1
|
Dong L, Zhou R, Zhou J, Liu K, Jin C, Wang J, Xue C, Tian M, Zhang H, Zhong Y. Positron emission tomography molecular imaging for pathological visualization in multiple system atrophy. Neurobiol Dis 2025; 206:106828. [PMID: 39900304 DOI: 10.1016/j.nbd.2025.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025] Open
Abstract
Multiple system atrophy (MSA) is a complex, heterogeneous neurodegenerative disorder characterized by a multifaceted pathogenesis. Its key pathological hallmark is the abnormal aggregation of α-synuclein, which triggers neuroinflammation, disrupts both dopaminergic and non-dopaminergic systems, and results in metabolic abnormalities in the brain. Positron emission tomography (PET) is a non-invasive technique that enables the visualization, characterization, and quantification of these pathological processes from diverse perspectives using radiolabeled agents. PET imaging of molecular events provides valuable insights into the underlying pathomechanisms of MSA and holds significant promise for the development of imaging biomarkers, which could greatly improve disease assessment and management. In this review, we focused on the pathological mechanisms of MSA, summarized relevant targets and radiopharmaceuticals, and discussed the clinical applications and future perspectives of PET molecular imaging in MSA.
Collapse
Affiliation(s)
- La Dong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Ke Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Chenxi Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Human Phenome Institute, Fudan University, Shanghai 200040, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Human Phenome Institute, Fudan University, Shanghai 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310014, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Li J, Chen D, Tang Y, Chen Z, Zhou M, Wan L, Xiao L, Fu Y, He Z, Tang Z, Hu Z, Yuan X, Yang J, Zhu S, Guo X, Ouyang R, Qiu R, Tang B, Guo J, Jiang H, Hu S. Synaptic Density Reductions in MSA: A Potential Biomarker Identified Through [ 18F]SynVesT-1 PET Imaging. Ann Neurol 2025. [PMID: 39829068 DOI: 10.1002/ana.27179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVE The objective of this study was to delineate synaptic density alterations in multiple system atrophy (MSA) and explore its potential role as a biomarker for MSA diagnosis and disease severity monitoring using [18F]SynVesT-1 positron emission tomography / computed tomography (PET CT). METHODS In this prospective study, 60 patients with MSA (30 patients with MSA-parkinsonian [MSA-P] subtype and 30 patients with MSA-cerebellar [MSA-C] subtype), 30 patients with Parkinson's disease (PD), and 30 age-matched healthy controls (HCs) underwent [18F]SynVesT-1 PET/CT for synaptic density assessment. Visual, voxel, and volumetric region of interest (VOI) analyses were used to elucidate synaptic density patterns in the MSA brain and establish diagnostic criteria. The diagnostic performances of both visual and VOI-based diagnostics were evaluated using receiver operating characteristic (ROC) analysis. Spearman correlation analyses were conducted to investigate the relationship between brain synaptic density and disease severity RESULTS: Patients with MSA displayed extensive reductions in synaptic density throughout the brain, notably affecting both primary VOIs (the cerebellum and putamen) and secondary VOIs including the medulla oblongata, ventral tegmental area, and pons. Notably, patients with MSA-C exhibited a remarkable decrease in cerebellar synaptic density, whereas patients with MSA-P demonstrated significant synaptic loss within the posterior putamen. Compared with patients with PD, the patients with MSA show a more pronounced reduction in synaptic density in infratentorial brain regions. VOI-based diagnosis significantly outperformed visual analysis in diagnosing and differentiating MSA and its subtypes. Synaptic density in primary and multiple secondary VOIs correlated significantly with motor scales in patients with MSA. INTERPRETATION Our study identified widespread synaptic density reductions in MSA, particularly in the basal ganglia and infratentorial region, suggesting [18F]SynVesT-1 PET as a potential biomarker for diagnosing and evaluating the disease, and guiding synaptic restoration trials. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Daji Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, People's Republic of China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - You Fu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhiyou He
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhichao Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhengqun Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xinrong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jinhui Yang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xuan Guo
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Riwei Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, People's Republic of China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, People's Republic of China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Biological Nanotechnology, Changsha, People's Republic of China
