1
|
Zufry H, Rudijanto A, Soeatmadji DW, Sakti SP, Munadi K, Sujuti H, Mintaroem K. Effects of mobile phone electromagnetic radiation on thyroid glands and hormones in Rattus norvegicus brain: An analysis of thyroid function, reactive oxygen species, and monocarboxylate transporter 8. J Adv Pharm Technol Res 2023; 14:63-68. [PMID: 37255871 PMCID: PMC10226703 DOI: 10.4103/japtr.japtr_680_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 06/01/2023] Open
Abstract
The aim of this study was to investigate the effects of mobile phone electromagnetic radiation (MP-EMR) on the thyroid glands and hormones in Rattus norvegicus brain in term of thyroid function, reactive oxygen species (ROS), and monocarboxylate transporter 8 (MCT8) concentration. Forty rats were divided into different groups: control (without EMR exposure), EMR1 (120-min/day exposure), EMR2 (150-min), and EMR3 (180-min). The levels of serum thyroid stimulating hormone (TSH), thyroxine (T4), and malondialdehyde (MDA) and brain and MCT8 were measured using enzyme-linked immunosorbent assay. One-way analysis of variance followed by the Duncan test was used to analyze the data. Our data indicated that the levels of serum TSH and T4 in all the EMR groups were lower significant postexposure compared to the control with P < 0.01 (EMR1 and EMR2) and P < 0.001 (EMR3), suggesting hypothyroidism due to MP-EMR exposure. Increased MDA and decreased MCT8 levels were also observed following the intervention; however, the changes in both concentrations were notably significant after being subjected to 150-min and 180-min of exposure. In conclusion, a significant reduction in TSH, T4, and MCT8 levels indicated thyroid dysfunction due to MP-EMR exposure.
Collapse
Affiliation(s)
- Hendra Zufry
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
- Division of Endocrinology, Metabolism, and Diabetes, Thyroid Center, Department of Internal Medicine, Universitas Syiah Kuala/Dr. Zainoel Abidin General Teaching Hospital, Banda Aceh, Aceh, Indonesia
| | - Achmad Rudijanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Djoko Wahono Soeatmadji
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Setyawan Purnomo Sakti
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Khairul Munadi
- Department of Electrical and Computer Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Hidayat Sujuti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Karyono Mintaroem
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| |
Collapse
|
2
|
Redmayne M, Maisch DR. ICNIRP Guidelines' Exposure Assessment Method for 5G Millimetre Wave Radiation May Trigger Adverse Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5267. [PMID: 37047882 PMCID: PMC10094038 DOI: 10.3390/ijerph20075267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
The current global roll-out of 5G infrastructure is designed to utilise millimetre wave frequencies (30-300 GHz range) at data transmission rates in the order of gigabits per second (Gbps). This frequency band will be transmitted using beamforming, a new introduction in near-field exposures. The International Commission on Non-Ionising Radiation Protection (ICNIRP) has recently updated their guidelines. We briefly examine whether the new approach of the ICNIRP is satisfactory to prevent heat damage and other adverse bio-effects once millimetre wave 5G is included, and we challenge the use of surface-only exposure assessment for local exposures greater than 6 GHz in part due to possible Brillouin precursor pulse formation. However, this is relevant whether or not Brillouin precursors occur from absorption of either 5G or future G transmissions. Many significant sources conclude there is insufficient research to assure safety even from the heat perspective. To date, there has been no published in vivo, in vitro or epidemiological research using exposures to 5G New Radio beam-formed signals.
