affiliation(s)
- Nooria Arooj
- Department of Physics University of the Punjab Lahore Pakistan
| | - Muhammad Mumtaz
- National Institute of Lasers and Optronics (NILOP) College Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad Pakistan
| | - Abdur Rehman
- National Institute of Lasers and Optronics (NILOP) College Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad Pakistan
| | - Izhar Ahmad
- National Institute of Lasers and Optronics (NILOP) College Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad Pakistan
| | - Sabih Khan
- National Institute of Lasers and Optronics (NILOP) College Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad Pakistan
| | - Attaullah Shah
- National Institute of Lasers and Optronics (NILOP) College Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad Pakistan
| | | | - Muhammad Raffi
- National Institute of Lasers and Optronics (NILOP) College Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad Pakistan
| |
Collapse
|
8
|
Wyss KM, Li JT, Advincula PA, Bets KV, Chen W, Eddy L, Silva KJ, Beckham JL, Chen J, Meng W, Deng B, Nagarajaiah S, Yakobson BI, Tour JM. Upcycling of Waste Plastic into Hybrid Carbon Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209621. [PMID: 36694364 DOI: 10.1002/adma.202209621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Graphitic 1D and hybrid nanomaterials represent a powerful solution in composite and electronic applications due to exceptional properties, but large-scale synthesis of hybrid materials has yet to be realized. Here, a rapid, scalable method to produce graphitic 1D materials from polymers using flash Joule heating (FJH) is reported. This avoids lengthy chemical vapor deposition and uses no solvent or water. The flash 1D materials (F1DM), synthesized using a variety of earth-abundant catalysts, have controllable diameters and morphologies by parameter tuning. Furthermore, the process can be modified to form hybrid materials, with F1DM bonded to turbostratic graphene. In nanocomposites, F1DM outperform commercially available carbon nanotubes. Compared to current 1D material synthetic strategies using life cycle assessment, FJH synthesis represents an 86-92% decrease in cumulative energy demand and 92-94% decrease in global-warming potential. This work suggests that FJH affords a cost-effective and sustainable route to upcycle waste plastic into valuable 1D and hybrid nanomaterials.
Collapse
Affiliation(s)
- Kevin M Wyss
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - John T Li
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Paul A Advincula
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Ksenia V Bets
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Weiyin Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Lucas Eddy
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Applied Physics Graduate Program, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Karla J Silva
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jacob L Beckham
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jinhang Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Wei Meng
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Bing Deng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Satish Nagarajaiah
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Welch Institute for Advanced Materials, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Boris I Yakobson
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Welch Institute for Advanced Materials, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Smalley-Curl Institute, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Welch Institute for Advanced Materials, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Smalley-Curl Institute, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
9
|
Villanueva-Martínez N, Alegre C, Martínez-Visús I, Lázaro M. Bifunctional oxygen electrocatalysts based on non-critical raw materials: Carbon nanostructures and iron-doped manganese oxide nanowires. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
10
|
Soni A, Bhandari MP, Tripathi GK, Bundela P, Khiriya PK, Khare PS, Kashyap MK, Dey A, Vellingiri B, Sundaramurthy S, Suresh A, Pérez de la Lastra JM. Nano-biotechnology in tumour and cancerous disease: A perspective review. J Cell Mol Med 2023; 27:737-762. [PMID: 36840363 PMCID: PMC10002932 DOI: 10.1111/jcmm.17677] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 02/26/2023] Open
Abstract
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood-brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood-brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.