| |
Collapse
|
3
|
Du X, Zhao H, Li Y, Dai Y, Gao L, Li Y, Fan K, Sun Z, Zhang Y. The value of PET/CT in the diagnosis and differential diagnosis of Parkinson's disease: a dual-tracer study. NPJ Parkinsons Dis 2024; 10:171. [PMID: 39256393 PMCID: PMC11387816 DOI: 10.1038/s41531-024-00786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Positron emission tomography/computed tomography (PET/CT) is a molecular imaging method commonly used to diagnose and differentiate Parkinson's disease (PD). This study aimed to evaluate the performance of PET/CT with 11C-2β-Carbomethoxy-3β-(4-fluorophenyl) tropane (11C-CFT) and 18F-fluorodeoxyglucose (18F-FDG) tracers in the differential diagnosis between PD, multiple system atrophy parkinsonian type (MSA-P), progressive supranuclear palsy (PSP) and vascular parkinsonism (VP) using the data of 220 patients with clinical PD-like symptoms. Of the 220 enrolled patients, 166 (PD, n = 80; MSA-P, n = 54; PSP, n = 15; VP, n = 17) completed the motor, cognitive and PET/CT assessment and were included in this study. 11C-CFT and 18F-FDG PET/CT images were analyzed using the SNBPI toolbox and CortexID Suite software. The uptake values of 11C-CFT and 18F-FDG PET/CT were compared among the groups after controlling for covariates using generalized linear models. Receiver operating characteristic (ROC) curves were generated to estimate the diagnostic values. Patients with PSP showed the most significant reduction on 11C-CFT PET/CT, while patients with PD and MSA-P showed similar reductions, and patients with VP did not show any significant reduction in 11C-CFT uptake. The areas under the curve (AUCs) for 11C-CFT PET/CT for distinguishing PD from VP, PSP, and MSA-P were 0.902, 0.830, and 0.580, respectively, and 0.728 for distinguishing advanced-stage PD from PSP. On 18F-FDG PET/CT, the AUCs for distinguishing PD from PSP and MSA-P were 0.968 and 0.963, respectively. These results suggest that 11C-CFT and 18F-FDG PET/CT complement each other in improving the accuracy in differential diagnosis of PD.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongguang Zhao
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghua Li
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuyin Dai
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lulu Gao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kangli Fan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhihui Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
4
|
Ho TY, Huang SH, Huang CW, Lin KJ, Hsu JL, Huang KL, Chen KT, Chang CC, Hsiao IT, Huang SY. Differences in Topography of Individual Amyloid Brain Networks by Amyloid PET Images in Healthy Control, Mild Cognitive Impairment, and Alzheimer's Disease. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01230-7. [PMID: 39231884 DOI: 10.1007/s10278-024-01230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Amyloid plaques, implicated in Alzheimer's disease, exhibit a spatial propagation pattern through interconnected brain regions, suggesting network-driven dissemination. This study utilizes PET imaging to investigate these brain connections and introduces an innovative method for analyzing the amyloid network. A modified version of a previously established method is applied to explore distinctive patterns of connectivity alterations across cognitive performance domains. PET images illustrate differences in amyloid accumulation, complemented by quantitative network indices. The normal control group shows minimal amyloid accumulation and preserved network connectivity. The MCI group displays intermediate amyloid deposits and partial similarity to normal controls and AD patients, reflecting the evolving nature of cognitive decline. Alzheimer's disease patients exhibit high amyloid levels and pronounced disruptions in network connectivity, which are reflected in low levels of global efficiency (Eg) and local efficiency (Eloc). It is mostly in the temporal lobe where connectivity alterations are found, particularly in regions related to memory and cognition. Network connectivity alterations, combined with amyloid PET imaging, show potential as discriminative markers for different cognitive states. Dataset-specific variations must be considered when interpreting connectivity patterns. The variability in MCI and AD overlap emphasizes the heterogeneity in cognitive decline progression, suggesting personalized approaches for neurodegenerative disorders. This study contributes to understanding the evolving network characteristics associated with normal cognition, MCI, and AD, offering valuable insights for developing diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Tsung-Ying Ho
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Wei Huang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Neurology, New Taipei Municipal Tucheng Hospital (Built and Operated By Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Kuo-Lun Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ko-Ting Chen
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ing-Tsung Hsiao
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sheng-Yao Huang
- Department of Mathematics, Soochow University, Taipei, Taiwan.