Collapse
Affiliation(s)
- Mary Redmayne
- School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6012, New Zealand
| | - Donald R. Maisch
- Oceania Radiofrequency Scientific Advisory Association Inc. (ORSAA), Brisbane, QLD 4020, Australia
- The Australasian College of Nutritional and Environmental Medicine (ACNEM), Melbourne, VIC 3205, Australia
| |
Collapse
|
3
|
Li D, Xu X, Yin Y, Yao B, Dong J, Zhao L, Wang H, Wang H, Zhang J, Peng R. Physiological and Psychological Stress of Microwave Radiation-Induced Cardiac Injury in Rats. Int J Mol Sci 2023; 24:ijms24076237. [PMID: 37047212 PMCID: PMC10093827 DOI: 10.3390/ijms24076237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Electromagnetic waves are widely used in both military and civilian fields, which could cause long-term and high-power exposure to certain populations and may pose a health hazard. The aim of this study was to simulate the long-term and high-power working environment of workers using special electromagnetic radiation occupations to clarify the radiation-induced stress response and cardiac damage and thus gain insights into the mechanisms of injuries caused by electromagnetic radiation. In this study, the combination of microwave and stress was an innovative point, aiming to broaden the research direction with regard to the effect and mechanism of cardiac injury caused by radiation. The myocardial structure was observed by optical and transmission electron microscope, mitochondrial function was detected by flow cytometry, oxidative-stress markers were detected by microplate reader, serum stress hormone was detected by radioimmunoassay, and heart rate variability (HRV) was analyzed by multichannel-physiological recorder. The rats were weighed and subjected to an open field experiment. Western blot (WB) and immunofluorescence (IF) were used to detect the expressions and distributions of JNK (c-Jun N-terminal kinase), p-JNK (phosphorylated c-Jun N-terminal kinase), HSF1 (heat shock factor), and NFATc4 (nuclear factor of activated T-cell 4). This study found that radiation could lead to the disorganization, fragmentation, and dissolution of myocardial fibers, severe mitochondrial cavitation, mitochondrial dysfunction, oxidative-stress injury in myocardium, increase to stress hormone in serum, significant changes in HRV, and a slow gain in weight. The open field experiment indicated that the rats experienced anxiety and depression and had decreased exercise capacity after radiation. The expressions of JNK, p-JNK, HSF1, and NFATc4 in myocardial tissue were all increased. The above results suggested that 30 mW/cm2 of S-band microwave radiation for 35 min could cause both physiological and psychological stress damage in rats; the damage was related to the activation of the JNK pathway, which provided new ideas for research on protection from radiation.
Collapse
|
4
|
Davis D, Birnbaum L, Ben-Ishai P, Taylor H, Sears M, Butler T, Scarato T. Wireless technologies, non-ionizing electromagnetic fields and children: Identifying and reducing health risks. Curr Probl Pediatr Adolesc Health Care 2023; 53:101374. [PMID: 36935315 DOI: 10.1016/j.cppeds.2023.101374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Children today are conceived and live in a sea of wireless radiation that did not exist when their parents were born. The launch of the digital age continues to transform the capacity to respond to emergencies and extend global communications. At the same time that this increasingly ubiquitous technology continues to alter the nature of commerce, medicine, transport and modern life overall, its varied and changing forms have not been evaluated for their biological or environmental impacts. Standards for evaluating radiation from numerous wireless devices were first set in 1996 to avoid heating tissue and remain unchanged since then in the U.S. and many other nations. A wide range of evidence indicates that there are numerous non-thermal effects from wireless radiation on reproduction, development, and chronic illness. Many widely used devices such as phones and tablets function as two-way microwave radios, sending and receiving various frequencies of information-carrying microwave radiation on multiple simultaneously operating antennas. Expert groups advising governments on this matter do not agree on the best approaches to be taken. The American Academy of Pediatrics recommends limited screen time for children under the age of two, but more than half of all toddlers regularly have contact with screens, often without parental engagement. Young children of parents who frequently use devices as a form of childcare can experience delays in speech acquisition and bonding, while older children report feelings of disappointment due to 'technoference'-parental distraction due to technology. Children who begin using devices early in life can become socially, psychologically and physically addicted to the technology and experience withdrawal upon cessation. We review relevant experimental, epidemiological and clinical evidence on biological and other impacts of currently used wireless technology, including advice to include key questions at pediatric wellness checkups from infancy to young adulthood. We conclude that consistent with advice in pediatric radiology, an approach that recommends that microwave radiation exposures be As Low As Reasonably Achievable (ALARA) seems sensible and prudent, and that an independently-funded training, research and monitoring program should be carried out on the long term physical and psychological impacts of rapidly changing technological milieu, including ways to mitigate impacts through modifications in hardware and software. Current knowledge of electrohypersensitivity indicates the importance of reducing wireless exposures especially in schools and health care settings.