Collapse
Affiliation(s)
- Ambikesh Soni
- School of NanotechnologyRajiv Gandhi Proudyogiki VishwavidyalayaBhopalIndia
| | | | | | - Priyavand Bundela
- School of NanotechnologyRajiv Gandhi Proudyogiki VishwavidyalayaBhopalIndia
| | | | | | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical SchoolAmity University HaryanaHaryanaIndia
| | - Abhijit Dey
- Department of Life SciencesPresidency UniversityWest BengalKolkataIndia
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational ResearchDepartment of ZoologySchool of Basic Sciences, Central University of PunjabMaulana Azad National Institute of TechnologyBathindaIndia
| | - Suresh Sundaramurthy
- Department of Chemical EngineeringMaulana Azad National Institute of TechnologyMadhya PradeshBhopalIndia
| | - Arisutha Suresh
- Department of EnergyMaulana Azad National Institute of Technology & M/s Eco Science & TechnologyMadhya PradeshBhopalIndia
| | - José M. Pérez de la Lastra
- Biotecnología de macromoléculasInstituto de Productos Naturales y Agrobiología, (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| |
Collapse
|
11
|
Valachová K, Švík K, Jurčík R, Ondruška Ľ, Biró C, Šoltés L. Enhanced healing of skin wounds in ischemic rabbits using chitosan/hyaluronan/edaravone composite membranes: effects of laponite, carbon and silver-plated carbon nanofiber fillers. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Banitaba SN, Ebadi SV, Salimi P, Bagheri A, Gupta A, Arifeen WU, Chaudhary V, Mishra YK, Kaushik A, Mostafavi E. Biopolymer-based electrospun fibers in electrochemical devices: versatile platform for energy, environment, and health monitoring. MATERIALS HORIZONS 2022; 9:2914-2948. [PMID: 36226580 DOI: 10.1039/d2mh00879c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical power tools are regarded as essential keys in a world that is becoming increasingly reliant on fossil fuels in order to meet the challenges of rapidly depleting fossil fuel supplies. Additionally, due to the industrialization of societies and the growth of diseases, the need for sensitive, reliable, inexpensive, and portable sensors and biosensors for noninvasive monitoring of human health and environmental pollution is felt more than ever before. In recent decades, electrospun fibers have emerged as promising candidates for the fabrication of highly efficient electrochemical devices, such as actuators, batteries, fuel cells, supercapacitors, and biosensors. Meanwhile, the use of synthetic polymers in the fabrication of versatile electrochemical devices has raised environmental concerns, leading to an increase in the quest for natural polymers. Natural polymers are primarily derived from microorganisms and plants. Despite the challenges of processing bio-based electrospun fibers, employing natural nanofibers in the fabrication of electrochemical devices has garnered tremendous attention in recent years. Here, various natural polymers and the strategies employed to fabricate various electrospun biopolymers are briefly covered. The recent advances and research strategies used to apply the bio-based electrospun membranes in different electrochemical devices are carefully summarized, along with the scopes in various advanced technologies. A comprehensive and critical discussion about the use of biopolymer-based electrospun fibers as the potential alternative to non-renewable ones in future technologies is briefly highlighted. This review will serve as a field opening platform for using different biopolymer-based electrospun fibers to advance the electrochemical device-based renewable and sustainable technologies, which will be of high interest to a large community. Accordingly, future studies should focus on feasible and cost-effective extraction of biopolymers from natural resources as well as fabrication of high-performance nanofibrous biopolymer-based components applicable in various electrochemical devices.
Collapse
Affiliation(s)
- Seyedeh Nooshin Banitaba
- Department of Textile Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran.
| | - Seyed Vahid Ebadi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Pejman Salimi
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, I-16146 Genova, Italy
| | - Ahmad Bagheri
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
- Faculty of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universitate Dresden, Dresden 01062, Germany
| | - Ashish Gupta
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana, India
| | - Waqas Ul Arifeen
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi 110043, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, Smart Materials, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Mohammadpour-Haratbar A, Mohammadpour-Haratbar S, Zare Y, Rhee KY, Park SJ. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. BIOSENSORS 2022; 12:bios12111004. [PMID: 36421123 PMCID: PMC9688744 DOI: 10.3390/bios12111004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 05/09/2023]
Abstract
Diabetes mellitus has become a worldwide epidemic, and it is expected to become the seventh leading cause of death by 2030. In response to the increasing number of diabetes patients worldwide, glucose biosensors with high sensitivity and selectivity have been developed for rapid detection. The selectivity, high sensitivity, simplicity, and quick response of electrochemical biosensors have made them a popular choice in recent years. This review summarizes the recent developments in electrodes for non-enzymatic glucose detection using carbon nanofiber (CNF)-based nanocomposites. The electrochemical performance and limitations of enzymatic and non-enzymatic glucose biosensors are reviewed. Then, the recent developments in non-enzymatic glucose biosensors using CNF composites are discussed. The final section of the review provides a summary of the challenges and perspectives, for progress in non-enzymatic glucose biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
| | | | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| |
Collapse
|
14
|
Bulut U, Öykü Sayın V, Altin Y, Can Cevher Ş, Cirpan A, Celik Bedeloglu A, Soylemez S. A Flexible Carbon Nanofiber and Conjugated Polymer-Based Electrode for Glucose Sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Kundu A, Shetti NP, Basu S, Mondal K, Sharma A, Aminabhavi TM. Versatile Carbon Nanofiber-Based Sensors. ACS APPLIED BIO MATERIALS 2022; 5:4086-4102. [PMID: 36040854 DOI: 10.1021/acsabm.2c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbon nanofibers (CNFs) display colossal potential in different fields like energy, catalysis, biomedicine, sensing, and environmental science. CNFs have revealed extensive uses in various sensing platforms due to their distinctive structure, properties, function, and accessible surface functionalization capabilities. This review presents insight into various fabrication methods for CNFs like electrospinning, chemical vapor deposition, and template methods with merits and demerits of each technique. Also, we give a brief overview of CNF functionalization. Their unique physical and chemical properties make them promising candidates for the sensor applications. This review offers detailed discussion of sensing applications (strain sensor, biosensor, small molecule detection, food preservative detection, toxicity biomarker detection, and gas sensor). Various sensing applications of CNF like human motion monitoring and energy storage and conversion are discussed in brief. The challenges and obstacles associated with CNFs for futuristic applications are discussed. This review will be helpful for readers to understand the different fabrication methods and explore various applications of the versatile CNFs.