| |
Collapse
|
5
|
Chu HY, Smith Y, Lytton WW, Grafton S, Villalba R, Masilamoni G, Wichmann T. Dysfunction of motor cortices in Parkinson's disease. Cereb Cortex 2024; 34:bhae294. [PMID: 39066504 PMCID: PMC11281850 DOI: 10.1093/cercor/bhae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebral cortex has long been thought to be involved in the pathophysiology of motor symptoms of Parkinson's disease. The impaired cortical function is believed to be a direct and immediate effect of pathologically patterned basal ganglia output, mediated to the cerebral cortex by way of the ventral motor thalamus. However, recent studies in humans with Parkinson's disease and in animal models of the disease have provided strong evidence suggesting that the involvement of the cerebral cortex is much broader than merely serving as a passive conduit for subcortical disturbances. In the present review, we discuss Parkinson's disease-related changes in frontal cortical motor regions, focusing on neuropathology, plasticity, changes in neurotransmission, and altered network interactions. We will also examine recent studies exploring the cortical circuits as potential targets for neuromodulation to treat Parkinson's disease.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Rd N.W., Washington D.C. 20007, United States
| | - Yoland Smith
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - William W Lytton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
- Department of Neurology, Kings County Hospital, 451 Clarkson Avenue,Brooklyn, NY 11203, United States
| | - Scott Grafton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Psychological and Brain Sciences, University of California, 551 UCEN Road, Santa Barbara, CA 93106, United States
| | - Rosa Villalba
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Gunasingh Masilamoni
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Thomas Wichmann
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
6
|
Shiina K, Tsunemi T, Hattori N. Cerebellar blood perfusion is a diagnostic, but not a prognostic, marker for parkinsonian-dominant type multiple system atrophy. Parkinsonism Relat Disord 2024; 123:106975. [PMID: 38677216 DOI: 10.1016/j.parkreldis.2024.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION Multiple system atrophy (MSA) is clinically characterized by various neurological symptoms. According to the diagnostic criteria, MSA is classified into parkinsonian-dominant type (MSA-P) or cerebellar ataxia-dominant type (MSA-C) based on the predominant signs displayed. Recently, N-isopropyl-p-[123I] iodoamphetamine (123I-IMP) single-photon emission computed tomography (SPECT), a radiological examination evaluating brain perfusion, has been successful in detecting cerebellar hypoperfusion in MSA-P patients, demonstrating its utility in the early detection of cerebellar dysfunction. In this study, we further explored whether this cerebellar hypoperfusion impacts the clinical features of MSA-P, whether it is observable in patients without cerebellar symptoms, and, most importantly, whether it influences the prognosis of MSA-P. METHODS We conducted a retrospective analysis of 88 MSA patients who were admitted to our department for the last fifteen years. Clinical data were collected, and cerebellar perfusion was examined using 123I-IMP SPECT. This analysis includes the application of the three-dimensional stereotactic surface projection (3D-SSP) technique and Z-score. RESULTS Cerebellar perfusion decreased in MSA-P patients without cerebellar ataxia, compared to healthy individuals (p = 0.0017). The Receiver Operating Characteristic (ROC) curve demonstrated a moderate ability to distinguish MSA-P patients without cerebellar ataxia (MSA-Pp) from healthy controls (AUC = 0.6832). Among MSA-Pp, those exhibiting cerebellar hypoperfusion showed relatively improved neurological prognosis, although the difference was not statistically significant when compared to those with normal cerebellar perfusion. CONCLUSION Assessing cerebellar perfusion through IMP-SPECT proves valuable in detecting subclinical cerebellar dysfunction in MSA-Pp. Importantly, cerebellar hypoperfusion does not correlate with a poorer neurological prognosis.
Collapse
Affiliation(s)
- Kenta Shiina
- Department of Neurology, Juntendo University Faculty of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Taiji Tsunemi
- Department of Neurology, Juntendo University Faculty of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
7
|
Wang J, Xue L, Jiang J, Liu F, Wu P, Lu J, Zhang H, Bao W, Xu Q, Ju Z, Chen L, Jiao F, Lin H, Ge J, Zuo C, Tian M. Diagnostic performance of artificial intelligence-assisted PET imaging for Parkinson's disease: a systematic review and meta-analysis. NPJ Digit Med 2024; 7:17. [PMID: 38253738 PMCID: PMC10803804 DOI: 10.1038/s41746-024-01012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Artificial intelligence (AI)-assisted PET imaging is emerging as a promising tool for the diagnosis of Parkinson's disease (PD). We aim to systematically review the diagnostic accuracy of AI-assisted PET in detecting PD. The Ovid MEDLINE, Ovid Embase, Web of Science, and IEEE Xplore databases were systematically searched for related studies that developed an AI algorithm in PET imaging for diagnostic performance from PD and were published by August 17, 2023. Binary diagnostic accuracy data were extracted for meta-analysis to derive outcomes of interest: area under the curve (AUC). 23 eligible studies provided sufficient data to construct contingency tables that allowed the calculation of diagnostic accuracy. Specifically, 11 studies were identified that distinguished PD from normal control, with a pooled AUC of 0.96 (95% CI: 0.94-0.97) for presynaptic dopamine (DA) and 0.90 (95% CI: 0.87-0.93) for glucose metabolism (18F-FDG). 13 studies were identified that distinguished PD from the atypical parkinsonism (AP), with a pooled AUC of 0.93 (95% CI: 0.91 - 0.95) for presynaptic DA, 0.79 (95% CI: 0.75-0.82) for postsynaptic DA, and 0.97 (95% CI: 0.96-0.99) for 18F-FDG. Acceptable diagnostic performance of PD with AI algorithms-assisted PET imaging was highlighted across the subgroups. More rigorous reporting standards that take into account the unique challenges of AI research could improve future studies.