Collapse
Affiliation(s)
- Devra Davis
- Medicine, Ondokuz Mayis University, Samsun, Turkey; Environmental Health Trust, Teton Village, WY, USA.
| | - Linda Birnbaum
- National Institute of Environmental Health Sciences and National Toxicology Program, Scholar in Residence, Nicholas School of the Environment, Duke University, USA
| | | | - Hugh Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Meg Sears
- Ottawa Hospital Research Institute, Prevent Cancer Now, Ottawa, Canada
| | | | | |
Collapse
|
5
|
McCredden JE, Weller S, Leach V. The assumption of safety is being used to justify the rollout of 5G technologies. Front Public Health 2023; 11:1058454. [PMID: 36815158 PMCID: PMC9940636 DOI: 10.3389/fpubh.2023.1058454] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Affiliation(s)
- Julie E. McCredden
- Oceania Radiofrequency Scientific Advisory Association Inc. (ORSAA), Scarborough, QLD, Australia
| | - Steven Weller
- Oceania Radiofrequency Scientific Advisory Association Inc. (ORSAA), Scarborough, QLD, Australia,Centre for Environmental and Population Health, School of Medicine and Dentistry, Griffith University, Brisbane, QLD, Australia
| | - Victor Leach
- Oceania Radiofrequency Scientific Advisory Association Inc. (ORSAA), Scarborough, QLD, Australia,*Correspondence: Victor Leach ✉
| |
Collapse
|
6
|
Weller S, May M, McCredden J, Leach V, Phung D, Belyaev I. Comment on "5G mobile networks and health-a state-of-the-science review of the research into low-level RF fields above 6 GHz" by Karipidis et al. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:17-20. [PMID: 36434135 PMCID: PMC9849131 DOI: 10.1038/s41370-022-00497-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Steven Weller
- Centre for Environmental and Population Health, School of Medicine and Dentistry, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD, 4111, Australia.
- Oceania Radiofrequency Scientific Advisory Association (ORSAA), Scarborough, QLD, 4020, Australia.
| | - Murray May
- Oceania Radiofrequency Scientific Advisory Association (ORSAA), Scarborough, QLD, 4020, Australia
| | - Julie McCredden
- Oceania Radiofrequency Scientific Advisory Association (ORSAA), Scarborough, QLD, 4020, Australia
| | - Victor Leach
- Oceania Radiofrequency Scientific Advisory Association (ORSAA), Scarborough, QLD, 4020, Australia
| | - Dung Phung
- School of Public Health, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| |
Collapse
|
7
|
McCredden JE, Cook N, Weller S, Leach V. Wireless technology is an environmental stressor requiring new understanding and approaches in health care. Front Public Health 2022; 10:986315. [PMID: 36605238 PMCID: PMC9809975 DOI: 10.3389/fpubh.2022.986315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Electromagnetic signals from everyday wireless technologies are an ever-present environmental stressor, affecting biological systems. In this article, we substantiate this statement based on the weight of evidence from papers collated within the ORSAA database (ODEB), focusing on the biological and health effects of electromagnetic fields and radiation. More specifically, the experiments investigating exposures from real-world devices and the epidemiology studies examining the effects of living near mobile phone base stations were extracted from ODEB and the number of papers showing effects was compared with the number showing no effects. The results showed that two-thirds of the experimental and epidemiological papers found significant biological effects. The breadth of biological and health categories where effects have been found was subsequently explored, revealing hundreds of papers showing fundamental biological processes that are impacted, such as protein damage, biochemical changes and oxidative stress. This understanding is targeted toward health professionals and policy makers who have not been exposed to this issue during training. To inform this readership, some of the major biological effect categories and plausible mechanisms of action from the reviewed literature are described. Also presented are a set of best practice guidelines for treating patients affected by electromagnetic exposures and for using technology safely in health care settings. In conclusion, there is an extensive evidence base revealing that significant stress to human biological systems is being imposed by exposure to everyday wireless communication devices and supporting infrastructure. This evidence is compelling enough to warrant an update in medical education and practice.