Collapse
Affiliation(s)
- Aayushi Kundu
- School of Chemistry and Biochemistry, Affiliate Faculty─TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580 031, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Panjab 140413, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty─TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580 031, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Panjab 140413, India
| |
Collapse
|
16
|
Electrochemical Sensing of Epinephrine on a Carbon Nanofibers and Gold Nanoparticle-Modified Electrode. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00769-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Cheng X, Liu Y, Zheng L, Tan F, Luo C, Xu B, Xu J, Zhu X, Wu D, Liang H. CuO@carbon nanofiber as an efficient peroxymonosulfate catalyst for mitigation of organic matter fouling in the ultrafiltration process. J Colloid Interface Sci 2022; 626:1028-1039. [PMID: 35839673 DOI: 10.1016/j.jcis.2022.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
Persulfate oxidation has been increasingly integrated with membrane separation for water purification, whereas the oxidizing ability of persulfate is relatively limited, and appropriate activation methods are urgently required. In this work, a novel catalyst of carbon nanofiber (CNF) supported CuO (CuO@CNF) was synthesized for peroxymonosulfate (PMS) activation. The micro-morphology showed that CuO nanoparticles were well dispersed on the CNF support, which solved the agglomeration problem of nanoparticles and improved the catalytic ability. Furtherly, PMS oxidation activated by CuO@CNF was proposed as a pre-processing means for improving ultrafiltration (UF) water purification efficiency and mitigating membrane fouling. The prepared CuO@CNF was more efficient than individual CNF and CuO in activating PMS for the reduction of various typical natural organic matter, improving permeation flux, and mitigating membrane fouling. The fouling control efficiencies were also verified by characterizing the membrane surface functional groups. The CuO@CNF catalyst could signally promote the oxidative capacity by generating a series of reactive oxygen species, thus enhancing the removal of organics with varying species and molecular weight ranges in surface water. With respect to the fouling condition, the specific permeation flux after filtration was improved from 0.25 to 0.61, with the removal rate of reversible fouling resistance reached 89.6%. The fouling mechanism was apparently altered, with both standard and complete blocking dominated throughout the filtration process. The findings are beneficial for the development of new strategies to improve membrane-based water purification efficiency.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Yinuo Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lu Zheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Bing Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
18
|
Ali H, Verma N. A Hybrid UV-Vis Spectroelectrochemical Approach for Measuring Folic Acid using a Novel Ni-CNF/ITO Electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Shokrani Havigh R, Mahmoudi Chenari H. A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers. Sci Rep 2022; 12:10704. [PMID: 35739235 PMCID: PMC9226016 DOI: 10.1038/s41598-022-15085-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Carbon fibers were successfully fabricated via the electrospinning technique, followed by stabilizing and carbonizing electrospun PAN fibers. A wide range of analytical techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), vibrating sample magnetometer (VSM) techniques, and Hall effect were performed to study of the effect of carbonization temperature on the physical and chemical characterization of carbon fibers. The SEM images of the PAN precursor exhibit a smooth outer surface, after the stabilization and carbonization process, along with a broken fiber at higher carbonization temperature about 1400 °C. Morphological characterization based on the recorded TEM images of carbonized fibers at 1000 °C and 1400 °C, showed that the obtained morphology can be classified as fiber structures, where their diameters ranged from 196 to 331 nm. The XRD patterns of PAN-based carbon fibers confirm the structural changes from linear structure into a graphite-like structure. The DRS study indicates the possible π–π*/σ–π* and n–π* transitions. The presence of the surface functional groups and different trapped radiative recombination on the emission bands is confirmed by the PL. VSM results shows the weak ferromagnetic nature of the carbon fibers.
Collapse
Affiliation(s)
- Roya Shokrani Havigh
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Ave, Po Box 41335-1914, Rasht, Iran
| | - Hossein Mahmoudi Chenari
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Ave, Po Box 41335-1914, Rasht, Iran.
| |
Collapse
|
20
|
Nalivaiko AY, Doroshenko VV, Kuang N, Ozherelkov DY, Pelevin IA, Gromov AA. Synthesis of Al-Al 2O 3-CNF Composite by Cold Spray Method: Powder Preparation and Synthesized Objects Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1559. [PMID: 35564268 PMCID: PMC9099801 DOI: 10.3390/nano12091559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 02/05/2023]
Abstract
This paper is devoted to studying the composite material of the aluminum-alumina-carbon nanofiber (CNF) system. The paper considers in detail the process of preparation of the specified composite by ball milling, as well as the process of synthesis of a solid object (coating) by the cold spray method. The synthesized objects were studied using optical and electron microscopy, and the hardness of objects of various compositions was measured. The processes of interaction of composite particles are discussed in detail. The influence of CNF on the distribution of particles in a solid object and on the hardness of objects has been considered and discussed.