Collapse
Affiliation(s)
- Jing Wang
- Huashan Hospital & Human Phenome Institute, Fudan University, Shanghai, China
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Xue
- Department of Nuclear Medicine, the Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai, China
| | - Fengtao Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaying Lu
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiwei Zhang
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiqi Bao
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Xu
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zizhao Ju
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Ultrasound Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangyang Jiao
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Huamei Lin
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Chuantao Zuo
- Huashan Hospital & Human Phenome Institute, Fudan University, Shanghai, China.
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.
| | - Mei Tian
- Huashan Hospital & Human Phenome Institute, Fudan University, Shanghai, China.
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Timmers ER, Klamer MR, Marapin RS, Lammertsma AA, de Jong BM, Dierckx RAJO, Tijssen MAJ. [ 18F]FDG PET in conditions associated with hyperkinetic movement disorders and ataxia: a systematic review. Eur J Nucl Med Mol Imaging 2023; 50:1954-1973. [PMID: 36702928 PMCID: PMC10199862 DOI: 10.1007/s00259-023-06110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE To give a comprehensive literature overview of alterations in regional cerebral glucose metabolism, measured using [18F]FDG PET, in conditions associated with hyperkinetic movement disorders and ataxia. In addition, correlations between glucose metabolism and clinical variables as well as the effect of treatment on glucose metabolism are discussed. METHODS A systematic literature search was performed according to PRISMA guidelines. Studies concerning tremors, tics, dystonia, ataxia, chorea, myoclonus, functional movement disorders, or mixed movement disorders due to autoimmune or metabolic aetiologies were eligible for inclusion. A PubMed search was performed up to November 2021. RESULTS Of 1240 studies retrieved in the original search, 104 articles were included. Most articles concerned patients with chorea (n = 27), followed by ataxia (n = 25), dystonia (n = 20), tremor (n = 8), metabolic disease (n = 7), myoclonus (n = 6), tics (n = 6), and autoimmune disorders (n = 5). No papers on functional movement disorders were included. Altered glucose metabolism was detected in various brain regions in all movement disorders, with dystonia-related hypermetabolism of the lentiform nuclei and both hyper- and hypometabolism of the cerebellum; pronounced cerebellar hypometabolism in ataxia; and striatal hypometabolism in chorea (dominated by Huntington disease). Correlations between clinical characteristics and glucose metabolism were often described. [18F]FDG PET-showed normalization of metabolic alterations after treatment in tremors, ataxia, and chorea. CONCLUSION In all conditions with hyperkinetic movement disorders, hypo- or hypermetabolism was found in multiple, partly overlapping brain regions, and clinical characteristics often correlated with glucose metabolism. For some movement disorders, [18F]FDG PET metabolic changes reflected the effect of treatment.
Collapse
Affiliation(s)
- Elze R Timmers
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Marrit R Klamer
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Ramesh S Marapin
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen (UMCG), University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen (UMCG), University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands.