Collapse
Affiliation(s)
- Julie E. McCredden
- Oceania Radiofrequency Scientific Advisory Association (ORSAA), Brisbane, QLD, Australia
| | - Naomi Cook
- Oceania Radiofrequency Scientific Advisory Association (ORSAA), Brisbane, QLD, Australia
| | - Steven Weller
- Oceania Radiofrequency Scientific Advisory Association (ORSAA), Brisbane, QLD, Australia
- Centre for Environmental and Population Health, School of Medicine and Dentistry, Griffith University, Brisbane, QLD, Australia
| | - Victor Leach
- Oceania Radiofrequency Scientific Advisory Association (ORSAA), Brisbane, QLD, Australia
| |
Collapse
|
8
|
Bodewein L, Dechent D, Graefrath D, Kraus T, Krause T, Driessen S. Systematic review of the physiological and health-related effects of radiofrequency electromagnetic field exposure from wireless communication devices on children and adolescents in experimental and epidemiological human studies. PLoS One 2022; 17:e0268641. [PMID: 35648738 PMCID: PMC9159629 DOI: 10.1371/journal.pone.0268641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND For more than 20 years, the potential health risks of radiofrequency electromagnetic field (RF EMF) exposure from mobile communication devices on children and adolescents have been examined because they are considered sensitive population groups; however, it remains unclear whether such exposure poses any particular risk to them. OBJECTIVES The aim of this review was to systematically analyze and evaluate the physiological and health-related effects of RF EMF exposures from wireless communication devices (mobile phones, cordless phones, Bluetooth, etc.) on children and adolescents. METHODS This review was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Methodological limitations in individual studies were assessed using the Office of Health Assessment and Translation (OHAT) Risk-of-Bias Rating Tool for Human and Animal Studies. RESULTS A total of 42 epidemiological and 11 experimental studies were eligible for this review. Most of the studies displayed several methodological weaknesses that limited the internal validity of the results. Due to a lack of consistency regarding the outcomes as well as the lack of scientific rigor in most reviewed studies, the body of evidence for the effects of RF EMF of mobile communication devices on subjective symptoms, cognition, and behavior in children and adolescents was low to inadequate. Evidence from the studies investigating early childhood development, brain activity, cancer, and physiological parameters was considered inadequate for drawing conclusions about possible effects. DISCUSSION Overall, the body of evidence allows no final conclusion on the question whether exposure to RF EMF from mobile communication devices poses a particular risk to children and adolescents. There has been rapid development in technologies generating RF EMF, which are extensively used by children and adolescents. Therefore, we strongly recommend high-quality systematic research on children and adolescents, since they are generally considered as sensitive age groups.
Collapse
Affiliation(s)
- Lambert Bodewein
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Dagmar Dechent
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David Graefrath
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Kraus
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tobias Krause
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sarah Driessen
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Panagopoulos DJ, Karabarbounis A, Yakymenko I, Chrousos GP. Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). Int J Oncol 2021; 59:92. [PMID: 34617575 PMCID: PMC8562392 DOI: 10.3892/ijo.2021.5272] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure of animals/biological samples to human‑made electromagnetic fields (EMFs), especially in the extremely low frequency (ELF) band, and the microwave/radio frequency (RF) band which is always combined with ELF, may lead to DNA damage. DNA damage is connected with cell death, infertility and other pathologies, including cancer. ELF exposure from high‑voltage power lines and complex RF exposure from wireless communication antennas/devices are linked to increased cancer risk. Almost all human‑made RF EMFs include ELF components in the form of modulation, pulsing and random variability. Thus, in addition to polarization and coherence, the existence of ELFs is a common feature of almost all human‑made EMFs. The present study reviews the DNA damage and related effects induced by human‑made EMFs. The ion forced‑oscillation mechanism for irregular gating of voltage‑gated ion channels on cell membranes by polarized/coherent EMFs is extensively described. Dysfunction of ion channels disrupts intracellular ionic concentrations, which determine the cell's electrochemical balance and homeostasis. The present study shows how this can result in DNA damage through reactive oxygen species/free radical overproduction. Thus, a complete picture is provided of how human‑made EMF exposure may indeed lead to DNA damage and related pathologies, including cancer. Moreover, it is suggested that the non‑thermal biological effects attributed to RF EMFs are actually due to their ELF components.