Collapse
Affiliation(s)
- Anton Yu. Nalivaiko
- MISIS Catalysis Lab, National University of Science and Technology MISIS, 119991 Moscow, Russia; (V.V.D.); (N.K.); (D.Y.O.); (I.A.P.); (A.A.G.)
- Directorate of Science, Moscow Polytechnic University, 107023 Moscow, Russia
| | - Vitaliy V. Doroshenko
- MISIS Catalysis Lab, National University of Science and Technology MISIS, 119991 Moscow, Russia; (V.V.D.); (N.K.); (D.Y.O.); (I.A.P.); (A.A.G.)
| | - Nguyen Kuang
- MISIS Catalysis Lab, National University of Science and Technology MISIS, 119991 Moscow, Russia; (V.V.D.); (N.K.); (D.Y.O.); (I.A.P.); (A.A.G.)
| | - Dmitriy Yu. Ozherelkov
- MISIS Catalysis Lab, National University of Science and Technology MISIS, 119991 Moscow, Russia; (V.V.D.); (N.K.); (D.Y.O.); (I.A.P.); (A.A.G.)
| | - Ivan A. Pelevin
- MISIS Catalysis Lab, National University of Science and Technology MISIS, 119991 Moscow, Russia; (V.V.D.); (N.K.); (D.Y.O.); (I.A.P.); (A.A.G.)
| | - Alexander A. Gromov
- MISIS Catalysis Lab, National University of Science and Technology MISIS, 119991 Moscow, Russia; (V.V.D.); (N.K.); (D.Y.O.); (I.A.P.); (A.A.G.)
| |
Collapse
|
21
|
Phichairatanaphong O, Poo-Arporn Y, Chareonpanich M, Donphai W. Effect of Calcination Temperature on Cu-Modified Ni Catalysts Supported on Mesocellular Silica for Methane Decomposition. ACS OMEGA 2022; 7:14264-14275. [PMID: 35573207 PMCID: PMC9089693 DOI: 10.1021/acsomega.2c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Catalytic methane decomposition has been considered suitable for the green and sustainable production of high-purity H2 to help reduce greenhouse gas emissions. This research developed a copper-modified nickel-supported mesocellular silica NiCu/MS(x) catalyst synthesized at different calcination temperatures to improve the activity and stability in the CH4 decomposition reaction at 600 °C. Ni and Cu metals were loaded on a mesocellular silica (MS) support using a co-impregnation method and calcined at different temperatures (500, 600, 700, and 800 °C). The NiCu/MS(600) catalyst not only had the highest H2 yield (32.78%), which was 1.47-3.87 times higher than those of the other NiCu/MS(x) catalysts, but also showed better stability during the reaction. Calcination at 600 °C helps improve the active nickel dispersion, the reducibility of the NiCu catalyst, and the interaction of the NiCu-MS support, leading to the formation of fishbone and platelet carbon nanofibers via a tip-growth mechanism, resulting in the NiCu metals remaining active during the reaction.
Collapse
Affiliation(s)
- Orrakanya Phichairatanaphong
- KU-Green
Catalysts Group, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | | | - Metta Chareonpanich
- KU-Green
Catalysts Group, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- Research
Network of NANOTEC—KU on NanoCatalysts and NanoMaterials for
Sustainable Energy and Environment, Kasetsart
University, Bangkok 10900, Thailand
| | - Waleeporn Donphai
- KU-Green
Catalysts Group, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- Research
Network of NANOTEC—KU on NanoCatalysts and NanoMaterials for
Sustainable Energy and Environment, Kasetsart
University, Bangkok 10900, Thailand
| |
Collapse
|
22
|
Liu Z, Ling Q, Cai Y, Xu L, Su J, Yu K, Wu X, Xu J, Hu B, Wang X. Synthesis of carbon-based nanomaterials and their application in pollution management. NANOSCALE ADVANCES 2022; 4:1246-1262. [PMID: 36133685 PMCID: PMC9419251 DOI: 10.1039/d1na00843a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
With the fast development of industry, large amounts of organic and inorganic pollutants are inevitably released into the natural environment, which results in the pollution of the environment and are thereby dangerous to human health. The efficient elimination of these pollutants is crucial to environment protection and human health. The high sorption capacity of carbon-based materials and high photocatalytic ability of carbon-based composites result in the application of carbon-based materials in environmental pollution cleanup. In this review article, we summarized recent studies on the synthesis of carbon-based materials, and their application in the sorption of organic and inorganic pollutants, the photocatalytic degradation of organic pollutants, and the in situ photocatalytic reduction-solidification of heavy metal ions. The sorption method is useful to remove pollutants from aqueous solutions. The sorption-photocatalytic degradation of organic pollutants is applicable, especially at low concentrations, whereas the catalytic reduction of metal ions is the best method for the in situ immobilization of high valent metal ions under complicated conditions. The interaction mechanism is discussed using advanced spectroscopy analysis and theoretical calculations, and at the end the challenges in the future are described.