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands.
| |
Collapse
|
9
|
Perovnik M, Rus T, Schindlbeck KA, Eidelberg D. Functional brain networks in the evaluation of patients with neurodegenerative disorders. Nat Rev Neurol 2023; 19:73-90. [PMID: 36539533 DOI: 10.1038/s41582-022-00753-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Network analytical tools are increasingly being applied to brain imaging maps of resting metabolic activity (PET) or blood oxygenation-dependent signals (functional MRI) to characterize the abnormal neural circuitry that underlies brain diseases. This approach is particularly valuable for the study of neurodegenerative disorders, which are characterized by stereotyped spread of pathology along discrete neural pathways. Identification and validation of disease-specific brain networks facilitate the quantitative assessment of pathway changes over time and during the course of treatment. Network abnormalities can often be identified before symptom onset and can be used to track disease progression even in the preclinical period. Likewise, network activity can be modulated by treatment and might therefore be used as a marker of efficacy in clinical trials. Finally, early differential diagnosis can be achieved by simultaneously measuring the activity levels of multiple disease networks in an individual patient's scans. Although these techniques were originally developed for PET, over the past several years analogous methods have been introduced for functional MRI, a more accessible non-invasive imaging modality. This advance is expected to broaden the application of network tools to large and diverse patient populations.
Collapse
Affiliation(s)
- Matej Perovnik
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Rus
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
10
|
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease that is characterized by neuronal loss and gliosis in multiple areas of the central nervous system including striatonigral, olivopontocerebellar and central autonomic structures. Oligodendroglial cytoplasmic inclusions containing misfolded and aggregated α-synuclein are the histopathological hallmark of MSA. A firm clinical diagnosis requires the presence of autonomic dysfunction in combination with parkinsonism that responds poorly to levodopa and/or cerebellar ataxia. Clinical diagnostic accuracy is suboptimal in early disease because of phenotypic overlaps with Parkinson disease or other types of degenerative parkinsonism as well as with other cerebellar disorders. The symptomatic management of MSA requires a complex multimodal approach to compensate for autonomic failure, alleviate parkinsonism and cerebellar ataxia and associated disabilities. None of the available treatments significantly slows the aggressive course of MSA. Despite several failed trials in the past, a robust pipeline of putative disease-modifying agents, along with progress towards early diagnosis and the development of sensitive diagnostic and progression biomarkers for MSA, offer new hope for patients.
Collapse
|
11
|
Jucaite A, Cselényi Z, Kreisl WC, Rabiner EA, Varrone A, Carson RE, Rinne JO, Savage A, Schou M, Johnström P, Svenningsson P, Rascol O, Meissner WG, Barone P, Seppi K, Kaufmann H, Wenning GK, Poewe W, Farde L. Glia Imaging Differentiates Multiple System Atrophy from Parkinson's Disease: A Positron Emission Tomography Study with [ 11 C]PBR28 and Machine Learning Analysis. Mov Disord 2021; 37:119-129. [PMID: 34609758 DOI: 10.1002/mds.28814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The clinical diagnosis of multiple system atrophy (MSA) is challenged by overlapping features with Parkinson's disease (PD) and late-onset ataxias. Additional biomarkers are needed to confirm MSA and to advance the understanding of pathophysiology. Positron emission tomography (PET) imaging of the translocator protein (TSPO), expressed by glia cells, has shown elevations in MSA. OBJECTIVE In this multicenter PET study, we assess the performance of TSPO imaging as a diagnostic marker for MSA. METHODS We analyzed [11 C]PBR28 binding to TSPO using imaging data of 66 patients with MSA and 24 patients with PD. Group comparisons were based on regional analysis of parametric images. The diagnostic readout included visual reading of PET images against clinical diagnosis and machine learning analyses. Sensitivity, specificity, and receiver operating curves were used to discriminate MSA from PD and cerebellar from parkinsonian variant MSA. RESULTS We observed a conspicuous pattern of elevated regional [11 C]PBR28 binding to TSPO in MSA as compared with PD, with "hotspots" in the lentiform nucleus and cerebellar white matter. Visual reading discriminated MSA from PD with 100% specificity and 83% sensitivity. The machine learning approach improved sensitivity to 96%. We identified MSA subtype-specific TSPO binding patterns. CONCLUSIONS We found a pattern of significantly increased regional glial TSPO binding in patients with MSA. Intriguingly, our data are in line with severe neuroinflammation in MSA. Glia imaging may have potential to support clinical MSA diagnosis and patient stratification in clinical trials on novel drug therapies for an α-synucleinopathy that remains strikingly incurable. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aurelija Jucaite
- PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Zsolt Cselényi
- PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - William C Kreisl
- Taub Institute, Department of Neurology, Columbia University Irving Medical Centre, New York, New York, USA
| | - Eugenii A Rabiner