Collapse
Affiliation(s)
- Dimitris J. Panagopoulos
- Laboratory of Health Physics, Radiobiology and Cytogenetics, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research 'Demokritos', 15310 Athens, Greece
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Electromagnetic Field-Biophysics Research Laboratory, 10681 Athens, Greece
| | - Andreas Karabarbounis
- Department of Physics, Section of Nuclear and Particle Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Igor Yakymenko
- Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Science of Ukraine, 03022 Kyiv, Ukraine
- Department of Public Health, Kyiv Medical University, 02000 Kyiv, Ukraine
| | - George P. Chrousos
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
10
|
Hu C, Zuo H, Li Y. Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain. Front Public Health 2021; 9:691880. [PMID: 34485223 PMCID: PMC8415840 DOI: 10.3389/fpubh.2021.691880] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
With the rapid development of electronic information in the past 30 years, technical achievements based on electromagnetism have been widely used in various fields pertaining to human production and life. Consequently, electromagnetic radiation (EMR) has become a substantial new pollution source in modern civilization. The biological effects of EMR have attracted considerable attention worldwide. The possible interaction of EMR with human organs, especially the brain, is currently where the most attention is focused. Many studies have shown that the nervous system is an important target organ system sensitive to EMR. In recent years, an increasing number of studies have focused on the neurobiological effects of EMR, including the metabolism and transport of neurotransmitters. As messengers of synaptic transmission, neurotransmitters play critical roles in cognitive and emotional behavior. Here, the effects of EMR on the metabolism and receptors of neurotransmitters in the brain are summarized.
Collapse
Affiliation(s)
- Cuicui Hu
- Anhui Medical University, Academy of Life Sciences, Hefei, China.,Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Li
- Anhui Medical University, Academy of Life Sciences, Hefei, China.,Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
11
|
Zosangzuali M, Lalremruati M, Lalmuansangi C, Nghakliana F, Pachuau L, Bandara P, Zothan Siama. Effects of radiofrequency electromagnetic radiation emitted from a mobile phone base station on the redox homeostasis in different organs of Swiss albino mice. Electromagn Biol Med 2021; 40:393-407. [PMID: 33687298 DOI: 10.1080/15368378.2021.1895207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study was designed to investigate the possible effects of exposure to mobile phone base station (MPBS) emits 1800-MHz RF-EMR on some oxidative stress parameters in the brain, heart, kidney and liver of Swiss albino mice under exposures below thermal levels. Mice were randomly assigned to three experimental groups which were exposed to RF-EMR for 6 hr/day, 12 hr/day and 24 hr/day for 45 consecutive days, respectively, and a control group. The glutathione (GSH) levels and activities of glutathione-s-transferase (GST) and superoxide dismutase (SOD) were significantly reduced in mice brain after exposure to RF-EMR for 12 hr and 24 hr per day. Exposure of mice to RF-EMR for 12 hr and 24 hr per day also led to a significant increase in malondialdehyde (an index of lipid peroxidation) levels in mice brain. On the contrary, exposures used in this study did not induce any significant change in various oxidative stress-related parameters in the heart, kidney and liver of mice. Our findings showed no significant variations in the activities of aspartate amino-transferase (AST), alanine amino-transferase (ALT), and on the level of creatinine (CRE) in the exposed mice. This study also revealed a decrease in RBC count with an increase in WBC count in mice subjected to 12 hr/day and 24 hr/day exposures. Exposure to RF-EMR from MPBS may cause adverse effects in mice brain by inducing oxidative stress arising from the generation of reactive oxygen species (ROS) as indicated by enhanced lipid peroxidation, and reduced levels and activities of antioxidants.