Collapse
Affiliation(s)
- Zhixin Liu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Qian Ling
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Yawen Cai
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Linfeng Xu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Jiahao Su
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Kuai Yu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Xinyi Wu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Jiayi Xu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Baowei Hu
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| | - Xiangke Wang
- School of Life Science, Shaoxing University Huancheng West Road 508 Shaoxing 312000 China
| |
Collapse
|
23
|
Malatjie TS, Botha TL, Kuvarega AT, Madima N, de Bruyn K, Tekere M, Nkambule TTI, Mamba BB, Msagati TAM. Toxicity evaluation of TiO 2/MWCNT-CNF hybrid nanocomposites with enhanced photocatalytic activity toward freshwater microalgae: Pseudokirchneriella subcapitata. CHEMOSPHERE 2022; 291:132891. [PMID: 34800499 DOI: 10.1016/j.chemosphere.2021.132891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
A wide range of semiconductor-assisted photocatalytic nanomaterials (NMs) are currently being considered and investigated as potential photocatalysts in water treatment. The applications of nanocomposites composed of nano-structured titania (nano-TiO2) and multi-walled carbon nanotubes (MWCNTs) nanocomposites is growing markedly on account of enhanced photocatalytic efficiency. However, concurrent with the increasing production and application comes a serious concern of these emerging nanosystems about their potential risks in aquatic systems, and thereby potentially threatening aquatic organisms via toxic mechanisms that are, at present, poorly understood. In the present study, the lethal toxic effect and oxidative stress induced by TiO2/MWCNT-CNF nanocomposite in freshwater Pseudokirchneriella subcapitata were assessed. The growth inhibition and sublethal oxidative stress produced by the nanocomposites were evaluated on green microalgae P. subcapitata after 3 days of exposure at 24 h intervals. Moreover, the nanocomposites were physicochemically characterized using a combination of analytical techniques (XRD, SEM/EDS, HRTEM, TGA, UV-Visible spectroscopy). Evaluation of the hybrid for the photocatalytic degradation of Acid Violet 7 dye indicated an enhanced dye removal performance for TiO2/MWCNT-CNF (96.2%) compared to TiO2 (75.2%) after 2 h of visible light irradiation. While the nanocomposite showed good potential for the degradation of the azo dye, overall, the findings herein indicated that acute exposure of P. subcapitata to various concentrations of TiO2/MWCNT-CNF nanocomposite may cause algal growth inhibition including undesirable sublethal oxidative stress effects. The findings of this study contribute to a better understanding of the potential hazards of the developing nanocomposites materials towards the nano-bioremediation materials to treat wastewaters.
Collapse
Affiliation(s)
- Terrence S Malatjie
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort, 1709, South Africa
| | - Tarryn L Botha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort, 1709, South Africa
| | - Alex T Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort, 1709, South Africa
| | - Ntakadzeni Madima
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort, 1709, South Africa
| | - Karin de Bruyn
- College of Agriculture and Environmental Sciences Laboratories, University of South Africa, Science Campus, Florida, Johannesburg, 1710, South Africa
| | - Memory Tekere
- Department of Environmental Sciences, College of Agriculture & Environmental Sciences, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort, 1709, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort, 1709, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort, 1709, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort, 1709, South Africa.
| |
Collapse
|
24
|
Zhao Y, Jiang T, Wang Y, Wu X, Jiang P, Shi S, Sun K, Tang B, Li W, Yu J. Study on Preparation and Properties of Ultrahigh Molecular Weight Polyethylene Composites Filled with Different Carbon Materials. ACS OMEGA 2022; 7:5547-5557. [PMID: 35187369 PMCID: PMC8851440 DOI: 10.1021/acsomega.1c07023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The development of ultrahigh molecular weight polyethylene (UPE) has been restricted due to its linear structure and low thermal conductivity. In this paper, graphene oxide (GO) was prepared by the modified Hummers method, and then UPE/reduced graphene oxide (rGO) powder was prepared by reduction with hydrazine hydrate. UPE/natural graphite (NG), UPE/carbon nanofiber (CNF), and UPE/rGO are prepared by hot compression molding. With the increase of thermally conductive fillers, the high density of the composite makes the thermal conductivity of the crystal structure more regular and the thermal conductivity path increases accordingly. Both TGA and SEM confirmed the uniform dispersion of carbon filler in epoxy resin. Among the three composites, UPE/NG has the best thermal conductivity. When the NG filling content is 60 phr, the thermal conductivity of the UPE/NG composite is 3.257 W/(mK), outperforming UPE/CNFs (0.778 W/(mK) and pure UPE (0.496 W/(mK) by 318.64 and 556.65%, respectively. UPE/CNFs have the best dielectric properties. Comparison of various carbon fillers can provide some references for UPE's thermal management applications.