- Invicro, London, UK.,Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | | | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | | | - Magnus Schou
- PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Peter Johnström
- PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Olivier Rascol
- French MSA Reference Centre, Clinical Investigation Centre CIC1436, Department of Neurosciences and Clinical Pharmacology, NeuroToul COEN Centre, UMR 1 214-ToNIC and University Hospital of Toulouse, INSERM and University of Toulouse 3, Toulouse, France
| | - Wassilios G Meissner
- CRMR AMS, Service de Neurologie-Maladies Neurodégénératives, CHU Bordeaux, Bordeaux, France.,University Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France.,Department of Medicine, University of Otago, Christchurch, New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Paolo Barone
- Neurodegenerative Disease Centre, University of Salerno, Salerno, Italy
| | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Horacio Kaufmann
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Gregor K Wenning
- Division of Clinical Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Poewe
- Division of Clinical Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Lars Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Prasad S, Rajan A, Pasha SA, Mangalore S, Saini J, Ingalhalikar M, Pal PK. Abnormal structural connectivity in progressive supranuclear palsy-Richardson syndrome. Acta Neurol Scand 2021; 143:430-440. [PMID: 33175396 DOI: 10.1111/ane.13372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Progressive supranuclear palsy-Richardson syndrome (PSP-RS) is characterized by symmetrical parkinsonism with postural instability and frontal dysfunction. This study aims to use the whole brain structural connectome (SC) to gain insights into the underlying disconnectivity which may be implicated in the clinical features of PSP-RS. METHODS Sixteen patients of PSP-RS and 12 healthy controls were recruited. Disease severity was quantified using PSP rating scale (PSPRS), and mini-mental scale was applied to evaluate cognition. Thirty-two direction diffusion MRIs were acquired and used to compute the structural connectome of the whole brain using deterministic fiber tracking. Group analyses were performed at the edge-wise, nodal, and global levels. Age and gender were used as nuisance covariates for all the subsequent analyses, and FDR correction was applied. RESULTS Network-based statistics revealed a 34-edge network with significantly abnormal edge-wise connectivity in the patient group. Of these, 25 edges were cortical connections, of which 68% were frontal connections. Abnormal deep gray matter connections were predominantly comprised of connections between structures of the basal ganglia. The characteristic path length of the SC was lower in PSP-RS, and nodal analysis revealed abnormal degree, strength, local efficiency, betweenness centrality, and participation coefficient in several nodes. CONCLUSIONS Significant alterations in the structural connectivity of the whole brain connectome were observed in PSP-RS. The higher degree of abnormality observed in nodes belonging to the frontal lobe and basal ganglia substantiates the predominant frontal dysfunction and parkinsonism observed in PSP-RS. The findings of this study support the concept that PSP-RS may be a network-based disorder.
Collapse
Affiliation(s)
- Shweta Prasad
- Department of Clinical Neurosciences National Institute of Mental Health & Neurosciences Bangalore India
- Department of Neurology National Institute of Mental Health & Neurosciences Bangalore India
| | - Archith Rajan
- Symbiosis Center for Medical Image Analysis Symbiosis International University Pune India
- Symbiosis Institute of Technology Symbiosis International University Pune India
| | - Shaik Afsar Pasha
- Department of Neurology National Institute of Mental Health & Neurosciences Bangalore India
| | - Sandhya Mangalore
- Department of Neuroimaging & Interventional Radiology National Institute of Mental Health & Neurosciences Bangalore India
| | - Jitender Saini
- Department of Neuroimaging & Interventional Radiology National Institute of Mental Health & Neurosciences Bangalore India
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis Symbiosis International University Pune India
- Symbiosis Institute of Technology Symbiosis International University Pune India
| | - Pramod Kumar Pal
- Department of Neurology National Institute of Mental Health & Neurosciences Bangalore India
| |
Collapse
|
13
|
Carli G, Tondo G, Boccalini C, Perani D. Brain Molecular Connectivity in Neurodegenerative Conditions. Brain Sci 2021; 11:brainsci11040433. [PMID: 33800680 PMCID: PMC8067093 DOI: 10.3390/brainsci11040433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022] Open
Abstract
Positron emission tomography (PET) allows for the in vivo assessment of early brain functional and molecular changes in neurodegenerative conditions, representing a unique tool in the diagnostic workup. The increased use of multivariate PET imaging analysis approaches has provided the chance to investigate regional molecular processes and long-distance brain circuit functional interactions in the last decade. PET metabolic and neurotransmission connectome can reveal brain region interactions. This review is an overview of concepts and methods for PET molecular and metabolic covariance assessment with evidence in neurodegenerative conditions, including Alzheimer’s disease and Lewy bodies disease spectrum. We highlight the effects of environmental and biological factors on brain network organization. All of the above might contribute to innovative diagnostic tools and potential disease-modifying interventions.