Collapse
Affiliation(s)
| | | | - C Lalmuansangi
- Department of Zoology, Mizoram University, Aizawl, India
| | - F Nghakliana
- Department of Zoology, Mizoram University, Aizawl, India
| | - Lalrinthara Pachuau
- Department of Physics, Pachhunga University College, Mizoram University, Aizawl, India
| | - Priyanka Bandara
- Executive Board, Oceania Radiofrequency Scientific Advisory Association (ORSAA), Brisbane, Australia
| | - Zothan Siama
- Department of Zoology, Mizoram University, Aizawl, India
| |
Collapse
|
12
|
Abstract
In critically examining literature on electrohypersensitivity and the reported somatic responses to anthropogenic modulated radiofrequency radiation (RFR) exposure, it becomes apparent that electrohypersensitivity is one part of a range of consequences. Current evidence on the necessity of considering patients' overall health status leads us to propose a new model in which electrohypersensitivity is but part of the electrosensitive status inherent in being human. We propose the likelihood and type of response to environmental RFR include i) a linear somatic awareness continuum, ii) a non-linear somatic response continuum, and iii) the extent of each individual's capacity to repair damage (linked to homeostatic response). We anticipate this last, dynamic, aspect is inextricably linked to the others through the autonomic nervous system. The whole is dependent upon the status of the interconnected immune and inflammatory systems. This holistic approach leads us to propose various outcomes. For most, their body maintains homeostasis by routine repair. However, some develop electrohypersensitivity either due to RFR exposure or as an ANS-mediated, unconscious response (aka nocebo effect), or both. We suggest RFR exposure may be one factor in the others developing an auto-immune disease or allergy. A few develop delayed catastrophic disease such as glioma. This model gives the blanket term ElectroMagnetic Illness (EMI) to all RFR-related conditions. Thus, EHS appears to be one part of a range of responses to a novel and rapidly changing evolutionary situation.
Collapse
Affiliation(s)
- Mary Redmayne
- SGEES, Victoria University of Wellington, New Zealand.,Monash University, Melbourne, Australia
| | | |
Collapse
|
13
|
Zradziński P, Karpowicz J, Gryz K, Morzyński L, Młyński R, Swidziński A, Godziszewski K, Ramos V. Modelling the Influence of Electromagnetic Field on the User of a Wearable IoT Device Used in a WSN for Monitoring and Reducing Hazards in the Work Environment. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7131. [PMID: 33322725 PMCID: PMC7763899 DOI: 10.3390/s20247131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
The aim of this study was to evaluate the absorption in a user's head of an electromagnetic field (EMF) emitted by the Wi-Fi and/or Bluetooth module of a wearable small Internet of Things (IoT) electronic device (emitting EMF of up to 100 mW), in order to test the hypothesis that EMF has an insignificant influence on humans, and to compare the levels of such EMF absorption in various scenarios when using this device. The modelled EMF source was a meandered inverted-F antenna (MIFA)-type antenna of the ESP32-WROOM-32 radio module used in wearable devices developed within the reported study. To quantify the EMF absorption, the specific energy absorption rate (SAR) values were calculated in a multi-layer ellipsoidal model of the human head (involving skin, fat, skull bones and brain layers). The obtained results show up to 10 times higher values of SAR from the MIFA located in the headband, in comparison to its location on the helmet. Only wearable IoT devices (similar in construction and way of use to the investigated device) emitting at below 3 mW equivalent isotropically radiated power (EIRP) from Wi-Fi/Bluetooth communications modules may be considered environmentally insignificant EMF sources.
Collapse
Affiliation(s)
- Patryk Zradziński
- Laboratory of Electromagnetic Hazards, Central Institute for Labour Protection—National Research Institute (CIOP-PIB), Czerniakowska 16, 00-701 Warszawa, Poland; (J.K.); (K.G.)
| | - Jolanta Karpowicz
- Laboratory of Electromagnetic Hazards, Central Institute for Labour Protection—National Research Institute (CIOP-PIB), Czerniakowska 16, 00-701 Warszawa, Poland; (J.K.); (K.G.)
| | - Krzysztof Gryz
- Laboratory of Electromagnetic Hazards, Central Institute for Labour Protection—National Research Institute (CIOP-PIB), Czerniakowska 16, 00-701 Warszawa, Poland; (J.K.); (K.G.)
| | - Leszek Morzyński
- Department of Vibroacoustic Hazards, Central Institute for Labour Protection—National Research Institute (CIOP-PIB), Czerniakowska 16, 00-701 Warszawa, Poland; (L.M.); (R.M.); (A.S.)
| | - Rafał Młyński
- Department of Vibroacoustic Hazards, Central Institute for Labour Protection—National Research Institute (CIOP-PIB), Czerniakowska 16, 00-701 Warszawa, Poland; (L.M.); (R.M.); (A.S.)
| | - Adam Swidziński
- Department of Vibroacoustic Hazards, Central Institute for Labour Protection—National Research Institute (CIOP-PIB), Czerniakowska 16, 00-701 Warszawa, Poland; (L.M.); (R.M.); (A.S.)