Collapse
Affiliation(s)
- Yuantao Zhao
- Merchant
Marine College, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Tao Jiang
- Merchant
Marine College, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Ying Wang
- Merchant
Marine College, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xinfeng Wu
- Merchant
Marine College, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
- Shanghai
Key Lab of Electrical Insulation and Thermal Aging and Department
of Polymer Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Pingkai Jiang
- Shanghai
Key Lab of Electrical Insulation and Thermal Aging and Department
of Polymer Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Shanshan Shi
- Merchant
Marine College, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Kai Sun
- Merchant
Marine College, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bo Tang
- Hangzhou
Vulcan New Materials Technology Co., Ltd, Hangzhou 311255, China
| | - Wenge Li
- Merchant
Marine College, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Jinhong Yu
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo
Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
25
|
Enhancement of Room Temperature Ethanol Sensing by Optimizing the Density of Vertically Aligned Carbon Nanofibers Decorated with Gold Nanoparticles. MATERIALS 2022; 15:ma15041383. [PMID: 35207925 PMCID: PMC8879461 DOI: 10.3390/ma15041383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 01/17/2023]
Abstract
An ethanol gas sensor based on carbon nanofibers (CNFs) with various densities and nanoparticle functionalization was investigated. The CNFs were grown by means of a Plasma-Enhanced Chemical Vapor Deposition (PECVD), and the synthesis conditions were varied to obtain different number of fibers per unit area. The devices with a larger density of CNFs lead to higher responses, with a maximal responsivity of 10%. Furthermore, to simultaneously improve the sensitivity and selectivity, CNFs were decorated with gold nanoparticles by an impaction printing method. After metal decoration, the devices showed a response 300% higher than pristine devices toward 5 ppm of ethanol gas. The morphology and structure of the different samples deposited on a silicon substrate were characterized by TEM, EDX, SEM, and Raman spectroscopy, and the results confirmed the presence of CNF decorated with gold. The influence of operating temperature (OT) and humidity were studied on the sensing devices. In the case of decorated samples with a high density of nanofibers, a less-strong cross-sensitivity was observed toward a variation in humidity and temperature.
Collapse
|
26
|
Khan N, Han G, Mazari SA. Carbon nanotubes-based anode materials for potassium ion batteries: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Abstract
During the last two decades, electrospinning has become a very popular technique for the fabrication of nanofibers due to its low cost and simple handling. Nanofiber materials have found utilization in many areas such as medicine, sensors, batteries, etc. In catalysis, these materials also present important advantages, since they present a low resistance to internal diffusion and a high surface area to volume ratio. These advantages are mainly due to the diameter–length proportion. A bibliographic analysis on the applications of electrospun nanofibers in catalysis shows that there are two important groups of catalysts that are being investigated, based on TiO2 and in carbon materials. The main applications found are in photo- and in electro-catalysis. The present study contributes by reviewing these catalytic applications of electrospun nanofibers and demonstrating that they are promising materials as catalysts, underlining some works to prove the advantages and possibilities that these materials have as catalysts. On one hand, the possibilities of synthesis are almost infinite, since with coaxial electrospinning quite complex nanofibers with different layers can be prepared. On the other hand, the diameter and other properties can be controlled by monitoring the applied voltage and other parameters during the synthesis, being quite reproducible procedures. The main advantages of these materials can be grouped in two: one related to their morphology, as has been commented, relative to their low resistance and internal diffusion, that is, their fluidynamic behavior in the reactor; the second group involves advantages related to the fact that the active phases can be nanoscaled and dispersed, improving the activity and selectivity in comparison with conventional catalytic materials with the same chemical composition.
Collapse
|
28
|
Fan H, Qiu L, Fedorov A, Willinger MG, Ding F, Huang X. Dynamic State and Active Structure of Ni-Co Catalyst in Carbon Nanofiber Growth Revealed by in Situ Transmission Electron Microscopy. ACS NANO 2021; 15:17895-17906. [PMID: 34730325 DOI: 10.1021/acsnano.1c06189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alloy catalysts often show superior effectiveness in the growth of carbon nanotubes/nanofibers (CNTs/CNFs) as compared to monometallic catalysts. However, due to the lack of an understanding of the active state and active structure, the origin of the superior performance of alloy catalysts is unknown. In this work, we report an in situ transmission electron microscopy (TEM) study of the CNF growth enabled by one of the most active known alloy catalysts, i.e., Ni-Co, providing insights into the active state and the interaction between Ni and Co in the working catalyst. We reveal that the functioning catalyst is highly dynamic, undergoing constant reshaping and periodic elongation/contraction. Atomic-scale imaging combined with in situ electron energy-loss spectroscopy further identifies the active structure as a Ni-Co metallic alloy (face-centered cubic, FCC). Aided by the molecular dynamics simulation and density functional theory calculations, we rationalize the dynamic behavior of the catalyst and the growth mechanism of CNFs and provide insight into the origin of the superior performance of the Ni-Co alloy catalyst.