Collapse
Affiliation(s)
- Giulia Carli
- School of Psychology, Vita-Salute San Raffaele University, 20121 Milan, Italy; (G.C.); (G.T.); (C.B.)
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20121 Milan, Italy
| | - Giacomo Tondo
- School of Psychology, Vita-Salute San Raffaele University, 20121 Milan, Italy; (G.C.); (G.T.); (C.B.)
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20121 Milan, Italy
| | - Cecilia Boccalini
- School of Psychology, Vita-Salute San Raffaele University, 20121 Milan, Italy; (G.C.); (G.T.); (C.B.)
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20121 Milan, Italy
| | - Daniela Perani
- School of Psychology, Vita-Salute San Raffaele University, 20121 Milan, Italy; (G.C.); (G.T.); (C.B.)
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20121 Milan, Italy
- Nuclear Medicine Unit, San Raffaele Hospital, 20121 Milan, Italy
- Correspondence: ; Tel.: +39-02-26432224
| |
Collapse
|
14
|
Importance of Fluorine in Benzazole Compounds. Molecules 2020; 25:molecules25204677. [PMID: 33066333 PMCID: PMC7587361 DOI: 10.3390/molecules25204677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Fluorine-containing heterocycles continue to receive considerable attention due to their unique properties. In medicinal chemistry, the incorporation of fluorine in small molecules imparts a significant enhancement their biological activities compared to non-fluorinated molecules. In this short review, we will highlight the importance of incorporating fluorine as a basic appendage in benzothiazole and benzimidazole skeletons. The chemistry and pharmacological activities of heterocycles containing fluorine during the past years are compiled and discussed.
Collapse
|
15
|
Pellecchia MT, Stankovic I, Fanciulli A, Krismer F, Meissner WG, Palma JA, Panicker JN, Seppi K, Wenning GK. Can Autonomic Testing and Imaging Contribute to the Early Diagnosis of Multiple System Atrophy? A Systematic Review and Recommendations by the Movement Disorder Society Multiple System Atrophy Study Group. Mov Disord Clin Pract 2020; 7:750-762. [PMID: 33043073 DOI: 10.1002/mdc3.13052] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/08/2020] [Accepted: 05/23/2020] [Indexed: 01/01/2023] Open
Abstract
Background In the current consensus diagnostic criteria, the diagnosis of probable multiple system atrophy (MSA) is based solely on clinical findings, whereas neuroimaging findings are listed as aid for the diagnosis of possible MSA. There are overlapping phenotypes between MSA-parkinsonian type and Parkinson's disease, progressive supranuclear palsy, and dementia with Lewy bodies, and between MSA-cerebellar type and sporadic adult-onset ataxia resulting in a significant diagnostic delay and misdiagnosis of MSA during life. Objectives In light of an ongoing effort to revise the current consensus criteria for MSA, the Movement Disorders Society Multiple System Atrophy Study Group performed a systematic review of original articles published before August 2019. Methods We included articles that studied at least 10 patients with MSA as well as participants with another disorder or control group for comparison purposes. MSA was defined by neuropathological confirmation, or as clinically probable, or clinically probable plus possible according to consensus diagnostic criteria. Results We discuss the pitfalls and benefits of each diagnostic test and provide specific recommendations on how to evaluate patients in whom MSA is suspected. Conclusions This systematic review of relevant studies indicates that imaging and autonomic function tests significantly contribute to increasing the accuracy of a diagnosis of MSA.