| | - Konrad Godziszewski
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland;
| | - Victoria Ramos
- Telemedicine and e-Health Research Unit, Instituto de Salud Carlos III, Avda. Monforte de Lemos, 5, 28029 Madrid, Spain;
| |
Collapse
|
14
|
Weller S, Leach V, May M. Comment on Letter: "Post-Normal Science and the Management of Uncertainty in Bioelectromagnetic Controversies" by A.W. Wood. Bioelectromagnetics 2019; 41:80-84. [PMID: 31608459 DOI: 10.1002/bem.22225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/27/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Steven Weller
- Oceania Radiofrequency Scientific Advisory Association, Brisbane, Queensland, Australia
| | - Victor Leach
- Oceania Radiofrequency Scientific Advisory Association, Brisbane, Queensland, Australia
| | - Murray May
- Oceania Radiofrequency Scientific Advisory Association, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Miller AB, Sears ME, Morgan LL, Davis DL, Hardell L, Oremus M, Soskolne CL. Risks to Health and Well-Being From Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Front Public Health 2019; 7:223. [PMID: 31457001 PMCID: PMC6701402 DOI: 10.3389/fpubh.2019.00223] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Radiation exposure has long been a concern for the public, policy makers, and health researchers. Beginning with radar during World War II, human exposure to radio-frequency radiation (RFR) technologies has grown substantially over time. In 2011, the International Agency for Research on Cancer (IARC) reviewed the published literature and categorized RFR as a "possible" (Group 2B) human carcinogen. A broad range of adverse human health effects associated with RFR have been reported since the IARC review. In addition, three large-scale carcinogenicity studies in rodents exposed to levels of RFR that mimic lifetime human exposures have shown significantly increased rates of Schwannomas and malignant gliomas, as well as chromosomal DNA damage. Of particular concern are the effects of RFR exposure on the developing brain in children. Compared with an adult male, a cell phone held against the head of a child exposes deeper brain structures to greater radiation doses per unit volume, and the young, thin skull's bone marrow absorbs a roughly 10-fold higher local dose. Experimental and observational studies also suggest that men who keep cell phones in their trouser pockets have significantly lower sperm counts and significantly impaired sperm motility and morphology, including mitochondrial DNA damage. Based on the accumulated evidence, we recommend that IARC re-evaluate its 2011 classification of the human carcinogenicity of RFR, and that WHO complete a systematic review of multiple other health effects such as sperm damage. In the interim, current knowledge provides justification for governments, public health authorities, and physicians/allied health professionals to warn the population that having a cell phone next to the body is harmful, and to support measures to reduce all exposures to RFR.
Collapse
Affiliation(s)
- Anthony B. Miller
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Margaret E. Sears
- Ottawa Hospital Research Institute, Prevent Cancer Now, Ottawa, ON, Canada
| | - L. Lloyd Morgan
- Environmental Health Trust, Teton Village, WY, United States
| | - Devra L. Davis
- Environmental Health Trust, Teton Village, WY, United States
| | - Lennart Hardell
- The Environment and Cancer Research Foundation, Örebro, Sweden
| | - Mark Oremus
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada
| | - Colin L. Soskolne
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Health Research Institute, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
16
|
Drießen S, Dechent D, Graefrath D, Petri AK, Bodewein L, Emonds T, Kraus T. Letter to the Editor concerning the paper "A novel database of bio-effects from non-ionizing radiation". REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:449-450. [PMID: 30307899 DOI: 10.1515/reveh-2018-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Sarah Drießen
- Research Center for Bioelectromagnetic Interaction, Institute of Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany, Phone: +49 241 80 80749, Fax: +49 241 80 82587
| | - Dagmar Dechent
- Research Center for Bioelectromagnetic Interaction, Institute of Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - David Graefrath
- Research Center for Bioelectromagnetic Interaction, Institute of Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Anne-Kathrin Petri
- Research Center for Bioelectromagnetic Interaction, Institute of Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Lambert Bodewein
- Research Center for Bioelectromagnetic Interaction, Institute of Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Tanja Emonds
- Research Center for Bioelectromagnetic Interaction, Institute of Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Thomas Kraus
- Research Center for Bioelectromagnetic Interaction, Institute of Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| |
Collapse
|