Collapse
Affiliation(s)
- Hua Fan
- College of Chemistry, Fuzhou University, Wulong River North Street 2, 350108 Fuzhou, People's Republic of China
- Office of Science and Technology, Fuzhou University, Wulong River North Street 2, 350108 Fuzhou, People's Republic of China
| | - Lu Qiu
- Center for Multidimensional Carbon Materials, Institute for Basic Science, 50 UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, South Korea
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Marc-Georg Willinger
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science, 50 UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, South Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, South Korea
| | - Xing Huang
- College of Chemistry, Fuzhou University, Wulong River North Street 2, 350108 Fuzhou, People's Republic of China
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
29
|
Zhang L, Li X, Antonietti M. General, Metal-free Synthesis of Carbon Nanofiber Assemblies from Plant Oils. Angew Chem Int Ed Engl 2021; 60:24257-24265. [PMID: 34480394 PMCID: PMC8596426 DOI: 10.1002/anie.202110725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/07/2022]
Abstract
We designed a metal-free synthesis of carbon nanofiber based on ketene chemistry using phosphorus pentoxide (P2 O5 ) and vegetable oil. Based on the characterization of intermediates, P2 O5 -oil reaction yielded most possibly alkylketenes, which polymerized into poly(ketene) with abundant enol groups. The enol groups further reacted with P2 O5 , forcing the poly(ketene) to assemble into a nano-sized preassembly structure. Moderate heating transforms these structures into carbonaceaus nanofibers. This approach is applicable to other chemicals with similar structure to vegetable oil. The carbon nanofibers with P-O-C functionalization show relatively high graphitization degree and promising textural properties. The C-O-P environment accounts for 66 at % of the total P and creates a superior thermal stability. As a model application, a CDI system built of a carbon-nanofiber-based electrode countered by an activated carbon-based electrode exhibited exceptional performance.
Collapse
Affiliation(s)
- Liyuan Zhang
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Xinzhe Li
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Markus Antonietti
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
30
|
Zhang L, Li X, Antonietti M. General, Metal‐free Synthesis of Carbon Nanofiber Assemblies from Plant Oils. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liyuan Zhang
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Xinzhe Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
31
|
Motloung MP, Mofokeng TG, Ojijo V, Ray SS. A review on the processing–morphology–property relationship in biodegradable polymer composites containing carbon nanotubes and nanofibers. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| | - Tladi Gideon Mofokeng
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| | - Vincent Ojijo
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
32
|
Production of valuable chemicals from glycerol using carbon fiber catalysts derived from ethylene. Sci Rep 2021; 11:20251. [PMID: 34642367 PMCID: PMC8511005 DOI: 10.1038/s41598-021-99210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022] Open
Abstract
Ethylene was thermocatalytically transformed into carbon products via a CCVD process. The filamentous carbon obtained was further modified with concentrated sulfuric acid or 4-benzenediazonium sulfonate (BDS) to produce acid-type catalysts. The as-prepared samples were characterized by SEM and TEM techniques to confirm their morphological features. TG, XRD, elemental, and porosity analyses were also performed to assess the quality of these materials. The fabricated carbons were tested in eco-friendly green synthesis of value-added fuel bio-additives, namely in glycerol esterification. The reaction of glycerol transformation was performed with acetic acid at 80 °C using different glycerol to acetic acid (Gly/AA) molar ratios. The samples functionalized with diazonium salt showed better performance in the above process than those modified with H2SO4, and this was found to be directly related to the degree of surface functionalization with acidic sites. BDS-modified carbon fibers allowed obtaining acceptable results within 6 h when the reaction was performed with a Gly/AA molar ratio of 1:6, however, the dominant products in this case were mono- and diacetins. Extended reaction time altered the distribution of products. Finally, the combined selectivity to the targeted acetins (i.e., DA and TA) was about 75.5%. A direct correlation between the content of -SO3H groups of CNFs and the yield of higher acetins was found.