Collapse
Affiliation(s)
- Maria Teresa Pellecchia
- Center for Neurodegenerative Diseases, Department of Medicine, Neuroscience Section, University of Salerno Fisciano Italy
| | - Iva Stankovic
- Neurology Clinic, Clinical Center of Serbia School of Medicine, University of Belgrade Belgrade Serbia
| | | | - Florian Krismer
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Wassilios G Meissner
- French Reference Center for MSA, Department of Neurology University Hospital Bordeaux, Bordeaux and Institute of Neurodegenerative Disorders, University Bordeaux, Centre National de la Recherche Scientifique Unite Mixte de Recherche Bordeaux Bordeaux France
| | - Jose-Alberto Palma
- Dysautonomia Center, Langone Medical Center New York University School of Medicine New York New York USA
| | - Jalesh N Panicker
- Institute of Neurology, University College London London United Kingdom.,Department of Uro-Neurology The National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Klaus Seppi
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Gregor K Wenning
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | | |
Collapse
|
16
|
Diagnostic accuracy of the appearance of Nigrosome-1 on magnetic resonance imaging in Parkinson's disease: A systematic review and meta-analysis. Parkinsonism Relat Disord 2020; 78:12-20. [DOI: 10.1016/j.parkreldis.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/04/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
|
17
|
Ruan W, Sun X, Hu X, Liu F, Hu F, Guo J, Zhang Y, Lan X. Regional SUV quantification in hybrid PET/MR, a comparison of two atlas-based automatic brain segmentation methods. EJNMMI Res 2020; 10:60. [PMID: 32514906 PMCID: PMC7280441 DOI: 10.1186/s13550-020-00648-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/21/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Quantitative analysis of brain positron-emission tomography (PET) depends on structural segmentation, which can be time-consuming and operator-dependent when performed manually. Previous automatic segmentation usually registered subjects' images onto an atlas template (defined as RSIAT here) for group analysis, which changed the individuals' images and probably affected regional PET segmentation. In contrast, we could register atlas template to subjects' images (RATSI), which created an individual atlas template and may be more accurate for PET segmentation. We segmented two representative brain areas in twenty Parkinson disease (PD) and eight multiple system atrophy (MSA) patients performed in hybrid positron-emission tomography/magnetic resonance imaging (PET/MR). The segmentation accuracy was evaluated using the Dice coefficient (DC) and Hausdorff distance (HD), and the standardized uptake value (SUV) measurements of these two automatic segmentation methods were compared, using manual segmentation as a reference. RESULTS The DC of RATSI increased, and the HD decreased significantly (P < 0.05) compared with the RSIAT in PD, while the results of one-way analysis of variance (ANOVA) found no significant differences in the SUVmean and SUVmax among the two automatic and the manual segmentation methods. Further, RATSI was used to compare regional differences in cerebral metabolism pattern between PD and MSA patients. The SUVmean in the segmented cerebellar gray matter for the MSA group was significantly lower compared with the PD group (P < 0.05), which is consistent with previous reports. CONCLUSION The RATSI was more accurate for the caudate nucleus and putamen automatic segmentation and can be used for regional PET analysis in hybrid PET/MR.
Collapse
Affiliation(s)
- Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xuehan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | | | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
18
|
Frings L, Henninger F, Treppner M, Köber G, Boeker M, Hellwig S, Buchert R, Meyer PT. [123I]FP-CIT SPECT in Clinically Uncertain Parkinsonism Predicts Survival: A Data-Driven Analysis. JOURNAL OF PARKINSON'S DISEASE 2020; 10:1457-1465. [PMID: 33044193 DOI: 10.3233/jpd-202214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Dopamine transporter SPECT is an established method to investigate nigrostriatal integrity in case of clinically uncertain parkinsonism. OBJECTIVE The present study explores whether a data-driven analysis of [123I]FP-CIT SPECT is able to stratify patients according to mortality after SPECT. METHODS Patients from our clinical registry were included if they had received [123I]FP-CIT SPECT between 10/2008 and 06/2016 for diagnosis of parkinsonism and if their vital status could be determined in 07/2017. Specific binding ratios (SBR) of the whole striatum, its asymmetry (asymmetry index, AI; absolute value), and the rostrocaudal gradient of striatal binding (C/pP: caudate SBR divided by posterior putamen SBR) were used as input for hierarchical clustering of patients. We tested differences in survival between these groups (adjusted for age) with a Cox proportional hazards model. RESULTS Data from 518 patients were analyzed. Median follow-up duration was 3.3 years [95% C.I. 3.1 to 3.7]. Three subgroups identified by hierarchical clustering were characterized by relatively low striatal SBR, high AI, and low C/pP (group 1), low striatal SBR, high AI, and high C/pP (group 2), and high striatal SBR, low AI, and low C/pP (group 3). Mortality was significantly higher in group 1 compared to each of the other two groups (p = 0.029 and p = 0.003, respectively). CONCLUSION Data-driven analysis of [123I]FP-CIT SPECT identified a subgroup of patients with significantly increased mortality during follow-up. This suggests that [123I]-FP-CIT SPECT might not only serve as a diagnostic tool to verify nigrostriatal degeneration but also provide valuable prognostic information.
Collapse
Affiliation(s)
- Lars Frings
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Henninger
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Treppner
- Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Göran Köber
- Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Boeker
- Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Hellwig
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|