Collapse
|
33
|
Insights into pyrolysis behavior of polyacrylonitrile precursors using Py-GC/MS. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Guo L, Wan K, Liu B, Wang Y, Wei G. Recent advance in the fabrication of carbon nanofiber-based composite materials for wearable devices. NANOTECHNOLOGY 2021; 32:442001. [PMID: 34325413 DOI: 10.1088/1361-6528/ac18d5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanofibers (CNFs) exhibit the advantages of high mechanical strength, good conductivity, easy production, and low cost, which have shown wide applications in the fields of materials science, nanotechnology, biomedicine, tissue engineering, sensors, wearable electronics, and other aspects. To promote the applications of CNF-based nanomaterials in wearable devices, the flexibility, electronic conductivity, thickness, weight, and bio-safety of CNF-based films/membranes are crucial. In this review, we present recent advances in the fabrication of CNF-based composite nanomaterials for flexible wearable devices. For this aim, firstly we introduce the synthesis and functionalization of CNFs, which promote the optimization of physical, chemical, and biological properties of CNFs. Then, the fabrication of two-dimensional and three-dimensional CNF-based materials are demonstrated. In addition, enhanced electric, mechanical, optical, magnetic, and biological properties of CNFs through the hybridization with other functional nanomaterials by synergistic effects are presented and discussed. Finally, wearable applications of CNF-based materials for flexible batteries, supercapacitors, strain/piezoresistive sensors, bio-signal detectors, and electromagnetic interference shielding devices are introduced and discussed in detail. We believe that this work will be beneficial for readers and researchers to understand both structural and functional tailoring of CNFs, and to design and fabricate novel CNF-based flexible and wearable devices for advanced applications.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, People's Republic of China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
35
|
Popov AA, Shubin YV, Bauman YI, Plyusnin PE, Mishakov IV, Sharafutdinov MR, Maksimovskiy EA, Korenev SV, Vedyagin AA. Preparation of porous Co-Pt alloys for catalytic synthesis of carbon nanofibers. NANOTECHNOLOGY 2020; 31:495604. [PMID: 32990267 DOI: 10.1088/1361-6528/abb430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A simple and convenient procedure for the production of highly dispersed porous Co-Pt alloys to be used as catalysts for the synthesis of nanostructured carbon fibers (CNF) has been developed. The technique is based on the thermal decomposition of specially synthesized multicomponent precursors in a reducing atmosphere. A series of porous single-phase alloys Co-Pt (10-75 at% Pt) have been synthesized. The alloys containing 75 and 50 at% Pt were identified by the x-ray diffraction analysis as the intermetallics CoPt3 and CoPt, respectively. Within the region of 10-35 at% Pt, the synthesized alloys are represented by Co1-x Pt x random solid solutions with face-centered cubic lattice. The alloys obtained are characterized by a porous structure consisting of assembled fragments with a size of 50-150 nm. The obtained alloys were tested in the catalytic chemical vapor deposition of the ethylene to CNF. A significant synergistic effect between Co and Pt in the synthesis of carbon nanomaterials (CNMs) was revealed. The yield of CNF (for 30 min reaction) for catalysts containing 25-35 at% Pt was 30-38 g(CNF)/g(cat), whereas those for Co (100%) and Pt (100%) samples were as low as 5.6 and >0.1 g(CNF)/g(cat), respectively. The produced CNM composed of fibers with a segmented structure was shown to be characterized by a rather high specific surface area (200-250 m2 g-1) and structural homogeneity.
Collapse
Affiliation(s)
- Anton A Popov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| | - Yury V Shubin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| | - Yury I Bauman
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia
| | - Pavel E Plyusnin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| | | | | | | | - Sergey V Korenev
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
36
|
Yadav D, Amini F, Ehrmann A. Recent advances in carbon nanofibers and their applications – A review. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109963] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Kordasht HK, Hassanpour S, Baradaran B, Nosrati R, Hashemzaei M, Mokhtarzadeh A, la Guardia MD. Biosensing of microcystins in water samples; recent advances. Biosens Bioelectron 2020; 165:112403. [PMID: 32729523 DOI: 10.1016/j.bios.2020.112403] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Safety and quality of water are significant matters for agriculture, animals and human health. Microcystins, as secondary metabolite of cyanobacteria (blue-green algae) and cyclic heptapeptide cyanotoxin, are one of the main marine toxins in continental aquatic ecosystems. More than 100 microcystins have been identified, of which MC-LR is the most important type due to its high toxicity and common detection in the environment. Climate change is an impressive factor with effects on cyanobacterial blooms as source of microcystins. The presence of this cyanotoxin in freshwater, drinking water, water reservoir supplies and food (vegetable, fish and shellfish) has created a common phenomenon in eutrophic freshwater ecosystems worldwide. International public health organizations have categorized microcystins as a kind of neurotoxin and carcinogen. There are several conventional methods for detection of microcystins. The limitations of traditional methods have encouraged the development of innovative methods for detection of microcystins. In recent years, the developed sensor techniques, with advantages, such as accuracy, reproducibility, portability and low cost, have attracted considerable attention. This review compares the well-known of biosensor types for detection of microcystins with a summary of their analytical performance.
Collapse
Affiliation(s)
- Houman Kholafazad Kordasht
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 77146, Olomouc, Czech Republic
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahim Nosrati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|